首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Collins  Beverly  Wein  Gary 《Plant Ecology》1998,138(2):217-217
Early succession from annuals to herbaceous and woody perennials on abandoned fields and grasslands is marked by vegetation heterogeneity; i.e., variation in canopy composition and structure over the field through time. Soil resource heterogeneity could promote vegetation heterogeneity. We created soil resource patchiness on two newly ploughed fields by establishing two types (fertilized, unfertilized) of checkerboard plots with two, four, or eight subplots (trenched, untrenched) to test effects of soil fertility heterogeneity scale on vegetation heterogeneity during early succession. Canopy composition and structure were censused in years 2, 4 and 6. On both fields, soil resource heterogeneity did not affect canopy composition or structure. Differential abundance of dominant species, Ambrosia trifida on one field and Solidago altissima on the other, between fertilized and unfertilized plots led to decreased vegetation heterogeneity among subplots within plots and increased vegetation heterogeneity among plots. Soil enrichment promoted taller and layered, but species-poor, canopy. In general, soil fertility effects on abundance, expansion, and dominance of individuals of dominant species promoted variation in canopy composition and structure, or vegetation heterogeneity, among plots on the two fields.  相似文献   

2.
Summary The effects of spring grazing by sheep and of natural levels of insect herbivory were studied in 1985 on a limestone field abandoned from arable land for four years. A split-plot design was adopted in which paddocks, arranged in Latin squares, were either left ungrazed or heavily grazed by sheep for ten days in April. Within each paddock plots were either sprayed regularly with Malathion-60 or untreated.Natural levels of insect herbivory, compared to the reduced levels in insecticide-treated plots, had effects of similar magnitude to those from the short burst of spring grazing. Many attributes of the grazed/insecticide-treated sward were either increased or decreased by a factor of two within a season. Both types of herbivore caused changes in the direction of plant succession as well as in its rate. Effects on early successional species were large and similar when caused by either type of herbivore. Effects on later successional species were often smaller, but also showed differences in the action of the two herbivore types, as did effects on sward height, species richness and total cover. The effects of sheep and insect herbivory were not always additive or in the same direction.The results suggest that manipulations of both mammal and insect herbivores may be powerful tools for directing changes in plant community composition.  相似文献   

3.
Previous studies have demonstrated genetic variation for resistance to insect herbivores and host plant quality. The effect of plant mating system, an important determinant of the distribution of genetic variation, on host plant characteristics has received almost no attention. This study used a controlled greenhouse experiment to examine the effect of self- and cross-pollination in Mimulus guttatus (Scrophulariaceae) on resistance to and host plant quality for the xylem-feeding spittlebug Philaenus spumarius (Homoptera: Cercopidae). Spittlebugs were found to have a negative effect on two important fitness components in M. guttatus, flower production and above ground biomass. One of two M. guttatus populations examined showed a significant interaction between the pollination and herbivore treatments. In this case, the detrimental effects of herbivores on biomass and flower production were much more pronounced in inbred (self) plants. The presence of spittlebug nymphs increased inbreeding depression by as much as three times. Pollination treatments also had significant effects on important components of herbivore fitness, but these effects were in opposite directions in our two host plant populations. Spittlebug nymphs maturing on self plants emerged as significantly larger adults in one of our host plant populations, indicating that inbreeding increased host plant quality. In our second host plant population, spittlebug nymphs took significantly longer to develop to adulthood on self plants, indicating that inbreeding decreased host plant quality. Taken together these results suggest that the degree of inbreeding in host plant populations can have important and perhaps complex effects on the dynamics of plant-herbivore interactions and on mating-system evolution in the host.  相似文献   

4.
Exotic plants can affect native plants indirectly through various biotic interactions. However, combinations of the multiple indirect effects of exotic plants on native plants have been rarely evaluated. Herbivory can either positively or negatively influence plant–pollinator interactions. Here, we addressed whether the pollinator-mediated plant interaction between exotic and native plants is altered through the introduction of exotic herbivores by conducting a 2-year common garden experiment. We compared the effects of pollinator-mediated indirect effects of an exotic plant, Solidago altissima, on the co-flowering native plant Aster microcephalus in geographically different populations reflecting differences in insect herbivore communities. We found a positive effect of co-flowering S. altissima on pollinator visitation of A. microcephalus, which varied between gardens and years. The co-flowering S. altissima did not significantly affect the seed set of A. microcephalus in the first year but had a negative effect in the second year. The facilitative effect of S. altissima on A. microcephalus pollination was suggested to be negatively affected by an exotic aphid, while it was not significantly affected by an exotic lace bug. Our study suggests that the phenology and feeding guilds of the herbivores may be critical for predicting the effect of exotic plants on native plants through herbivore–pollinator interactions. Integrated effects between plant interactions via multiple species interactions under different abiotic and biotic environments are necessary to understand the impact of exotic plants under complex interactions in nature.  相似文献   

5.
Lincoln  D. E. 《Plant Ecology》1993,(1):273-280
The carbon/nutrient ratio of plants has been hypothesized to be a significant regulator of plant susceptibility of leaf-eating insects. As rising atmospheric carbon dioxide stimulates photosynthesis, host plant carbon supply is increased and the accompanying higher levels of carbohydrates, especially starch, apparently dilute the protein content of the leaf. When host plant nitrogen supply is limited, plant responses include increased carbohydrate accumulation, reduced leaf protein content, but also increased carbon-based defensive chemicals. No change, however, has been observed in the concentration of leaf defensive allelochemicals with elevated carbon dioxide during host plant growth. Insect responses to carbon-fertilized leaves include increased consumption with little change in growth, or alternatively, little change in consumption with decreased growth, as well as enhanced leaf digestibility, reduced nitrogen use efficiency, and reduced fecundity. The effects of plant carbon and nutrient supply on herbivores appear to result, at least in part, from independent processes affecting secondary metabolism.  相似文献   

6.
We compared community composition, density, and species richness of herbivorous insects on the introduced plant Solidago altissima L. (Asteraceae) and the related native species Solidago virgaurea L. in Japan. We found large differences in community composition on the two Solidago species. Five hemipteran sap feeders were found only on S. altissima. Two of them, the aphid Uroleucon nigrotuberculatum Olive (Hemiptera: Aphididae) and the scale insect Parasaissetia nigra Nietner (Hemiptera: Coccidae), were exotic species, accounting for 62% of the total individuals on S. altissima. These exotic sap feeders mostly determined the difference of community composition on the two plant species. In contrast, the herbivore community on S. virgaurea consisted predominately of five native insects: two lepidopteran leaf chewers and three dipteran leaf miners. Overall species richness did not differ between the plants because the increased species richness of sap feeders was offset by the decreased richness of leaf chewers and leaf miners on S. altissima. The overall density of herbivorous insects was higher on S. altissima than on S. virgaurea, because of the high density of the two exotic sap feeding species on S. altissima. We discuss the importance of analyzing community composition in terms of feeding guilds of insect herbivores for understanding how communities of insect herbivores are organized on introduced plants in novel habitats.  相似文献   

7.
Summary Although insect herbivores have many well documented effects on plant performance, there are few studies that assess the impact of above-ground herbivory on below-ground plant growth. For a seven year period in which no large-scale herbivore outbreaks occurred, a broad spectrum insecticide was utilized to suppress herbivorous insects in a natural community dominated by Solidago altissima. Ramet heights, rhizome lengths, rhizome biomass, and the number of daughter rhizomes all were lower in the control plots than in the insecticidetreated plots. These effects should lead to a decrease in the fitness of genets in the control plots relative to the fitness of genets in the insecticide-treated plots. We also found that ramets in the control plots appear to have compensated for herbivory: the ratio of rhizome length to rhizome biomass was greatest in the control plots, which indicates that clones moved farther per unit biomass in these plots than in the insecticide-treated plots. Clonal growth models show that this shift in allocation patterns greatly reduced the magnitude of treatment differences in long-term clonal displacements.Previous work has shown, and this study verified, that clonal growth in S. altissima is well represented by random-walk and diffusion models. Therefore, we used these models to examine possible treatment differences in rates of clonal expansion. Although rhizome lengths were greater in the insecticide-treated plots, results from the models suggest that our treatments had little impact on the short- and long-term displacement of S. altissima ramets from a point of origin. This occurred because S. altissima ramets backtrack often, and thus, treatment differences in net displacements are less pronounced than treatment differences in rhizome lengths.  相似文献   

8.
Soil net N-mineralization rate was measured along a successional gradient in salt-marsh sites that were grazed by vertebrate herbivores, and in 5-year-old exclosures from which the animals were excluded. Mineralization rate was significantly higher at ungrazed than at grazed sites. In the absence of grazing, mineralization rate increased over the course of succession, whereas it remained relatively low when sites were grazed. The largest differences in mineralization rate between grazed and ungrazed sites were found at late successional stages where grazing pressure was lowest. The amount of plant litter was significantly lower at grazed sites. In addition, the amount of litter and potential litter (non-woody, live shoots) was linearly related to net N-mineralization rate. This implies that herbivores reduced mineralization rate by preventing litter accumulation. Bulk density was higher at grazed salt-marsh sites than at ungrazed sites. This factor may also have contributed to the differences in net N-mineralization rate between grazed and ungrazed sites. Received: 30 November 1997 / Accepted: 27 August 1998  相似文献   

9.
Abstract.
  • 1 The densities of insect herbivores in fertilized and unfertilized field plots of goldenrods, Solidago altissima (Compositae), were monitored over a period of 4 years.
  • 2 A total of seventeen insect taxa occurred on the plots over the course of the study, including sap feeders, leaf chewers, leaf miners, leaf gallers and stem gallers with multiple representatives in each of these feeding guilds.
  • 3 Nine of the seventeen taxa significantly increased in density on fertilized plots in at least one year of the study, two taxa showed marginally significant increases on fertilized plots, two significantly decreased in density on fertilized plots in at least one year, and the remaining taxa were unaffected by the fertilizer treatment.
  • 4 The effects of fertilization on the insects were not strongly related to feeding guild; the group of insects that increased on fertilized plots was functionally diverse, and for the most part members of the same guild did not respond to the fertilizer treatment in consistent ways.
  • 5 Differences between fertilized and unfertilized plots were greatest in the fourth year. The insects that showed delayed responses to fertilizer treatment may have been affected by changes in microclimate that developed slowly over the course of the study, suggesting that long-term studies may be necessary to detect effects of host plant stress on insect herbivores.
  相似文献   

10.
Pistia stratiotes L. (Araceae) is an important weed in many waterways around the world. The South American weevil Neohydronomus affinis Hustache (Coleoptera: Curculionidae) is a successful biocontrol agent for this weed but additional agents are needed for some areas. The planthopper Lepidelphax pistiae Remes Lenicov (Hemiptera: Delphacidae) is a specific herbivore of P. stratiotes and is highly damaging in laboratory conditions. A field experiment was designed to evaluate the damage potential of L. pistiae compared to N. affinis and to assess the potential for competition between the two herbivores. Both herbivore species were reared inside floating cages on a P. stratiotes-infested lake. Plant growth indices assessed were clonation levels, biomass and plant diameter. The growth indices of plants exposed to the herbivores, individually and combined, were comparable, and significantly lower than in the control treatments. Population levels of N. affinis inside the cages were not significantly different when alone or together with L. pistae. Conversely, the density of L. pistiae was significantly lower in combination with the weevil. This suggests that L. pistiae is a damaging herbivore that will not reduce the biological control effectiveness of N. affinis.  相似文献   

11.
Soil C and N dynamics were studied in a sequence of old fields of increasing age to determine how these biogeochemical cycles change during secondary succession. In addition, three different late-successional forests were studied to represent possible "steady state" conditions. Surface soil samples collected from the fields and forests were analyzed for total C, H2O-soluble C, total N, potential net N mineralization, potential net nitrification, and microbial biomass. Above-and belowground plant biomass was estimated within each of the old field sites.Temporal changes in soil organic C, total N and total plant biomass were best described by a gamma function [y =at b e ctd +f] whereas a simple exponential model [y =a(l – ebt ) + c] provided the best fit to changes in H2O-soluble C, C:N ratio, microbial C, and microbial N. Potential N mineralization and nitrification linearly increased with field age; however, rates were variable among the fields. Microbial biomass was highly correlated to soil C and N pools and well correlated to the standing crop of plant biomass. In turn, plant biomass was highly correlated to pools and rates of N cycling.Patterns of C and N cycling within the old field sites were different from those in a northern hardwood forest and a xeric oak forest; however, nutrient dynamics within an oak savanna were similar to those found in a 60-yr old field. Results suggest that patterns in C and N cycling within the old-field chronosequence were predictable and highly correlated to the accrual of plant and microbial biomass.  相似文献   

12.
1. Induced plant responses can affect herbivores either directly, by reducing herbivore development, or indirectly, by affecting the performance of natural enemies. Both the direct and indirect impacts of induction on herbivore and parasitoid success were evaluated in a common experimental system, using clonal poplar trees Populus nigra (Salicales: Salicaceae), the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae), and the gregarious parasitoid Glyptapanteles flavicoxis (Marsh) (Hymenoptera: Braconidae). 2. Female parasitoids were attracted to leaf odours from both damaged and undamaged trees, however herbivore‐damaged leaves were three times more attractive to wasps than undamaged leaves. Parasitoids were also attracted to herbivore larvae reared on foliage and to larval frass, but they were not attracted to larvae reared on artificial diet. 3. Prior gypsy moth feeding elicited a systemic plant response that retarded the growth rate, feeding, and survival of gypsy moth larvae, however induction also reduced the developmental success of the parasitoid. 4. The mean number of parasitoid progeny emerging from hosts fed foliage from induced trees was 40% less than from uninduced trees. In addition, the proportion of parasitised larvae that survived long enough to issue any parasitoids was lower on foliage from induced trees. 5. A conceptual and analytical model is provided to describe the net impacts of induced plant responses on parasitoids, and implications for tritrophic interactions and biological control of insect pests are discussed.  相似文献   

13.
Aims The total space of traits covered by the members of plant communities is an important parameter of ecosystem functioning and complexity. We trace the variability of trait space during early plant succession and ask how trait space co-varies with phylogenetic community structure and soil conditions. Particularly, we are interested in the small-scale variability in trait space and the influence of biotic and abiotic filters.Methods We use data on species richness and soil conditions from the first 7 years of initial succession of an artificial catchment in north-eastern Germany. Total functional attribute diversity serves as a proxy to total trait space.Important findings Total trait space steadily increased during succession. We observed high small-scale variability in total trait space that was positively correlated with species richness and phylogenetic segregation and negatively correlated with total plant cover. Trait space increased with soil carbonate content, while pH and the fraction of sandy material behaved indifferently. Our results indicate that during early succession, habitat filtering processes gain importance leading to a lesser increase in trait space than expected from the increase in species richness alone.  相似文献   

14.
Landscapes and vegetation are critical factors in dispersion of exotic insects and expansion of their range. However, few studies have addressed how the surrounding landscape affects the establishment of exotic insects. We assessed the relationship between establishment of an exotic lace bug Corythucha marmorata (Uhler) and the surrounding landscape in the northern edge of the lace bug's expanded range. We found that the lace bugs showed variability in their density among populations. Urban areas had a positive effect, while the natural forest vegetation had a negative effect on lace bug density, with a buffer range of 1–2 km. Moreover, their abundance decreased with distance from the source population. Our results suggest that natural forest landscapes in urban areas may inhibit the range expansion of invasive insects that feed on exotic plants growing in human‐disturbed habitats.  相似文献   

15.
Gange AC  Eschen R  Wearn JA  Thawer A  Sutton BC 《Oecologia》2012,168(4):1023-1031
Foliar endophytic fungi appear to be ubiquitous in nature, occurring in a very wide range of herbaceous plants. However, their ecological role within forbs is very poorly known and interactions with foliar-feeding insects virtually unexplored. In this study, leaves of Cirsium arvense were infected with different combinations of endophyte fungi that had been previously isolated from this plant species. Two months later, leaf material was fed to larvae of a generalist insect, Mamestra brassicae, and adults of a specialist feeder, Cassida rubiginosa. Endophytes had different effects on the two insects; one species, Chaetomium cochliodes, reduced growth of M. brassicae but increased feeding by C. rubiginosa. Another species, Cladosporium cladosporioides, increased beetle feeding also, but had no effect on M. brassicae. Interactions were also seen between fungal species and dual infection with C. cladosporioides and Trichoderma viride greatly reduced beetle feeding. It is concluded that endophytes have significant effects on foliar feeding insects that differ with degree of specialism of the herbivore. We suggest that these effects are due to chemical changes in the host, brought about by fungal infection. These fungi have received remarkably little attention in the study of insect–plant interactions and yet could be important determinants of insect growth and even population dynamics.  相似文献   

16.
Plant–insect interactions occur in spatially heterogeneous habitats. Understanding how such interactions shape density distributions of herbivores requires knowledge on how variation in plant traits (e.g. nutritional quality) affects herbivore abundance through, for example, affecting movement rates and aggregation behaviour. We studied the effects of plant patch size and herbivore-induced differences in plant nutritional quality on local densities of insect herbivores for two Brassica oleracea cultivars, i.e. white cabbage and Brussels sprouts. Early season herbivory as a treatment resulted in measurable differences in glucosinolate concentrations in both cultivars throughout the season. Herbivore induction and patch size both influenced community composition of herbivores in both cultivars, but the effects differed between species. Flea beetles (Phyllotreta spp.) were more abundant in large than in small patches, and this patch response was more pronounced on white cabbage than on Brussels sprouts. Herbivore-induction increased densities in all patches. Thrips tabaci was also more abundant in large patches and densities of this species were higher on Brussels sprouts than on white cabbage. Thrips densities were lower on induced than on control plants of both cultivars and this negative effect of induction tended to be more pronounced in large than in small patches. Densities of the cabbage moth (Mamestra brassicae) were lower on Brussels sprouts than on white cabbage and lower on herbivore-induced than on uninduced plants, with no effect of patch size. No clear effects of patch size and induction were found for aphids. This study shows that constitutive and herbivore-induced differences in plant traits interact with patch responses of insect herbivores.  相似文献   

17.
Allan E  Crawley MJ 《Ecology letters》2011,14(12):1246-1253
The importance of invertebrate herbivores in regulating plant communities remains unclear, due to the absence of long-term exclusion experiments. An experiment in an English grassland involving long-term exclusions of insect and mollusc herbivores, along with rabbit fencing, showed strong, but opposing, effects of the invertebrate herbivores. Plant species richness declined and biomass increased following insect exclusion, due to increased dominance by a grass species, whereas mollusc exclusion led to increased herbs abundance. The two herbivores had a compensatory interaction: molluscs had no effects in the absence of insects and large insect effects depended on the absence of molluscs. The effects of invertebrate exclusion became apparent only after 8 years, and would have been seriously underestimated in shorter studies. Our results suggest that theorists and conservation managers need to shift from their historic focus on vertebrate herbivory, to a recognition that invertebrates can be equally important drivers of plant community structure.  相似文献   

18.
Abstract. This paper reports on vegetation development on permanent experimental plots during five years of succession. Nine (1 m2) plots were filled with three typical substrates from man-made habitats of urban and industrial areas in the region of Berlin. The three substrates (a commercial ‘topsoil’, a ruderal ‘landfill’ soil and a sandy soil), differ in organic matter and nutrient contents. Relevés of species composition and percent cover of each species present were made monthly during the growing season from the start of vegetation development. This paper describes the different successional pathways on topsoil and ruderal soil and the colonization process on sandy soil. On topsoil, ruderal annuals are dominant in the first year and are replaced by short-lived perennials from the second year. Those species were replaced by long-lived perennial herbs (Ballota nigra or Urtica dioica) from the third year of succession onwards. On the ruderal land-fill soil the early successional stages are less sharp and the perennial Solidago canadensis is able to dominate within one year after the succession was initiated. On sandy soil there is still an ongoing colonization process, where pioneer tree species like Betula pendula and Populus nigra play a main role. The importance of ‘initial floristic composition’, the role of substrate for community structure and the peculiarities of successional sequences on anthropogenic soils in the context of primary and secondary successions are discussed.  相似文献   

19.
Structural and nutritional plant traits influence the ability of insect herbivores to locate, consume and persist on their hosts yet it is uncommon for ecologists to consider how multiple plant traits influence insect community composition. We sampled herbivorous insects on two understorey shrub species common to eucalypt forests of south-eastern Australia, namely Cassinia arcuata (Asteraceae) and Daviesia ulicifolia (Fabaceae). Regression analyses were used to assess the relative influence of plant structure (canopy volume), nutritional quality (macronutrients and total phenolics) and plant productivity (leaf litter) on insect abundance and species richness. Total N content of D. ulicifolia was significantly higher than C. arcuata, while the concentrations of P, K, Ca and Mg were higher in C. arcuata. Total phenolics and leaf litter were significantly lower in D. ulicifolia compared to C. arcuata. Insect composition was similar between the two shrubs but C. arcuata supported greater abundances. Canopy volume and the macronutrients P and Ca were important predictors of insect abundance on C. arcuata, whereas canopy volume alone, but neither plant productivity nor macronutrients, influenced the abundance of insects on D. ulicifolia. Ca was an important predictor of insect species richness on C. arcuata and P was an important predictor on D. ulicifolia. By quantifying a range of plant traits, we have provided an understanding of factors likely to influence the composition of herbivorous insects inhabiting these two shrubs. Traits including leaf architecture, foliar morphology and volatile terpenoids may yet explain the greater number of insects on C. arcuata since they influence the availability of microhabitats and apparency of host plants.  相似文献   

20.
Manier DJ  Hobbs NT 《Oecologia》2007,152(4):739-750
Improving understanding of the connections between vegetation, herbivory, and ecosystem function offers a fundamental challenge in contemporary terrestrial ecology. Using exclosures constructed during the late 1950s, we examined effects of grazing by wild and domestic herbivores on plant community structure, aboveground herbaceous primary production, and nutrient cycling at six sites in semi-arid, sagebrush rangelands during 2001-2002 in Colorado, USA. Enclosures provided three treatments: no grazing, grazing by wild ungulates only, and grazing by wild and domestic ungulates. Excluding all grazing caused an increase in shrub cover (F = 4.97, P = 0.033) and decrease in bare ground (F = 4.74, P = 0.037), but also a decrease in plant species richness (F = 6.19, P = 0.018) and plant diversity (F = 7.93, P = 0.008). Effects of wild ungulate grazing on plant cover and diversity were intermediate to the effects of combined domestic and wild grazing. Aboveground net primary production was higher in both grazed treatments than in the ungrazed one (F(wild + domestic) = 2.98, P = 0.0936 and F(wild only) = 3.55, P = 0.0684). We were unable to detect significant effects of grazing on other ecosystem states and processes including C:N ratios of standing crops, N mineralization potential, or nitrification potential. Best approximating models revealed positive correlation between N availability and herbaceous cover and a negative correlation between herbaceous primary production and the ratio of shrub-herb cover and plant diversity. We conclude that ungulate herbivory, including both wild and domestic ungulates, had significant effects on plant community structure and ecosystem function during this 42-year span. Responses to the wild ungulate treatment were consistently intermediate to responses to the no grazing and wild + domestic grazing treatments. However, we were unable to detect statistical difference between effects of wild ungulates alone and wild ungulates in combination with livestock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号