共查询到20条相似文献,搜索用时 0 毫秒
1.
The prokaryotic KdpFABC complex from the enterobacterium Escherichia coli represents a unique type of P-type ATPase composed of four different subunits, in which a catalytically active P-type ATPase
has evolutionary recruited a potassium channel module in order to facilitate ATP-driven potassium transport into the bacterial
cell against steep concentration gradients. This unusual composition entails special features with respect to other P-type
ATPases, for example the spatial separation of the sites of ATP hydrolysis and substrate transport on two different polypeptides
within this multisubunit enzyme complex, which, in turn, leads to an interesting coupling mechanism. As all other P-type ATPases,
also the KdpFABC complex cycles between the so-called E1 and E2 states during catalysis, each of which comprises different
structural properties together with different binding affinities for both ATP and the transport substrate. Distinct configurations
of this transport cycle have recently been visualized in the working enzyme. All typical features of P-type ATPases are attributed
to the KdpB subunit, which also comprises strong structural homologies to other P-type ATPase family members. However, the
translocation of the transport substrate, potassium, is mediated by the KdpA subunit, which comprises structural as well as
functional homologies to MPM-type potassium channels like KcsA from Streptomyces lividans. Subunit KdpC has long been thought to exhibit an FXYD protein-like function in the regulation of KdpFABC activity. However,
our latest results are in favor of the notion that KdpC might act as a catalytical chaperone, which cooperatively interacts
with the nucleotide to be hydrolyzed and, thus, increases the rather untypical weak nucleotide binding affinity of the KdpB
nucleotide binding domain. 相似文献
2.
In Bacteria and Archaea, high-affinity potassium uptake is mediated by the ATP-driven KdpFABC complex. On the basis of the biochemical properties of the ATP-hydrolyzing subunit KdpB, the transport complex is classified as type IA P-type ATPase. However, the KdpA subunit, which promotes K(+) transport, clearly resembles a potassium channel, such that the KdpFABC complex represents a chimera of ion pumps and ion channels. In the present study, we demonstrate that the blending of these two groups of transporters in KdpFABC also entails a nucleotide-binding mechanism in which the KdpC subunit acts as a catalytic chaperone. This mechanism is found neither in P-type ATPases nor in ion channels, although parallels are found in ABC transporters. In the latter, the ATP nucleotide is coordinated by the LSGGQ signature motif via double hydrogen bonds at a conserved glutamine residue, which is also present in KdpC. High-affinity nucleotide binding to the KdpFABC complex was dependent on the presence of this conserved glutamine residue in KdpC. In addition, both ATP binding to KdpC and ATP hydrolysis activity of KdpFABC were sensitive to the accessibility, presence or absence of the hydroxyl groups at the ribose moiety of the nucleotide. Furthermore, the KdpC subunit was shown to interact with the nucleotide-binding loop of KdpB in an ATP-dependent manner around the ATP-binding pocket, thereby increasing the ATP-binding affinity by the formation of a transient KdpB/KdpC/ATP ternary complex. 相似文献
3.
P-Type ATPases catalyze the transport of cations across the cell envelope via site-specific hydrolysis of ATP. Modulation of enzyme activity by additional small subunits and/or a second regulatory nucleotide binding site is still a subject of discussion. In the K(+)-transporting KdpFABC complex of Escherichia coli, KdpB resembles the catalytic P-type ATPase subunit, but ATP binding also occurs in the essential but noncatalytic subunit, KdpC. For further characterization, the soluble portion of KdpC (KdpC(sol), residues Asn39-Glu190) was synthesized separately and purified to homogeneity via affinity and size exclusion chromatography. Protein integrity was confirmed by N-terminal sequencing, mass spectrometry, and circular dichroism spectroscopy, which revealed an alpha-helical content of 44% together with an 8% beta-sheet conformation consistent with the values deduced from the primary sequence. The overall protein structure was not affected by the addition of ATP to a concentration of up to 2 mM. In contrast, labeling of KdpC(sol) with the photoreactive ATP analogue 8-azido-ATP resulted in the specific incorporation of one molecule of 8-azido-ATP per peptide. No labeling could be observed upon denaturation of the protein with 0.2% sodium dodecyl sulfate, which suggests the presence of a structured nucleotide binding site. Labeling could be inhibited by preincubation with either ATP, ADP, AMP, GTP, or CTP, thus demonstrating a low specificity for nucleotides. Following 8-azido-ATP labeling and tryptic digestion of KdpC(sol), mass spectrometry showed that ATP binding occurred within the Val144-Lys161 peptide located within the C-terminal part of KdpC, thereby further demonstrating a defined nucleotide binding site. On the basis of these findings, a cooperative model in which the soluble part of KdpC activates catalysis of KdpB is suggested. 相似文献
4.
Escherichia coli CopA is a copper ion-translocating P-type ATPase that confers copper resistance. CopA formed a phosphorylated intermediate with [gamma-(32)P]ATP. Phosphorylation was inhibited by vanadate and sensitive to KOH and hydroxylamine, consistent with acylphosphate formation on conserved Asp-523. Phosphorylation required a monovalent cation, either Cu(I) or Ag(I). Divalent cations Cu(II), Zn(II), or Co(II) could not substitute, signifying that the substrate of this copper-translocating P-type ATPase is Cu(I) and not Cu(II). CopA purified from dodecylmaltoside-solubilized membranes similarly exhibited Cu(I)/Ag(I)-stimulated ATPase activity, with a K(m) for ATP of 0.5 mm. CopA has two N-terminal Cys(X)(2)Cys sequences, Gly-Leu-Ser-Cys(14)-Gly-His-Cys(17), and Gly-Met-Ser-Cys(110)-Ala-Ser-Cys(113), and a Cys(479)-Pro-Cys(481) motif in membrane-spanning segment six. The requirement of these cysteine residues was investigated by the effect of mutations and deletions. Mutants with substitutions of the N-terminal cysteines or deletion of the first Cys-(X)(2)-Cys motif formed acylphosphate intermediates. From the copper dependence of phosphoenzyme formation, the mutants appear to have 2-3 fold higher affinity for Cu(I) than wild type CopA. In contrast, substitutions in Cys(479) or Cys(481) resulted in loss of copper resistance, transport and phosphoenzyme formation. These results imply that the cysteine residues of the Cys-Pro-Cys motif (but not the N-terminal cysteine residues) are required for CopA function. 相似文献
5.
The KdpFABC complex of Escherichia coli, a high-affinity K+-uptake system, belongs to the group of P-type ATPases and is responsible for ATP-driven K+ uptake in the case of K+ limitation. Sequence alignments identified two conserved charged residues, D583 and K586, which are located at the center of transmembrane helix 5 (TM 5) of the catalytic KdpB subunit, and which are supposed to establish a dipole involved in energy coupling. Cells in which the two charges were eliminated or inverted by mutagenesis displayed a clearly slower growth rate with respect to wild-type cells under K+-limiting conditions. Purified KdpFABC complexes from several K586 mutants and a D583K:K586D double mutant showed a reduced K+-stimulated ATPase activity together with an increased resistance to orthovanadate. Upon reconstitution into liposomes, only the conservative K586R mutant was able to facilitate K+ transport, whereas the elimination of the positive charge at position 586 as well as inverting the charges at positions 583 and 586 (D583K:K586D) led to an uncoupling of ATP hydrolysis and K+ transport. Electrophysiological measurements with KdpFABC-containing proteoliposomes adsorbed to planar lipid bilayers revealed that in case of the D583K:K586D double mutant the characteristic K+-independent electrogenic step within the reaction cycle is lacking, thereby clearly arguing for an exact positioning of the dipole for coupling within the functional enzyme complex. In addition, these findings strongly suggest that the dipole residues in KdpB are not directly responsible for the characteristic electrogenic reaction step of KdpFABC, which most likely occurs within the K+-translocating KdpA subunit. 相似文献
6.
Characterization of amino acid substitutions in KdpA,the K+-binding and -translocating subunit of the KdpFABC complex of Escherichia coli
下载免费PDF全文

When grown under K+ limitation, Escherichia coli induces the K+-translocating KdpFABC complex. The stimulation of ATPase activity by NH4+ ions was shown for the first time. Substitutions in KdpA, which is responsible for K+ binding and translocation, revealed that enzyme complexes KdpA:G232A and KdpA:G232S have completely lost their cation selectivity. 相似文献
7.
Greie JC 《European journal of cell biology》2011,90(9):705-710
The KdpFABC complex represents a multi-subunit ATP-driven potassium pump, which is only found in bacteria and archaea. Based on the properties of the ATP-hydrolyzing subunit (KdpB) the transporter has been classified as a type IA P-type ATPase. However, structural and functional properties of the remaining subunits clearly show homologies to members of the potassium channel as well as the ABC transporter family, thus rendering the KdpFABC complex to represent an inimitable chimera of ion pumps and ion channels. Accordingly, this striking juxtaposition entails special features of KdpFABC with respect to typical members of each of the transporter families, involving not only the concepts but also the structures of ion channels and ion pumps. For example, the sites of ATP hydrolysis and substrate transport are spatially separated on two different polypeptides, which, in turn, leads to a unique coupling mechanism. During catalysis, the KdpFABC complex cycles between two main conformational states, each of which comprises different structural properties together with different binding affinities for both ATP and the transport substrate. These structural configurations have recently been directly visualized in the working enzyme. Translocation of potassium is mediated by the KdpA subunit, which comprises structural as well as functional homologies to potassium channels of the MPM-type. The KdpC subunit participates in the binding of ATP, thus acting as a catalytic chaperone, which increases the ATP binding affinity of the KdpB subunit via a mechanism typical of nucleotide binding in ABC transporters. 相似文献
8.
Characterization of the phosphorylated intermediate of the K+-translocating Kdp-ATPase from Escherichia coli 总被引:3,自引:0,他引:3
During ATP hydrolysis the K+-translocating Kdp-ATPase from Escherichia coli forms a phosphorylated intermediate as part of the catalytic cycle. The influence of effectors (K+, Na+, Mg2+, ATP, ADP) and inhibitors (vanadate, N-ethylmaleimide, bafilomycin A1) on the phosphointermediate level and on the ATPase activity was analyzed in purified wild-type enzyme (apparent Km = 10 microM) and a KdpA mutant ATPase exhibiting a lower affinity for K+ (Km = 6 mM). Based on these data we propose a minimum reaction scheme consisting of (i) a Mg2+-dependent protein kinase, (ii) a Mg2+-dependent and K+-stimulated phosphoprotein phosphatase, and (iii) a K+-independent basal phosphoprotein phosphatase. The findings of a K+-uncoupled basal activity, inhibition by high K+ concentrations, lower ATP saturation values for the phosphorylation than for the overall ATPase reaction, and presumed reversibility of the phosphoprotein formation by excess ADP indicated similarities in fundamental principles of the reaction cycle between the Kdp-ATPase and eukaryotic E1E2-ATPases. The phosphoprotein was tentatively characterized as an acylphosphate on the basis of its alkali-lability and its sensitivity to hydroxylamine. The KdpB polypeptide was identified as the phosphorylated subunit after electrophoretic separation at pH 2.4, 4 degrees C of cytoplasmic membranes or of purified ATPase labeled with [gamma-32P]ATP. 相似文献
9.
A K+ transport ATPase in Escherichia coli. 总被引:4,自引:0,他引:4
A K+ -stimulated ATPase in membranes of Escherichia coli has been identified as an activity of the Kdp system, and ATP-driven K+ transport system. Three characteristics support association of the ATPase with the Kdp system: (i) ATPase and Kdp transport are both repressed by growth in media containing high concentrations of K+; (ii) the ATPase and Kdp system accept only K+ as substrate, neither requires Na+ nor accepts Rb+ as a substrate; (iii) the affinity of the ATPase and that of th Kdp system for K+ is similar and is altered by mutations in the structural genes of the Kdp system. Discovery of an ATPase associated with a bacterial transport system suggests functional similarities with the ATP-driven transport systems of animal cells. 相似文献
10.
Cation-transporting P-type ATPases comprise a major membrane protein family, the members of which are found in eukaryotes, eubacteria, and archaea. A phylogenetically old branch of the P-type ATPase family is involved in the transport of heavy-metal ions such as copper, silver, cadmium, and zinc. In humans, two homologous P-type ATPases transport copper. Mutations in the human proteins cause disorders of copper metabolism known as Wilson and Menkes diseases. E. coli possesses two genes for heavy-metal translocating P-type ATPases. We have constructed an expression system for one of them, ZntA, which encodes a 732 amino acid residue protein capable of transporting Zn(2+). A vanadate-sensitive, Zn(2+)-dependent ATPase activity is present in the membrane fraction of our expression strain. In addition to Zn(2+), the heavy-metal ions Cd(2+), Pb(2+), and Ag(+) activate the ATPase. Incubation of membranes from the expression strain with [gamma-(33)P]ATP in the presence of Zn(2+), Cd(2+), or Pb(2+) brings about phosphorylation of two membrane proteins with molecular masses of approximately 90 and 190 kDa, most likely representing the ZntA monomer and dimer, respectively. Although Cu(2+) can stimulate phosphorylation by [gamma-(33)P]ATP, it does not activate the ATPase. Cu(2+) also prevents the Zn(2+) activation of the ATPase when present in 2-fold excess over Zn(2+). Ag(+) and Cu(+) appear not to promote phosphorylation of the enzyme. To study the effects of Wilson disease mutations, we have constructed two site-directed mutants of ZntA, His475Gln and Glu470Ala, the human counterparts of which cause Wilson disease. Both mutants show a reduced metal ion stimulated ATPase activity (about 30-40% of the wild-type activity) and are phosphorylated much less efficiently by [gamma-(33)P]ATP than the wild type. In comparison to the wild type, the Glu470Ala mutant is phosphorylated more strongly by [(33)P]P(i), whereas the His475Gln mutant is phosphorylated more weakly. These results suggest that the mutation His475Gln affects the reaction with ATP and P(i) and stabilizes the enzyme in a dephosphorylated state. The Glu470Ala mutant seems to favor the E2 state. We conclude that His475 and Glu470 play important roles in the transport cycles of both the Wilson disease ATPase and ZntA. 相似文献
11.
A mutant of Proteus mirabilis had been previously isolated as defective in swarming. The mutation had been found to be in a gene related to the Escherichia coli zntA gene, which encodes the ZntA Zn(II)-translocating P-type ATPase. In this study the P. mirabilis gene was expressed in an E. coli strain in which the zntA gene had been disrupted. The P. mirabilis gene complemented the sensitivity to salts of zinc and cadmium. Everted membrane vesicles from the zntA-disrupted strain lost ATP-driven 65Zn(II) uptake. Membranes from the complemented strain had restored 65Zn(II) transport. These results demonstrate that the P. mirabilis homologue of ZntA is a Zn(II)-translocating P-type ATPase. 相似文献
12.
A A Trchunian E S Ogandzhanian S M Martirosov 《Nauchnye doklady vysshe? shkoly. Biologicheskie nauki》1989,(5):90-95
ATPase activity sensitive to N,N'-dicyclohexylcarbodiimide and dependent on K+ content in medium is observed only in anaerobically grown Escherichia coli and as the analysis of mutants with defects in different subunits of (F0F1) H+-ATPase and in potassium transport shows only under the structural integrity of both F0F1 and K+-ionophore (the Trk system). The obtained results confirm the data on the H+/K+-exchange and indicate that the F0F1 and Trk systems in anaerobically grown bacteria unite into the same membrane supercomplex inside which the direct energy transfer occurs without a mediation of delta-mu H+. 相似文献
13.
《Anaerobe》2001,7(3):159-169
The kdp operon of Clostridium acetobutylicum codes for the high affinity K+-translocating Kdp system (P-type ATPase). Beside the three large proteins KdpA, KdpB and KdpC, the kdp operon encodes the two small peptides KdpZ, KdpY and the KdpX protein. The truncation of the clostridial kdpZ and/or the kdpY gene has a significant impact on the growth of an E. coli mutant (TK2205), which is unable to grow at low potassium concentrations. These two genes together with kdpX are essential to maintain the wild-type K+-pump capacity of the clostridial Kdp system. Also the ATPase activity itself, the substrate specifity, and the cation specifity are determined in a major way by KdpZ, KdpY, and KdpX. Thus, this report shows the importance of the KdpZ, KdpY, and KdpX proteins for the Kdp-ATPase and therefore the corresponding operon should now be referred to as kdpZYABCX. 相似文献
14.
P-type ATPases are ubiquitously abundant primary ion pumps, which are capable of transporting cations across the cell membrane at the expense of ATP. Since these ions comprise a large variety of vital biochemical functions, nature has developed rather sophisticated transport machineries in all kingdoms of life. Due to the importance of these enzymes, representatives of both eu- and prokaryotic as well as archaeal P-type ATPases have been studied intensively, resulting in detailed structural and functional information on their mode of action. During catalysis, P-type ATPases cycle between the so-called E1 and E2 states, each of which comprising different structural properties together with different binding affinities for both ATP and the transport substrate. Crucial for catalysis is the reversible phosphorylation of a conserved aspartate, which is the main trigger for the conformational changes within the protein. In contrast to the well-studied and closely related eukaryotic P-type ATPases, much less is known about their homologues in bacteria. Whereas in Eukarya there is predominantly only one subunit, which builds up the transport system, in bacteria there are multiple polypeptides involved in the formation of the active enzyme. Such a rather unusual prokaryotic P-type ATPase is the KdpFABC complex of the enterobacterium Escherichia coli, which serves as a highly specific K(+) transporter. A unique feature of this member of P-type ATPases is that catalytic activity and substrate transport are located on two different polypeptides. This review compares generic features of P-type ATPases with the rather unique KdpFABC complex and gives a comprehensive overview of common principles of catalysis as well as of special aspects connected to distinct enzyme functions. 相似文献
15.
P-type ATPases are ubiquitously abundant primary ion pumps, which are capable of transporting cations across the cell membrane at the expense of ATP. Since these ions comprise a large variety of vital biochemical functions, nature has developed rather sophisticated transport machineries in all kingdoms of life. Due to the importance of these enzymes, representatives of both eu- and prokaryotic as well as archaeal P-type ATPases have been studied intensively, resulting in detailed structural and functional information on their mode of action. During catalysis, P-type ATPases cycle between the so-called E1 and E2 states, each of which comprising different structural properties together with different binding affinities for both ATP and the transport substrate. Crucial for catalysis is the reversible phosphorylation of a conserved aspartate, which is the main trigger for the conformational changes within the protein. In contrast to the well-studied and closely related eukaryotic P-type ATPases, much less is known about their homologues in Bacteria. Whereas in Eukarya there is predominantly only one subunit, which builds up the transport system, in Bacteria there are multiple polypeptides involved in the formation of the active enzyme. Such a rather unusal prokaryotic P-type ATPase is the KdpFABC complex of the enterobacterium Escherichia coli, which serves as a highly specific K+ transporter. A unique feature of this member of P-type ATPases is that catalytic activity and substrate transport are located on two different polypeptides. This review compares generic features of P-type ATPases with the rather unique KdpFABC complex and gives a comprehensive overview of common principles of catalysis as well as of special aspects connected to distinct enzyme functions. 相似文献
16.
The Kdp system from Escherichia coli is a derepressible high-affinity K+-uptake ATPase. Its membrane-bound ATPase activity was approximately 50 mumol g-1 min-1. The Kdp-ATPase complex was purified from everted vesicles by solubilization with the nonionic detergent Aminoxid WS 35 followed by DEAE-Sepharose CL-6B chromatography at pH 7.5 and pH 6.4 and gel filtration on Fractogel TSK HW-65. The overall yield of activity was 6.5% and the purity at least 90%. The isolated KdpABC complex had a high affinity for its substrates K+ (Km app. = 10 microM) and Mg2+-ATP (Km = 80 microM) and a narrow substrate specificity. The ATPase activity was inhibited by vanadate (Ki = 1.5 microM), fluorescein isothiocyanate (Ki = 3.5 microM), N,N'-dicyclohexylcarbodiimide (Ki = 60 microM) and N-ethylmaleimide (Ki = 0.1 mM). The purification protocol was likewise applicable to the isolation of a KdpA mutant ATPase which in contrast to the wild-type enzyme exhibited an increased Km value for K+ of 6 mM and a 10-fold lowered sensitivity for vanadate. Starting from the purified Kdp complex the single subunits were obtained by gel filtration on Bio-Gel P-100 in the presence of SDS. Both the native Kdp-ATPase and the SDS-denatured polypeptides were used to raise polyclonal antibodies. The specificity of the antisera was established by immunoblot analysis. In functional inhibition studies the anti-KdpABC and anti-KdpB sera impaired ATPase activity in the membrane-bound as well as in the purified state of the enzyme. In contrast, the anti-KdpC serum did not inhibit enzyme activity. 相似文献
17.
Proline utilization by Escherichia coli and Salmonella typhimurium requires expression of genes putP (encoding a proline transporter) and putA. Genetic data indicate that the PutA protein is both put repressor and a respiratory chain-linked dehydrogenase. We report a redesigned purification procedure as well as the physical characteristics and biological activities of the PutA protein purified from E. coli. The purified protein was homogeneous as determined by electrophoresis performed under denaturing and nondenaturing conditions. Its N-terminal sequence corresponded to that predicted by the DNA sequence. We showed copurification of proline and delta 1-pyrroline-5-carboxylate dehydrogenase activities. Purified PutA protein bound put DNA in vitro in an electrophoretic band-shift assay and it could be reconstituted to inverted membrane vesicles, yielding proline dehydrogenase activity. The Stokes radius and Svedberg coefficient of the protein were determined to be 7.1 nm and 9.9 S, respectively. These hydrodynamic data revealed that the protein in our preparation was dimeric with a molecular mass of 293 kDa and that it had an irregular shape indicated by the friction factor (f/f0) of 1.6. 相似文献
18.
The influence of hydrogen ion concentration on binding and conversion of MgATP and CaATP by membrane bound and solubilized ATPase from Escherichia coli has been investigated. The reaction of enzyme (E), hydrogen ion (H+), and substrate (S) procedes according to the following scheme, where Me is the metal ion and P is the product(s). (See article for formular). Within experimental error, the results obtained with membrane-bound and solubilized ATPase are identical. Changing the concentration of Mg2+ ions or replacement of Mg2+ by Ca2+ ions alters the dissociation constants Kb, KHMeATP, and Ka'. The kinetics and experiments with group-specific inhibitors suggest that integrity for amino, imidazole, tyrosyl, carboxyl, and arginyl residues is required for activity of membrane-bound and solubilized E. coli ATPase. 相似文献
19.
Purification and functional properties of the DCCD-reactive proteolipid subunit of the H+-translocating ATPase from Mycobacterium phlei 总被引:1,自引:0,他引:1
Interaction of N,N'-dicyclohexylcarbodiimide (DCCD) with ATPase of Mycobacterium phlei membranes results in inactivation of ATPase activity. The rate of inactivation of ATPase was pseudo-first order for the initial 30-65% inactivation over a concentration range of 5-50 microM DCCD. The second-order rate constant of the DCCD-ATPase interaction was k = 8.5 X 10(5) M-1 X min(-1). The correlation between the initial binding of [14C]DCCD and 100% inactivation of ATPase activity shows 1.57 nmol DCCD bound per mg membrane protein. The proteolipid subunit of the F0F1-ATPase complex in membranes of M. phlei with which DCCD covalently reacts to inhibit ATPase was isolated by labeling with [14C]DCCD. The proteolipid was purified from the membrane in free and DCCD-modified form by extraction with chloroform/methanol and subsequent chromatography on Sephadex LH-20. The polypeptide was homogeneous on SDS-acrylamide gel electrophoresis and has an apparent molecular weight of 8000. The purified proteolipid contains phosphatidylinositol (67%), phosphatidylethanolamine (18%) and cardiolipin (8%). Amino acid analysis indicates that glycine, alanine and leucine were present in elevated amounts, resulting in a polarity of 27%. Cysteine and tryptophan were lacking. Butanol-extracted proteolipid mediated the translocation of protons across the bilayer, in K+-loaded reconstituted liposomes, in response to a membrane potential difference induced by valinomycin. The proton translocation was inhibited by DCCD, as measured by the quenching of fluorescence of 9-aminoacridine. Studies show that vanadate inhibits the proton gradient driven by ATP hydrolysis in membrane vesicles of M. phlei by interacting with the proteolipid subunit sector of the F0F1-ATPase complex. 相似文献
20.
Thomas Heitkamp Bettina Bttcher Jrg-Christian Greie 《Journal of structural biology》2009,166(3):295-302
The K+-translocating KdpFABC complex from Escherichia coli functions as a high affinity potassium uptake system and belongs to the superfamily of P-type ATPases, although it exhibits some unique features. It comprises four subunits, and the sites of ATP hydrolysis and substrate transport are located on two different polypeptides. No structural data are so far available for elucidating the correspondingly unique mechanism of coupling ion transport and catalysis in this P-type ATPase. By use of electron microscopy and single particle analysis of negatively stained, solubilized KdpFABC complexes, we solved the structure of the complex at a resolution of 19 Å, which allowed us to model the arrangement of subunits within the holoenzyme and, thus, to identify the interfaces between subunits. The model showed that the K+-translocating KdpA subunit is in close contact with the transmembrane region of the ATP-hydrolyzing subunit KdpB. The cytosolic C-terminal domain of the KdpC subunit, which is assumed to play a role in cooperative ATP binding together with KdpB, is located in close vicinity to the nucleotide binding domain of KdpB. Overall, the arrangement of subunits agrees with biochemical data and the predictions on subunit interactions. 相似文献