共查询到20条相似文献,搜索用时 15 毫秒
1.
The type II or Sec-dependent secretion system is used by diverse Gram-negative bacteria for secretion of extracellular proteins. Of the 12–15 proteins involved in secretion, the requirement for many has not been demonstrated and little is known about their functions in the secretion process. The plant pathogens Erwinia chrysanthemi and Erwinia carotovora secrete extracellular pectate lyases (Pels) using the type II or Out pathway. However, these two bacteria cannot secrete Pels encoded by heterologously expressed genes from the other species, suggesting the presence of species-specific recognition factors in the Out systems of the two Erwinia species. We previously reported the isolation of a cosmid clone, pCPP2006, from E. chrysanthemi EC16, which enables Escherichia coli to secrete heterologously expressed E. chrysanthemi Pels. Sequencing in a region required for secretion revealed the presence of 12 genes, outC-M and outO. We report here the construction of functionally non-polar mutations in each gene in the outC-M operon and outS and outB using a polAts strain of E. coli to facilitate homologous recombination between out genes carrying deletions and their wild-type copies on pCPP2006. By testing for complementation of each deletion with wild-type out genes from E. chrysanthemi EC16 and E. carotovora SCRI193 we have demonstrated that: (i) each out gene is required for secretion of E. chrysanthemi PelE from E. coli with the exception of outH; (ii) each mutation can be complemented by its homologue from E. carotovora, except for outC and outD; (iii) outC and outD from E. carotovora do not confer secretion of Pel1 on the E. chrysanthemi Out system; and (iv) Pel1 secretion can be conferred on the E. chrysanthemi Out system by the presence of outC-M, S and B from E. carotovora. The data suggest that OutC and OutD are gatekeepers of the Out system involved in recognition of Pels targeted for secretion but that OutC and OutD from E. carotovora cannot be successfully assembled into the E. chrysanthemi Out system. 相似文献
2.
Many pathogenic Gram-negative bacteria secrete toxins and lytic enzymes via a multiprotein complex called the type II secretion system. This system, named Out in Erwinia chrysanthemi, consists of 14 proteins integrated or associated with the two bacterial membranes. OutC, a key player in this process, is probably implicated in the recognition of secreted proteins and signal transduction. OutC possesses a short cytoplasmic sequence, a single transmembrane segment (TMS), and a large periplasmic region carrying a putative PDZ domain. A hydrodynamic study revealed that OutC forms stable dimers of an elongated shape, whereas the PDZ domain adopts a globular shape. Bacterial two-hybrid, cross-linking, and pulldown assays revealed that the self-association of OutC is driven by the TMS, whereas the periplasmic region is dispensable for self-association. Site-directed mutagenesis of the TMS revealed that cooperative interactions between three polar residues located at the same helical face provide adequate stability for OutC self-assembly. An interhelical H-bonding mediated by Gln(29) appears to be the main driving force, and two Arg residues located at the TMS boundaries are essential for the stabilization of OutC oligomers. Stepwise mutagenesis of these residues gradually diminished OutC functionality and self-association ability. The triple OutC mutant R15V/Q29L/R36A became monomeric and nonfunctional. Self-association and functionality of the triple mutant were partially restored by the introduction of a polar residue at an alternative position in the interhelical interface. Thus, the OutC TMS is more than just a membrane anchor; it drives the protein self-association that is essential for formation of a functional secretion system. 相似文献
3.
Frédéric H. Login Markus Fries Xiaohui Wang Richard W. Pickersgill Vladimir E. Shevchik 《Molecular microbiology》2010,76(4):944-955
The type II secretion system (T2SS) is widely exploited by proteobacteria to secrete enzymes and toxins involved in bacterial survival and pathogenesis. The outer membrane pore formed by the secretin OutD and the inner membrane protein OutC are two key components of the secretion complex, involved in secretion specificity. Here, we show that the periplasmic regions of OutC and OutD interact directly and map the interaction site of OutC to a 20‐residue peptide named OutCsip (s ecretin i nteracting p eptide, residues 139–158). This peptide interacts in vitro with two distinct sites of the periplasmic region of OutD, one located on the N0 subdomain and another overlapping the N2‐N3′ subdomains. The two interaction sites of OutD have different modes of binding to OutCsip. A single substitution, V143S, located within OutCsip prevents its interaction with one of the two binding sites of OutD and fully inactivates the T2SS. We show that the N0 subdomain of OutD interacts also with a second binding site within OutC located in the region proximal to the transmembrane segment. We suggest that successive interactions between these distinct regions of OutC and OutD may have functional importance in switching the secretion machine. 相似文献
4.
The Erwinia chrysanthemi type III secretion system is required for multicellular behavior 总被引:3,自引:0,他引:3 下载免费PDF全文
Enterobacterial animal pathogens exhibit aggregative multicellular behavior, which is manifested as pellicles on the culture surface and biofilms at the surface-liquid-air interface. Pellicle formation behavior requires production of extracellular polysaccharide, cellulose, and protein filaments, known as curli. Protein filaments analogous to curli are formed by many protein secretion systems, including the type III secretion system (TTSS). Here, we demonstrate that Erwinia chrysanthemi, which does not carry curli genes, requires the TTSS for pellicle formation. These data support a model where cellulose and generic protein filaments, which consist of either curli or TTSS-secreted proteins, are required for enterobacterial aggregative multicellular behavior. Using this assay, we found that hrpY, which encodes a two-component system response regulator homolog, is required for activity of hrpS, which encodes a sigma54-dependent enhancer-binding protein homolog. In turn, hrpS is required for activity of the sigma factor homolog hrpL, which activates genes encoding TTSS structural and secreted proteins. Pellicle formation was temperature dependent and pellicles did not form at 36 degrees C, even though TTSS genes were expressed at this temperature. We found that cellulose is a component of the E. chrysanthemi pellicle but that pellicle formation still occurs in a strain with an insertion in a cellulose synthase subunit homolog. Since the TTSS, but not the cellulose synthase subunit, is required for E. chrysanthemi pellicle formation, this inexpensive assay can be used as a high throughput screen for TTSS mutants or inhibitors. 相似文献
5.
Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins. 总被引:6,自引:0,他引:6 下载免费PDF全文
OutD is an outer membrane component of the main terminal branch of the general secretory pathway (GSP) in Erwinia chrysanthemi. We analyzed the interactions of OutD with other components of the GSP (Out proteins) and with secreted proteins (PelB, EGZ and PemA). OutD is stabilized by its interaction with another GSP component, OutS. The 62 C-terminal amino acids of OutD are necessary for this interaction. In vivo formation of OutD multimers, up to tetramers, was proved after the dissociation in mild conditions of the OutD aggregates formed in the outer membrane. Thus, OutD could form a channel-like structure in the outer membrane. We showed that OutD is stabilized in vivo when co-expressed with Out-secreted proteins. This stabilization results from the formation of complexes that were detected in experiments of co-immunoprecipitation and co-sedimentation in sucrose density gradients. The presence of the N-terminal part of OutD is required for this interaction. The interaction between OutD and the secreted protein PelB was confirmed in vitro, suggesting that no other component of the GSP is required for this recognition. No interaction was observed between the E. carotovora PelC and the E. chrysanthemi OutD. Thus, the interaction between GspD and the secreted proteins present in the periplasm could be the key to the specificity of the secretion machinery and a trigger for that process. 相似文献
6.
Extracellular secretion of pectate lyase by the Erwinia chrysanthemi out pathway is dependent upon Sec-mediated export across the inner membrane. 总被引:10,自引:1,他引:10 下载免费PDF全文
The plant pathogenic enterobacterium Erwinia chrysanthemi EC16 secretes several extracellular, plant cell wall-degrading enzymes, including pectate lyase isozyme PelE. Secretion kinetics of 35S-labeled PelE indicated that the precursor of PelE was rapidly processed by the removal of the amino-terminal signal peptide and that the resulting mature PelE remained cell bound for less than 60 s before being secreted to the bacterial medium. PelE-PhoA (alkaline phosphatase) hybrid proteins generated in vivo by TnphoA insertions were mostly localized in the periplasm of E. chrysanthemi, and one hybrid protein was observed to be associated with the outer membrane of E. chrysanthemi in an out gene-dependent manner. A gene fusion resulting in the substitution of the beta-lactamase signal peptide for the first six amino acids of the PelE signal peptide did not prevent processing or secretion of PelE in E. chrysanthemi. When pelE was overexpressed, mature PelE protein accumulated in the periplasm rather than the cytoplasm in cells of E. chrysanthemi and Escherichia coli MC4100 (pCPP2006), which harbors a functional cluster of E. chrysanthemi out genes. Removal of the signal peptide from pre-PelE was SecA dependent in E. coli MM52 even in the presence of the out gene cluster. These data indicate that the extracellular secretion of pectic enzymes by E. chrysanthemi is an extension of the Sec-dependent pathway for general export of proteins across the bacterial inner membrane. 相似文献
7.
The type II secretion (T2S) system is an essential device for Erwinia chrysanthemi virulence. Previously, we reported the key role of the OutF protein in forming, along with OutELM, an inner membrane platform in the Out T2S system. Here, we report that OutF copurified with five proteins identified by matrix-assisted laser desorption ionization-time of flight analysis as AcsD, TogA, SecA, Tsp, and DegP. The AcsD protein was known to be involved in the biosynthesis of achromobactin, which is a siderophore important for E. chrysanthemi virulence. The yeast two-hybrid system allowed us to gain further evidence for the OutF-AcsD interaction. Moreover, we showed that lack of OutF produced a pleiotropic phenotype: (i) altered production of the two siderophores of E. chrysanthemi, achromobactin and chrysobactin; (ii) hypersensitivity to streptonigrin, an iron-activated antibiotic; (iii) increased sensitivity to oxidative stress; and (iv) absence of the FbpA-like iron-binding protein in the periplasmic fraction. Interestingly, outE and outL mutants also exhibited similar phenotypes, but, outD and outJ mutants did not. Moreover, using the yeast two-hybrid system, several interactions were shown to occur between components of the T2S system inner membrane platform (OutEFL) and proteins involved in achromobactin production (AcsABCDE). The OutL-AcsD interaction was also demonstrated by Ni(2+) affinity chromatography. These results fully confirm our previous view that the T2S machinery is made up of three discrete blocks. The OutEFLM-forming platform is proposed to be instrumental in two different processes essential for virulence, protein secretion and iron homeostasis. 相似文献
8.
Cel5 (formerly known as endoglucanase Z) of Erwinia chrysanthemi is secreted by the Out type II pathway. Previous studies have shown that the catalytic domain (CD), linker region (LR) and cellulose-binding domain (CBD) each contain information needed for secretion. The aim of this work was to further investigate the secretion-related information present in the CBD(Cel5). Firstly(, )deleting a surface-exposed flexible loop had no effect on secretion. This indicated that some structural freedom is tolerated by the type II system. Secondly, mutation of a single tryptophan residue, previously shown to be important for binding to cellulose, i.e. Trp43, was found also to impair secretion. This indicated that the flat cellulose-binding surface of CBD(Cel5 )contains secretion-related information. Thirdly, CBD(Cel5) was substituted by the CBD(EGG) of Alteromonas haloplanctis endoglucanase G, yielding a hybrid protein CD(Cel5)-LR(Cel5)-CBD(EGG) that exhibited 90 % identity with Cel5, including the Trp43 residue. The hybrid protein was not secreted. This indicated that the Trp43 residue is necessary but not sufficient for secretion. Here we propose a model in which the secretion of Cel5 involves a transient intramolecular interaction between the cellulose-binding surface of CBD(Cel5) and a region close to the entry into the active site in CD(Cel5). Once secreted, the protein may then open out to allow the cellulose-binding surface of CBD(Cel5 )to interact with the surface of the cellulose substrate. An implication of this model is that protein molecules fold to a specific secretion-competent conformation prior to secretion that is different from the folding state of the secreted species. 相似文献
9.
Bacterial L-asparaginases, enzymes that catalyze the hydrolysis of L-asparagine to aspartic acid, have been used for over 30 years as therapeutic agents in the treatment of acute childhood lymphoblastic leukemia. Other substrates of asparaginases include L-glutamine, D-asparagine, and succinic acid monoamide. In this report, we present high-resolution crystal structures of the complexes of Erwinia chrysanthemi L-asparaginase (ErA) with the products of such reactions that also can serve as substrates, namely L-glutamic acid (L-Glu), D-aspartic acid (D-Asp), and succinic acid (Suc). Comparison of the four independent active sites within each complex indicates unique and specific binding of the ligand molecules; the mode of binding is also similar between complexes. The lack of the alpha-NH3(+) group in Suc, compared to L-Asp, does not affect the binding mode. The side chain of L-Glu, larger than that of L-Asp, causes several structural distortions in the ErA active side. The active site flexible loop (residues 15-33) does not exhibit stable conformation, resulting in suboptimal orientation of the nucleophile, Thr15. Additionally, the delta-COO(-) plane of L-Glu is approximately perpendicular to the plane of gamma-COO(-) in L-Asp bound to the asparaginase active site. Binding of D-Asp to the ErA active site is very distinctive compared to the other ligands, suggesting that the low activity of ErA against D-Asp could be mainly attributed to the low k(cat) value. A comparison of the amino acid sequence and the crystal structure of ErA with those of other bacterial L-asparaginases shows that the presence of two active-site residues, Glu63(ErA) and Ser254(ErA), may correlate with significant glutaminase activity, while their substitution by Gln and Asn, respectively, may lead to minimal L-glutaminase activity. 相似文献
10.
Eleonora Cerasoli Sharon M Kelly John R Coggins Deborah J Boam David T Clarke Nicholas C Price 《European journal of biochemistry》2002,269(8):2124-2132
Shikimate kinase was chosen as a convenient representative example of the subclass of alpha/beta proteins with which to examine the mechanism of protein folding. In this paper we report on the refolding of the enzyme after denaturation in urea. As shown by the changes in secondary and tertiary structure monitored by far UV circular dichroism (CD) and fluorescence, respectively, the enzyme was fully unfolded in 4 m urea. From an analysis of the unfolding curve in terms of the two-state model, the stability of the folded state could be estimated as 17 kJ.mol-1. Approximately 95% of the enzyme activity could be recovered on dilution of the urea from 4 to 0.36 m. The results of spectroscopic studies indicated that refolding occurred in at least four kinetic phases, the slowest of which (k = 0.009 s-1) corresponded with the regain of shikimate binding and of enzyme activity. The two most rapid phases were associated with a substantial increase in the binding of 8-anilino-1-naphthalenesulfonic acid with only modest changes in the far UV CD, indicating that a collapsed intermediate with only partial native secondary structure was formed rapidly. The relevance of the results to the folding of other alpha/beta domain proteins is discussed. 相似文献
11.
Skelton NJ Koehler MF Zobel K Wong WL Yeh S Pisabarro MT Yin JP Lasky LA Sidhu SS 《The Journal of biological chemistry》2003,278(9):7645-7654
The LAP (leucine-rich repeat and PDZ-containing) family of proteins play a role in maintaining epithelial and neuronal cell size, and mutation of these proteins can have oncogenic consequences. The LAP protein Erbin has been implicated previously in a number of cellular activities by virtue of its PDZ domain-dependent association with the C termini of both ERB-B2 and the p120-catenins. The present work describes the NMR structure of Erbin PDZ in complex with a high affinity peptide ligand and includes a comprehensive energetic analysis of both the ligand and PDZ domain side chains responsible for binding. C-terminal phage display has been used to identify preferred ligands, whereas binding affinity measurements provide precise details of the energetic importance of each ligand side chain to binding. Alanine and homolog scanning mutagenesis (in a combinatorial phage display format) identifies Erbin side chains that make energetically important contacts with the ligand. The structure of a phage-optimized peptide (Ac-TGW(-4)ETW(-1)V; IC(50) = approximately 0.15 microm) in complex with Erbin PDZ provides a structural context to understand the binding energetics. In particular, the very favorable interactions with Trp(-1) are not Erbin side chain-mediated (and therefore may be generally applicable to many PDZ domains), whereas the beta2-beta3 loop provides a binding site for the Trp(-4) side chain (specific to Erbin because it has an unusually long loop). These results contribute to a growing appreciation for the importance of at least five ligand C-terminal side chains in determining PDZ domain binding energy and highlight the mechanisms of ligand discrimination among the several hundred PDZ domains present in the human genome. 相似文献
12.
Subset of hybrid eukaryotic proteins is exported by the type I secretion system of Erwinia chrysanthemi 下载免费PDF全文
Palacios JL Zaror I Martínez P Uribe F Opazo P Socías T Gidekel M Venegas A 《Journal of bacteriology》2001,183(4):1346-1358
Erwinia chrysanthemi exports degradative enzymes by using a type I protein secretion system. The proteases secreted by this system lack an N-terminal signal peptide but contain a C-terminal secretion signal. To explore the substrate specificity of this system, we have expressed the E. chrysanthemi transporter system (prtDEF genes) in Escherichia coli and tested the ability of this ABC transporter to export hybrid proteins carrying C-terminal fragments of E. chrysanthemi protease B. The C terminus contains six glycine-rich repeated motifs, followed by two repeats of the sequences DFLV and DIIV. Two types of hybrid proteins were assayed for transport, proteins with the 93-residue-protease-B C terminus containing one glycine-rich repeat and both hydrophobic terminal repeats and proteins with the 181-residue C terminus containing all repeat motifs. Although the shorter C terminus is unable to export the hybrids, the longer C terminus can promote the secretion of hybrid proteins with N termini as large as 424 amino acids, showing that the glycine-rich motifs are required for the efficient secretion of these hybrids. However, the secretion of hybrids occurs only if these proteins do not carry disulfide bonds in their mature structures. These latter results suggest that disulfide bond formation can occur prior to or during the secretion. Disulfide bonds may prevent type I secretion of hybrids. One simple hypothesis to explain these results is that the type I channel is too narrow to permit the export of proteins with secondary structures stabilized by disulfide bonds. 相似文献
13.
Purification and characterization of the N-terminal domain of ExeA: a novel ATPase involved in the type II secretion pathway of Aeromonas hydrophila 下载免费PDF全文
Aeromonas hydrophila secretes a number of degradative enzymes and toxins into the external milieu via the type II secretory pathway or secreton. ExeA is an essential component of this system and is necessary for the localization and/or multimerization of the secretin ExeD. ExeA contains two sequence motifs characteristic of the Walker superfamily of ATPases. Previous examination of substitution derivatives altered in these motifs suggested that ATP binding or hydrolysis is required for ExeAB complex formation and subsequent secretion function. To directly examine ExeA function, the N-terminal cytoplasmic domain of ExeA with the addition of a C-terminal hexahistidine tag (cytExeA) was overproduced in Escherichia coli and purified by metal chelate affinity and anion-exchange chromatographic techniques. Purified preparations of cytExeA exhibited ATPase activity in the presence of several divalent cations, Mg2+ being the preferred cation, with an optimum reaction temperature of approximately 37 to 42 degrees C and an optimum pH of 7 to 8. cytExeA exhibited an apparent K(m) for Mg-ATP of 0.22 mM and a V(max) of 0.72 nmol min(-1) mg(-1) of protein. cytExeA displayed low specificity for nucleoside triphosphate substrates and was significantly inhibited by F-type ATPase inhibitors. Gel filtration analyses of cytExeA, ExeA, and ExeAB indicated that ExeA dimerizes and forms a very large complex with ExeB. These findings support a model whereby ExeAB utilizes energy derived from ATP hydrolysis to facilitate the correct localization and multimerization of the ExeD secretin. 相似文献
14.
D Pim M Bergant SS Boon K Ganti C Kranjec P Massimi VK Subbaiah M Thomas V Tomaić L Banks 《The FEBS journal》2012,279(19):3530-3537
The human papillomavirus (HPV) E6 oncoprotein is fundamental to the ability of these viruses to induce human malignancy. A defining characteristic of the HPV E6 oncoproteins found in cancer-causing HPV types is the presence of a PDZ binding motif at their extreme C-terminus. Through this motif, E6 is able to interact with a large number of cellular proteins that contain PDZ domains. Many of these cellular proteins are involved in regulation of processes associated with the control of cell attachment, cell proliferation, cell polarity and cell signaling. How E6 targets multiple proteins containing the same recognition domain is still an open question. In this review, we highlight aspects of E6 function and biology that help to answer this question, and thereby provide insight into the role of these substrates during development of HPV-induced malignancy. 相似文献
15.
16.
Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase 总被引:24,自引:17,他引:24 下载免费PDF全文
T Andro J P Chambost A Kotoujansky J Cattaneo Y Bertheau F Barras F Van Gijsegem A Coleno 《Journal of bacteriology》1984,160(3):1199-1203
Erwinia chrysanthemi produced several pectate lyases (EC 4.2.2.2) and endocellulases (EC 3.2.1.4) which were largely secreted into the culture medium. Mutants deficient in the secretion mechanism for these enzymes were obtained by chemical and insertion mutagenesis. Further study of one such mutant revealed that both enzyme activities were retained simultaneously within the periplasmic space. 相似文献
17.
Appleton BA Zhang Y Wu P Yin JP Hunziker W Skelton NJ Sidhu SS Wiesmann C 《The Journal of biological chemistry》2006,281(31):22312-22320
We report a structural comparison of the first PDZ domain of ZO-1 (ZO1-PDZ1) and the PDZ domain of Erbin (Erbin-PDZ). Although the binding profile of Erbin-PDZ is extremely specific ([D/E][T/S]WV(COOH)), that of ZO1-PDZ1 is similar ([R/K/S/T][T/S][W/Y][V/I/L](COOH)) but broadened by increased promiscuity for three of the last four ligand residues. Consequently, the biological function of ZO-1 is also broadened, as it interacts with both tight and adherens junction proteins, whereas Erbin is restricted to adherens junctions. Structural analyses reveal that the differences in specificity can be accounted for by two key differences in primary sequence. A reduction in the size of the hydrophobic residue at the base of the site(0) pocket enables ZO1-PDZ1 to accommodate larger C-terminal residues. A single additional difference alters the specificity of both site(-1) and site(-3). In ZO1-PDZ1, an Asp residue makes favorable interactions with both Tyr(-1) and Lys/Arg(-3). In contrast, Erbin-PDZ contains an Arg at the equivalent position, and this side chain cannot accommodate either Tyr(-1) or Lys/Arg(-3) but, instead, interacts favorably with Glu/Asp(-3). We propose a model for ligand recognition that accounts for interactions extending across the entire binding site but that highlights several key specificity switches within the PDZ domain fold. 相似文献
18.
R. Riekki T. Palomäki O. Virtaharju H. Kokko M. Romantschuk H. T. Saarilahti 《Molecular genetics and genomics : MGG》2000,263(6):1031-1037
A cellulase-producing clone was isolated from a genomic library of the Erwinia rhapontici (Millard) Burkholder strain NCPPB2989. The corresponding gene, named celA, encodes an endoglucanase (EC?3.2.1.4) with the extremely low pH optimum of 3.4 and a temperature optimum between 40 and 50?°C. A single ORF of 999?nt was found to be responsible for the Cel activity. The corresponding protein, named CelA, showed 67% identity to the endoglucanase Y of E. chrysanthemi and 51.5% identity to the endoglucanase of Cellulomonas uda, and thus belongs to the glycosyl hydrolase family?8. The celA gene, or its homologue, was found to be present in all E. rhapontici isolates analysed, in E. chrysanthemi, and in E. amylovora. The presence of plant cell wall-degrading enzymes in the amylovora group of Erwinia spp. had not previously been established. Furthermore, the DNA of both E. rhapontici and E. amylovora was found to exhibit homology to genes encoding the type?II (GSP) secretion pathway, which is known to be responsible for extracellular targeting of cellulases and pectinases in Erwinia spp. that cause soft rotting, such as E. carotovora and E. chrysanthemi. Secretion of the CelA protein by E. rhapontici could not be verified. However, the CelA protein itself was found to include the information necessary for heterologous secretion by E. chrysanthemi. 相似文献
19.
Riekki R Palomäki T Virtaharju O Kokko H Romantschuk M Saarilahti HT 《Molecular & general genetics : MGG》2000,263(6):1031-1037
A cellulase-producing clone was isolated from a genomic library of the Erwinia rhapontici (Millard) Burkholder strain NCPPB2989. The corresponding gene, named celA, encodes an endoglucanase (EC 3.2.1.4) with the extremely low pH optimum of 3.4 and a temperature optimum between 40 and
50 °C. A single ORF of 999 nt was found to be responsible for the Cel activity. The corresponding protein, named CelA, showed
67% identity to the endoglucanase Y of E. chrysanthemi and 51.5% identity to the endoglucanase of Cellulomonas uda, and thus belongs to the glycosyl hydrolase family 8. The celA gene, or its homologue, was found to be present in all E. rhapontici isolates analysed, in E. chrysanthemi, and in E. amylovora. The presence of plant cell wall-degrading enzymes in the amylovora group of Erwinia spp. had not previously been established. Furthermore, the DNA of both E. rhapontici and E. amylovora was found to exhibit homology to genes encoding the type II (GSP) secretion pathway, which is known to be responsible for
extracellular targeting of cellulases and pectinases in Erwinia spp. that cause soft rotting, such as E. carotovora and E. chrysanthemi. Secretion of the CelA protein by E. rhapontici could not be verified. However, the CelA protein itself was found to include the information necessary for heterologous secretion
by E. chrysanthemi.
Received: 4 November 1999 / Accepted: 14 April 2000 相似文献