首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Electron microscopic study of femoral arteries of white rats exposed to prolonged general vibration at a frequency of 100 Hz with an amplitude of 0.5-0.7 mm has been performed. Light and dark smooth muscle cells, as well as unchanged cells have been found in the vascular media of experimental animals. Light cells are swollen with destroyed myofilaments and great number of microtubules in cytoplasm. Dark cells are characterized by coagulation necrosis and melting of myofilaments. Vibration was shown to cause marked structural changes in smooth muscle cells mitochondria: destruction of internal and external membranes, increasing matrix osmophilia or swelling of mitochondria accompanied by crista fragmentation, as well as matrix clarification and disappearance. Morphometric analysis indicates a considerably decreased energy production by smooth muscle cell mitochondria. It has been concluded that vibrations have a damaging effect on medial smooth muscle cells of the femoral artery in the experimental animals.  相似文献   

3.
Noradrenaline (NA) in a concentration of 5 X 10(-6) M produces depolarization of smooth muscle cells of the rabbit pulmonary artery and reduction of membrane resistance followed by contraction and increased excitability of muscle cells. Experiments with repolarization of the membrane exposed to NA in normal and Ca-free Krebs solutions have shown that activation of the NA-induced contraction is mainly due to Ca++ entering the cells through NA-sensitive potential-dependent Ca-channels. The NA-induced depolarization results from an initial decrease of K-permeability of the membrane subsequent increase of the permeability of NA-sensitive potential-dependent channels for Na+ and/or Cl-, which provides further depolarization of the membrane. Depolarization ceases after becoming sufficient for activation of potential-dependent non-inactivated K-channels. Voltage clamp experiments have shown that the NA-induced increased excitability is related to a reduction of slow, particularly of fast component of outward current, whose early activation prevents the development of regenerative process of action potential generation under normal conditions.  相似文献   

4.
Angiogenin activates human umbilical artery smooth muscle cells   总被引:5,自引:0,他引:5  
Angiogenin stimulates proliferation of human umbilical artery smooth muscle cells. This activity of angiogenin depends on the cell density and requires nuclear translocation of the ligand as well as activation of SAPK/JNK MAP kinase. Angiogenin binds to a 170-kDa putative receptor on the cell surface and induces phosphorylation of SAPK/JNK. It also undergoes nuclear translocation in a time and concentration dependent manner. Neomycin inhibits nuclear translocation of angiogenin and abolishes angiogenin-induced cell proliferation but does not inhibit SAPK/JNK phosphorylation. The data demonstrate that smooth muscle cells are targets for angiogenin and that both SAPK/JNK phosphorylation and nuclear translocation of the ligand are required for angiogenin to activate smooth muscle cells.  相似文献   

5.
6.
Noradrenaline (5 x 10(-8) - 10(-5) M) induced a dose-dependent contraction of muscle strips from rabbit femoral artery. At concentrations higher than 10(-7) M noradrenaline evoked also a depolarization of smooth muscle cells due to an increase in sodium and/or chloride permeability of the membrane. Repolarization of the membrane to original level by inwardly applied current resulted in restoration of membrane resistance and partial relaxation of noradrenaline-evoked contraction. The same part of contraction was also blocked by verapamil. In calcium-free EGTA-containing solution noradrenaline induced only a small transient contraction. These findings indicate that noradrenaline-activated sodium (or chloride) permeability is voltage dependent. Noradrenaline evoked contraction is activated by calcium ions entered the cell through receptor-operated and partly through voltage-operated calcium channels.  相似文献   

7.
目的:观察fractalkine(FKN)对体外培养的大鼠肺动脉平滑肌细胞(PASMCs)增殖的影响。方法:体外培养大鼠PASMCs,加入不同浓度(10-^10、10-^9和10-^8 mol/L)的FKN处理12h、24h和48h,采用四唑盐(MTT)法检测细胞增殖,流式细胞术(FCM)检测细胞周期。结果:MTT试验显示FKN显著促进大鼠PASMCs增殖,此作用呈浓度依赖性。FCM分析显示FKN使S期细胞比例和增殖指数P1值增加。FKN处理PASMCs 12h后,其S期细胞比例和H值即出现增加,24h达高峰。结论:FKN呈浓度依赖方式促进大鼠PASMCs增殖。  相似文献   

8.
目的:多种内耳疾病和内耳微循环障碍有关,但目前对提供内耳主要血供的耳蜗螺旋动脉平滑肌(SMC)和内皮细胞(EC)的生理学特性还不十分清楚,需要进一步研究。方法:本研究采用双细胞内微电极记录技术和细胞荧光染色技术,研究耳蜗螺旋动脉平滑肌和内皮细胞的膜电位特性和细胞间的通讯联系。结果:研究发现耳蜗螺旋动脉SMC和EC具有高、低两种静息膜电位(RP)状态,两种静息膜电位状态的细胞对乙酰胆碱和高K+的反应完全不同。双微电极可同时记录到EC-ECS、MC-SMC和SMC-EC不同类型的细胞,两个细胞的静息膜电位也可以是双高RP、双低RP和一高一低RP。实验所记录的一高一低RP均是SMC-EC类型,而且EC初始膜电位均为高电位,SMC初始膜电位均为低电位。而双高RP和双低RP可以是SMC-SMC或EC-EC或SMC-EC类型。结论:结果表明耳蜗螺旋动脉的SMC和EC在0.3~0.5 mm的范围内,同类细胞之间有很好的通讯联系,能很好的保持功能的协同和一致,血管壁异类细胞则不同。  相似文献   

9.
In experiments on isolated segments of the rat femoral artery, we demonstrated that a donor of nitric oxide, nitroglycerine (NG), suppresses KCl-and phenylephrine-induced contractions of smooth muscles (SMs) of the vascular wall in a dose-dependent manner. The relaxing effect of NG on SMs is based on several mechanisms. In a series of experiments on intact preparations, we found that potassium channels of two types, Ca-dependent big-conductance and inward rectifying channels, are involved in the relaxing effect of NG. Experiments on skinned preparations showed that interaction between the contractile apparatus of SM cells and calcium ions is disturbed under the action of NG. Neirofiziologiya/Neurophysiology, Vol. 39, No. 3, pp. 208–213, May–June, 2007.  相似文献   

10.
Both insulin resistance and reactive oxygen species (ROS) have been reported to play essential pathophysiological roles in cardiovascular diseases, such as hypertension and atherosclerosis. However, the mechanistic link between ROS, such as H2O2 and insulin resistance in the vasculature, remains undetermined. Akt, a Ser/Thr kinase, mediates various biological responses induced by insulin. In this study, we examined the effects of H2O2 on Akt activation in the insulin-signaling pathway in vascular smooth muscle cells (VSMCs). In VSMCs, insulin stimulates Akt phosphorylation at Ser473. Pretreatment with H2O2 concentration- and time-dependently inhibited insulin-induced Akt phosphorylation with significant inhibition observed at 50 microM for 10 min. A ROS inducer, diamide, also inhibited insulin-induced Akt phosphorylation. In addition, H2O2 inhibited insulin receptor binding partially and inhibited insulin receptor autophosphorylation almost completely. However, pretreatment with a protein kinase C inhibitor, GF109203X (2 microM), for 30 min did not block the inhibitory effects of H2O2 on insulin-induced Akt phosphorylation, suggesting that protein kinase C is not involved in the inhibition by H2O2. We conclude that ROS inhibit a critical insulin signal transduction component required for Akt activation in VSMCs, suggesting potential cellular mechanisms of insulin resistance, which would require verification in vivo.  相似文献   

11.
12.
Whereas thrombin (below 10 nM) is a potent mitogen, recent studies report that exposure to higher doses of thrombin could lead to apoptosis of neurons and tumor cells. Our results show that prolonged exposure (> or = 24 h) to thrombin (50-100 nM) exerts a pro-apoptotic effect on cultured vascular smooth muscle cells (VSMCs). This phenomenon depends on thrombin serine-protease activity but is independent of PAR-1 and -4 activation and subsequent signaling. The parallel occurrence of cell retraction and cleavage of fibronectin suggests that thrombin-induced apoptosis is consecutive to pericellular proteolysis. These data point to a new potential action of thrombin in the cardiovascular system.  相似文献   

13.
14.
Antiproliferative effect of L-NAME on rat vascular smooth muscle cells   总被引:2,自引:0,他引:2  
The nitric oxide synthase (NOS) inhibitor L-NAME may have growth inhibitory effects in vivo. We investigated in vitro the potential growth inhibitory effects of three different NOS inhibitors: L-NAME (1 mM), LNMMA (1 mM) and aminoguanidine (0.5 mM), on fetal bovine serum (FBS) and platelet derived growth factor (PDGF-BB)-stimulated growth in cultured vascular smooth muscle cells (VSMCs). [3H]-thymidine incorporation into rat mesenteric VSMCs was measured as an index of VSMCs proliferation (DNA synthesis) and activation of extracellular signal regulated kinase (ERK1/2), a major signaling event in cell growth, was measured by western blot assay. PDGF-BB (0-5 ng/mL) and FBS (0-5%) increased [3H]-thymidine incorporation in a dose-dependent manner up to 6-10 fold. L-NAME significantly reduced PDGF-BB (5 ng/ml) and FBS (5%) stimulated DNA synthesis by 46% and 38% respectively. The increase of [3H]-thymidine incorporation induced by PDGF-BB and FBS was unaltered by L-NMMA. In contrast, aminoguanidine induced an increase in FBS and PDGF-BB-stimulated [3H]-thymidine incorporation of 64% and 34% respectively above cells not exposed to aminoguanidine. ERK1/2 phosphorylation induced by PDGF-BB and FBS was not affected by pre-treatment with L-NAME or aminoguanidine. In conclusion, NOS inhibitors differentially influence DNA synthesis in VSMCs: L-NAME inhibits FBS and PDGF-BB-stimulated cellular proliferation whereas aminoguanidine accentuates FBS and PDGF-BB-stimulated VSMCs proliferation. These phenomena are independent of the ERK1/2 pathway. The growth inhibitory effects of L-NAME may be related to differences in properties from other NOS inhibitors, and independent of its ability to inhibit NOS.  相似文献   

15.
This study used an inexpensive and versatile environmental exposure system to test the hypothesis that hypoxia promoted free radical production in primary cultures of rat main pulmonary artery smooth muscle cells (PASMCs). Production of reactive species was detected by fluorescence microscopy with the probe 2', 7'-dichlorodihydrofluorescein, which is converted to the fluorescent dichlorofluorescein (DCF) in the presence of various oxidants. Flushing the airspace above the PASMC cultures with normoxic gas (20% O(2), 75% N(2), and 5% CO(2)) resulted in stable PO(2) values of approximately 150 Torr, whereas perfusion of the airspace with hypoxic gas (0% O(2), 95% N(2), and 5% CO(2) ) was associated with a reduction in PO(2) values to stable levels of approximately 25 Torr. Hypoxic PASMCs became increasingly fluorescent at approximately 500% above the normoxic baseline after 60 min. Hypoxia-induced DCF fluorescence was attenuated by the addition of the antioxidants dimethylthiourea and catalase. These findings show that PASMCs acutely exposed to hypoxia exhibit a marked increase in intracellular DCF fluorescence, suggestive of reactive oxygen or nitrogen species production.  相似文献   

16.
17.
Proteoglycan (PG) metabolism by aortic smooth muscle cell cultures derived from atherosclerosis-susceptible White Carneau (WC) and -resistant Show Racer (SR) pigeons was compared using [35S]sodium sulfate and [3H]serine or [3H]glucosamine as labeling precursors. Chondroitin sulfate (CS) PG and dermatan sulfate (DS) PG were the major PG secreted into the medium by both cell types. Total PG production, whether measured by incorporation of radiolabel into either core protein or glycosaminoglycan chains, was consistently lower in WC compared to SR cultures at several time points. This difference was due in part to lower (30-37%) PG synthesis in WC cells, but degradation of newly synthesized PG was an important contributor. A pulse-chase study indicated that of the total radiolabeled PG present at time O, only 47% was present at 24 h in WC cultures compared to 88% in SR cultures. The large CS-PG appeared to be the primary target for degradation in WC cells, and this selective processing resulted in a higher DS-PG:CS-PG ratio in these cultures. Structural studies indicated similar core protein and glycosaminoglycan chain sizes within a PG type for both cell types. PG monomer composition differed, however, by a higher sulfation of WC CS-PG compared to SR CS-PG and by a disaccharide sulfation position favoring 6-sulfation in WC PG and 4-sulfation in SR PG.  相似文献   

18.
In addition to its anticoagulant properties, heparin (HP), a complex polysaccharide covalently linked to a protein core, inhibits proliferation of several cell types including pulmonary artery smooth muscle cells (PASMCs). Commercial lots of HP exhibit varying degrees of antiproliferative activity on PASMCs that may due to structural differences in the lots. Fractionation of a potent antiproliferative HP preparation into high and low molecular weight components does not alter the antiproliferative effect on PASMCs, suggesting that the size of HP is not the major determinant of this biological activity. The protein core of HP obtained by cleaving the carbohydrate-protein linkage has no growth inhibition on PASMCs, demonstrating that the antiproliferative activity resides in the glycosaminoglycan component. Basic sugar residues of glucosamine can be replaced with another basic sugar, i.e., galactosamine, without affecting growth inhibition of PASMCs. N-sulfonate groups on these sugar residues of HP are not essential for growth inhibition. However, O-sulfonate groups on both sugar residues are essential for the antiproliferative activity on PASMCs. In whole HP, in contrast to an earlier finding based on a synthetic pentasaccharide of HP, 3-O-sulfonation is not critical for the antiproliferative activity against PASMCs. The amounts and distribution of sulfonate groups on both sugar residues of the glycosaminoglycan chain are the major determinant of antiproliferative activity.  相似文献   

19.
The effect of TGF-beta receptor binding peptides on smooth muscle cells   总被引:1,自引:0,他引:1  
TGF-beta1 is a potent regulator of vascular smooth muscle cell (VSMC) proliferation, migration, and extracellular matrix (ECM) synthesis. In this study, we selected two peptides, IM-1 and IM-2, that bind to the TGF-beta type II receptor (TGF-beta RII) using phage display. IM-1 and IM-2 bind to the TGF-beta RII, with a K(d) of 1 microM. Like TGF-beta, IM-1 induced VSMC chemotaxis and PAI-1 mRNA expression, as determined using Boyden chambers and real time quantitative PCR. In contrast, IM-2 had no effect on VSMC chemotaxis or PAI-1 induction. Induction of ECM synthesis, involving proteins such as osteopontin and alpha-smooth muscle actin, was determined by ELISA. Osteopontin expression was inhibited by both peptides, but TGF-beta-induced alpha-smooth muscle actin expression could only be inhibited by IM-1. In conclusion, IM-1 activity on VSMC is agonistic with TGF-beta, except for ECM synthesis, whereas the IM-2 peptide is antagonistic for some examined TGF-beta functions.  相似文献   

20.
Coronary artery disease (CAD) is the major cause of death in diabetics. Abnormal proliferation of coronary artery smooth muscle cells (CASMC) leads to intimal thickening in CAD. We examined signaling mechanisms involved in the mitogenic effect of ATP and insulin on CASMC. ATP and insulin individually stimulated DNA synthesis by 4- and 2-fold, respectively; however, they acted synergistically to stimulate an increase of 17-fold over basal. A similar synergistic stimulation of extracellular signal-regulated kinase (ERK) and mitogen-activated protein or ERK kinase activities was observed (ATP, 7-fold; insulin, 2-fold; and ATP + insulin, 16-fold over basal). However, the combination of ATP and insulin stimulated only an additive activation of Raf (ATP, 5-fold; insulin, <2-fold; and ATP + insulin, 8-fold over basal) and Ras (ATP, 5-fold; insulin, 2-fold; and ATP + insulin, 8-fold over basal). Thus convergence of ATP and insulin signals appears to be at the level of Ras and Raf. In addition, insulin stimulated activation of Akt (also known as protein kinase B) (10-fold over basal), whereas ATP had little effect. However, when ATP and insulin were added in combination, ATP dramatically reduced the insulin-stimulated Akt activation (2-fold above basal). Thus these results are consistent with ATP relieving an insulin-induced Akt-dependent inhibitory effect on the ERK signaling pathway, leading to synergistic stimulation of CASMC proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号