首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative permeability of endplate channels to monovalent and divalent metal ions was determined from reversal potentials. Thallium is the most permeant ion with a permeability ratio relative to Na+ of 2.5. The selectivity among alkali metals is weak with a sequence, Cs+ greater than Rb+ greater than K+ greater than Na+ greater than Li+, and permeability ratios of 1.4, 1.3, 1.1, 1.0, and 0.9. The selectivity among divalent ions is also weak, with a sequence for alkaline earths of Mg++ greater than Ca++ greater than Ba++ greater than Sr++. The transition metal ions Mn++, Co++, Ni++, Zn++, and Cd++ are also permeant. Permeability ratios for divalent ions decreased as the concentration of divalent ion was increased in a manner consistent with the negative surface potential theory of Lewis (1979 J. Physiol. (Lond.). 286: 417--445). With 20 mM XCl2 and 85.5 mM glucosamine.HCl in the external solution, the apparent permeability ratios for the alkaline earth cations (X++) are in the range 0.18--0.25. Alkali metal ions see the endplate channel as a water-filled, neutral pore without high-field-strength sites inside. Their permeability sequence is the same as their aqueous mobility sequence. Divalent ions, however, have a permeability sequence almost opposite from their mobility sequence and must experience some interaction with groups in the channel. In addition, the concentrations of monovalent and divalent ions are increased near the channel mouth by a weak negative surface potential.  相似文献   

2.
Current-voltage characteristics are obtained for a channel formed by alpha-latrotoxin when inserting into a bilayer lipid membrane separating solutions of different ionic composition. They are used for determining parameters of a two-barrier model of this channel energy profile. It is shown that selectivity of these channels is based on the same principles that in the calcium channels of biological membranes and is mainly determined by the ion binding inside the channel. Affinity of the channel for the penetrating ions of alkali-earth metals decreases in the sequence: Mg2+ greater than Ca2+ greater than Sr2+ approximately equal to Ba2+ and the blocking ability of the cations of transition metals increases in the series: Mn2+ less than Zn2+ approximately less than Ni2+ approximately less than Co2+ less than Cd2+ much less than La3+. The channel gives the monovalent ions to pass through as well, its permeability being dependent on the concentration of divalent ions from the cis-, but not from the trans-side of the membrane.  相似文献   

3.
The selectivity of Ca2+ over Na+ is approximately 3.3-fold larger in cGMP-gated channels of cone photoreceptors than in those of rods when measured under saturating cGMP concentrations, where the probability of channel opening is 85-90%. Under physiological conditions, however, the probability of opening of the cGMP-gated channels ranges from its largest value in darkness of 1-5% to essentially zero under continuous, bright illumination. We investigated the ion selectivity of cGMP-gated channels as a function of cyclic nucleotide concentration in membrane patches detached from the outer segments of rod and cone photoreceptors and have found that ion selectivity is linked to gating. We determined ion selectivity relative to Na+ (PX/PNa) from the value of reversal potentials measured under ion concentration gradients. The selectivity for Ca2+ over Na+ increases continuously as the probability of channel opening rises. The dependence of PCa/PNa on cGMP concentration, in both rods and cones, is well described by the same Hill function that describes the cGMP dependence of current amplitude. At the cytoplasmic cGMP concentrations expected in dark-adapted intact photoreceptors, PCa/PNa in cone channels is approximately 7.4-fold greater than that in rods. The linkage between selectivity and gating is specific for divalent cations. The selectivity of Ca2+ and Sr2+ changes with cGMP concentration, but the selectivity of inorganic monovalent cations, Cs+ and NH4+, and organic cations, methylammonium+ and dimethylammonium+, is invariant with cGMP. Cyclic nucleotide-gated channels in rod photoreceptors are heteromeric assemblies of alpha and beta subunits. The maximal PCa/PNa of channels formed from alpha subunits of bovine rod channels is less than that of heteromeric channels formed from alpha and beta subunits. In addition, Ca2+ is a more effective blocker of channels formed by alpha subunits than of channels formed by alpha and beta subunits. The cGMP-dependent shift in divalent cation selectivity is a property of alphabeta channels and not of channels formed from alpha subunits alone.  相似文献   

4.
Single channel and whole cell recordings were used to study ion permeation through Ca channels in isolated ventricular heart cells of guinea pigs. We evaluated the permeability to various divalent and monovalent cations in two ways, by measuring either unitary current amplitude or reversal potential (Erev). According to whole cell measurements of Erev, the relative permeability sequence is Ca2+ greater than Sr2+ greater than Ba2+ for divalent ions; Mg2+ is not measurably permeant. Monovalent ions follow the sequence Li+ greater than Na+ greater than K+ greater than Cs+, and are much less permeant than the divalents. These whole cell measurements were supported by single channel recordings, which showed clear outward currents through single Ca channels at strong depolarizations, similar values of Erev, and similar inflections in the current-voltage relation near Erev. Information from Erev measurements stands in contrast to estimates of open channel flux or single channel conductance, which give the sequence Na+ (85 pS) greater than Li+ (45 pS) greater than Ba2+ (20 pS) greater than Ca2+ (9 pS) near 0 mV with 110-150 mM charge carrier. Thus, ions with a higher permeability, judged by Erev, have lower ion transfer rates. In another comparison, whole cell Na currents through Ca channels are halved by less than 2 microM [Ca]o, but greater than 10 mM [Ca]o is required to produce half-maximal unitary Ca current. All of these observations seem consistent with a recent hypothesis for the mechanism of Ca channel permeation, which proposes that: ions pass through the pore in single file, interacting with multiple binding sites along the way; selectivity is largely determined by ion affinity to the binding sites rather than by exclusion by a selectivity filter; occupancy by only one Ca ion is sufficient to block the pore's high conductance for monovalent ions like Na+; rapid permeation by Ca ions depends upon double occupancy, which only becomes significant at millimolar [Ca]o, because of electrostatic repulsion or some other interaction between ions; and once double occupancy occurs, the ion-ion interaction helps promote a quick exit of Ca ions from the pore into the cell.  相似文献   

5.
Depolarizing response of rat parathyroid cells to divalent cations   总被引:2,自引:0,他引:2       下载免费PDF全文
Membrane potentials were recorded from rat parathyroid glands continuously perfused in vitro. At 1.5 mM external Ca++, the resting potential averages -73 +/- 5 mV (mean +/- SD, n = 66). On exposure to 2.5 mM Ca++, the cells depolarize reversibly to a potential of -34 +/- 8 mV (mean +/- SD). Depolarization to this value is complete in approximately 2-4 min, and repolarization on return to 1.5 mM Ca++ takes about the same time. The depolarizing action of high Ca++ is mimicked by all divalent cations tested, with the following order of effectiveness: Ca++ greater than Sr++ greater than Mg++ greater than Ba++ for alkali-earth metals, and Ca++ greater than Cd++ greater than Mn++ greater than Co++ greater than Zn++ for transition metals. Input resistance in 1.5 mM Ca++ was 24.35 +/- 14 M omega (mean +/- SD) and increased by an average factor of 2.43 +/- 0.8 after switching to 2.5 mM Ca++. The low value of input resistance suggests that cells are coupled by low-resistance junctions. The resting potential in low Ca++ is quite insensitive to removal of external Na+ or Cl-, but very sensitive to changes in external K+. Cells depolarize by 61 mV for a 10- fold increase in external K+. In high Ca++, membrane potential is less sensitive to an increase in external K+ and is unchanged by increasing K+ from 5 to 25 mM. Depolarization evoked by high Ca++ may be slowed, but is unchanged in amplitude by removal of external Na+ or Cl-. Organic (D600) and inorganic (Co++, Cd++, and Mn++) blockers of the Ca++ channels do not interfere with the electrical response to Ca++ changes. Our results show remarkable parallels to previous observations on the control of parathormone (PTH) release by Ca++. They suggest an association between membrane voltage and secretion that is very unusual: parathyroid cells secrete when fully polarized, and secrete less when depolarized. The extraordinary sensitivity of parathyroid cells to divalent cations leads us to hypothesize the existence in their membranes of a divalent cation receptor that controls membrane permeability (possibly to K+) and PTH secretion.  相似文献   

6.
G L Powell  P F Knowles  D Marsh 《Biochemistry》1987,26(25):8138-8145
The selectivity of interaction of various cardiolipin analogues with beef heart cytochrome oxidase in reconstituted complexes with dimyristoylphosphatidylcholine has been studied by electron spin resonance spectroscopy, using lipids spin-labeled in the acyl chains. No difference in selectivity is observed between cardiolipin and its monolyso derivative, and similarly no selectivity is observed between phosphatidylcholine and lysophosphatidylcholine. Removal of the cardiolipin charge by methylation of the phosphate groups reduces but does not eliminate selectivity relative to phosphatidylcholine. The dependence of the lipid selectivity on head group and chain composition is in the order cardiolipin approximately equal to monolysocardiolipin greater than acylcardiolipin greater than dimethylcardiolipin greater than phosphatidylcholine approximately equal to lysophosphatidylcholine, where acylcardiolipin has the spin-label chain attached at the center -OH of the head group. The degree of association of the negatively charged cardiolipin derivatives with cytochrome oxidase decreases with increasing salt concentration, to a level comparable to that for dimethylcardiolipin. At high ionic strength there is still a marked selectivity relative to phosphatidylcholine. Li+ ions are more effective in screening the interaction than are Na+ ions, and divalent ions are more effective than monovalent ions. The selectivity for cardiolipin is only slightly reduced on titrating the protein to high pH. Alkylation of the protein with N-ethylmaleimide has little effect on the titration behavior. Covalent modification of the protein by reaction with citraconic anhydride decreases the selectivity of interaction with cardiolipin. It is concluded that cardiolipin possesses an additional specificity of interaction with cytochrome oxidase other than that of purely electrostatic origin.  相似文献   

7.
Ionic mechanisms of excitation were studied in the immature egg cell membrane of a starfish, Mediaster aequalis, by analyzing membrane currents during voltage clamp. The cell membrane shows two different inward current mechanisms. One is activated at a membrane potential of -55 approximately -50 mV and the other at -7 approximately -6 mV. They are referred to as channels I and II, respectively. A similar difference is also found in the membrane potential of half inactivation. Currents of the two channels can, therefore, be separated by selective inactivation. The currents of both channels depend on Ca++ (Sr++ or Ba++) but only the current of channel I depends on Na+. The time-course of current differs significantly between the two channels when compared at the same membrane potential. The relationship between the membrane current and the concentration of the permeant ions is also different between the two channels. The result suggests that channel II is a more saturable system. The sensitivity of the current to blocking cations such as Co++ or Mg++ is substantially greater in channel II than in channel I. Currents of both channels depend on the external pH with an apparent pK of 5.6. They are insensitive to 3 muM tetrodotoxin (TTX) but are eliminated totally by 7.3 mM procaine. The properties of channel II are similar to those of the Ca channel found in various adult tissues. The properties of channel I differ, however, from those of either the typical Ca or Na channels. Although the current of the channel depends on the external Na the amplitude of the Na current decreases not only with the Na concentration but also with the Ca concentration. No selectivity is found among Li+, Na+, Rb+, and Cs+. The experimental result suggests that Na+ does not carry current but modifies the current carried by Ca in channel I.  相似文献   

8.
Batrachotoxin-modified, voltage-dependent sodium channels from canine forebrain were incorporated into planar lipid bilayers. Single-channel conductances were studied for [Na+] ranging between 0.02 and 3.5 M. Typically, the single-channel currents exhibited a simple two-state behavior, with transitions between closed and fully open states. Two other conductance states were observed: a subconductance state, usually seen at [NaCl] greater than or equal to 0.5 M, and a flickery state, usually seen at [NaCl] less than or equal to 0.5 M. The flickery state became more frequent as [NaCl] was decreased below 0.5 M. The K+/Na+ permeability ratio was approximately 0.16 in 0.5 and 2.5 M salt, independent of the Na+ mole fraction, which indicates that there are no interactions among permeant ions in the channels. Impermeant and permeant blocking ions (tetraethylammonium, Ca++, Zn++, and K+) have different effects when added to the extracellular and intracellular solutions, which indicates that the channel is asymmetrical and has at least two cation-binding sites. The conductance vs. [Na+] relation saturated at high concentrations, but could not be described by a Langmuir isotherm, as the conductance at low [NaCl] is higher than predicted from the data at [NaCl] greater than or equal to 1.0 M. At low [NaCl] (less than or equal to 0.1 M), increasing the ionic strength by additions of impermeant monovalent and divalent cations reduced the conductance, as if the magnitude of negative electrostatic potentials at the channel entrances were reduced. The conductances were comparable for channels in bilayers that carry a net negative charge and bilayers that carry no net charge. Together, these results lead to the conclusion that negative charges on the channel protein near the channel entrances increase the conductance, while lipid surface charges are less important.  相似文献   

9.
The effect of a series of di- and trivalent cations on the locomotor response of human neutrophils to the chemotactic tripeptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) was investigated. Migration was assessed by the leading front method. The cations inhibited FMLP-stimulated chemotaxis in the rank order: Ni2+ approximately Co2+ greater than Sr2+ greater than Zn2+ greater than Mn2+ approximately La3+ greater than Cd2+ approximately Ba2+ much greater than Mg2+. Benzamil, which blocks Na+/Ca2+ exchange, did not alter chemotaxis by itself but prevented the suppressive effects of each of the polyvalent cations on motility. The ion selectivity sequence and the lack of activity of benzamil are strikingly different than for O(-2) generation, thereby implying different modes of action in the two functional expressions. The F-actin content of the cells was monitored by the fluorescence of rhodamine-phalloidin. Each of the cations displayed comparable efficacy in blocking the polymerization of actin in FMLP-activated cells. Likewise, benzamil exhibited a protective effect, completely overcoming the inhibitory action of the polyvalent cations. The results indicate that these foreign ions gain access to the cell interior via a benzamil-sensitive pathway, namely Na+/Ca2+ exchange. Upon entry into the cytosol, they then interfere with the formation of filaments from actin monomers. These studies help to shed light on the interaction of divalent cations with cytoskeletal and contractile elements in cell motility.  相似文献   

10.
The conduction properties of the alkaline earth divalent cations were determined in the purified sheep cardiac sarcoplasmic reticulum ryanodine receptor channel after reconstitution into planar phospholipid bilayers. Under bi-ionic conditions there was little difference in permeability among Ba2+, Ca2+, Sr2+, and Mg2+. However, there was a significant difference between the divalent cations and K+, with the divalent cations between 5.8- and 6.7-fold more permeant. Single-channel conductances were determined under symmetrical ionic conditions with 210 mM Ba2+ and Sr2+ and from the single-channel current-voltage relationship under bi-ionic conditions with 210 mM divalent cations and 210 mM K+. Single-channel conductance ranged from 202 pS for Ba2+ to 89 pS for Mg2+ and fell in the sequence Ba2+ greater than Sr2+ greater than Ca2+ greater than Mg2+. Near-maximal single-channel conductance is observed at concentrations as low as 2 mM Ba2+. Single-channel conductance and current measurements in mixtures of Ba(2+)-Mg2+ and Ba(2+)-Ca2+ reveal no anomalous behavior as the mole fraction of the ions is varied. The Ca(2+)-K+ reversal potential determined under bi-ionic conditions was independent of the absolute value of the ion concentrations. The data are compatible with the ryanodine receptor channel acting as a high conductance channel displaying moderate discrimination between divalent and monovalent cations. The channel behaves as though ion translocation occurs in single file with at most one ion able to occupy the conduction pathway at a time.  相似文献   

11.
The effect of different extracellular alkaline-earth cations (Ca2+, Mg2+, Sr2+, Ba2+) upon the threshold membrane potential for spike initiation in crayfish axon has been studied by means of intracellular microelectrodes. This was done at the following extracellular concentrations of the divalent uranyl ion (UO2/2+): 1.0 X 10(-6) M, 3.0 X 10(-6) M, and 9.0 X 10(-6) M. At each concentration employed, extensive neutralization of axonal surface charges by UO2/2+ was evidenced by the fact that equal concentrations (50 mM) of alkaline-earth cations did not have the same effect on the threshold potential. The selectivity sequences observed at the different uranyl-ion concentrations were: 1.0 X 10(-6) M UO2/2+, Ca2+ greater than Mg2+ greater than Sr2+ greater than Ba2+; 3.0 X 10(-6) M UO2/2+, Ca2+ greater than Mg2+ greater than Ba2+ larger than or equal to Sr2+; 9.0 X 10(-6) M UO2/2+, Ca2+ approximately Ba2+ greater than Sr2+ greater than Mg2+. These selectivity sequences are in accord with the equilibrium selectivity theory for alkaline-earth cations. At each of the concentrations used, uranyl ion did not have any detectable effect on the actual shape of the action potential itself. It is concluded that many (if not most) of the surface acidic groups in the region of the sodium gates represent phosphate groups of membrane phospholipids, but that the m gates themselves are probably protein-aceous in structure.  相似文献   

12.
Evidence is given for a high density of negative surface charge near the sodium channel of myelinated nerve fibres. The voltage dependence of peak sodium permeability is measured in a voltage clamp. The object is to measure voltage shifts in sodium activation as the following external variables are varied: divalent cation concentration and type, monovalent concentration, and pH. With equimolar substitution of divalent ions the order of effectiveness for giving a positive shift is: Ba equals Sr less than Mg less than Ca less than Co approximately equal to Mn less than Ni less than Zn. A tenfold increase of concentration of any of these ions gives a shift of +20 to +25 mV. At low pH, the shift with a tenfold increase in Ca-2+ is much less than at normal pH, and conversely for high pH. Soulutions with no added divalent ions give a shift of minus 18 mV relative to 2 mM Ca-2+. Removal of 7/8 of the cations from the calcium-free solution gives a further shift of minue 35 mV. All shifts are explained quantitatively by assuming that changes in an external surface potential set up by fixed charges near the sodium channel produce the shifts. The model involves a diffuse double layer of counterions at the nerve surface and some binding of H+ions and divalent ions to the fixed charges. Three types of surface groups are postulated: (1) an acid pKa equals 2.88 charge density minus 0.9 nm- minus 2; (i) an acid pKa equals 4.58, charge density minus 0.58 nm- minus 2; (3) a base pKa equals 6.28, charge density +0.33 nm- minus 2. The two acid groups also bind Ca-2+ ions with a dissociation constant K equals 28 M. Reasonable agreement can also be obtained with a lower net surface charge density and stronger binding of divalent ions and H+ ions.  相似文献   

13.
The ionophoretic activity of PGBx, an oligomeric mixture synthesized from 15-dehydro PGB1, with different cations was measured using arsenazo III-entrapped liposomes. The order of ionophoretic activity was Zn2+ greater than Co2+ greater than Mn2+ greater than Cu2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. The intrinsic fluorescence of PGBx was quenched by the binding of divalent cations as well as by La3+ and H+. Quenching by K+ and Na+ was minimal. The order of quenching strength of divalent cations was Zn2+ greater than Co2+ greater than Cu2+ = Mn2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. Binding affinities of these cations determined by a murexide indicator method were in good agreement with that determined by the fluorescence quenching reaction. The cation binding affinity of PGBx in aqueous solutions correlates with the ionophoretic activity in liposomes. The binding affinity for K+ was estimated from the inhibition by K+ of Ca2+ binding by PGBx. Although PGBx has a lower selectivity for divalent cation binding than the ionophore A23187, the characteristics of the binding affinity of these two compounds for various ions were similar. The pK of PGBx as determined by fluorescence quenching was 6.7. The molecular weight of the divalent cation binding unit was estimated to be about 680, with each PGBx molecule having three such binding sites. The binding of Ca2+ to such a site is one-to-one.  相似文献   

14.
The selectivity of ion channels produced by latrotoxin obtained from a black widow spider venom and by venom from the spider Steatoda paykulliana in bilayer phospholipid membrane was studied. Experimental current-voltage curves of these channels were used for the estimation of parameters of a two barrier model of their energy profiles. Selectivities of both types of channels are similar. Alkaline earth cations are permeable, the permeability increasing in the order Mg2+ less than Ca2+ less than Sr2+ less than Ba2+. In contrast transition metal cations block the channel, their efficiency decreases in the order: Cd2+ greater than or equal to Ni2+ greater than Zn2+ greater than Co2+ greater than Mn2+ (Steatoda paykulliana spider venom) and Cd2+ greater than Co2+ greater than Ni2+ greater than Zn2+ greater than Mn2+ (latrotoxin). Amplitudes of current carried by corresponding ions are mainly determined by the depth of the potential well for this ion, i.e., by its affinity to the cation binding site in the channel. The channels are also permeable to monovalent cations but they do not bind them. Selectivity for monovalent cations depends on Ca2+ concentration at the cis-side of membrane in the micromolar range. However, the addition of Ca2+ to the trans-side up to 10 mM does not affect currents carried by monovalent ions. It is suggested that venom-induced calcium channels have two conformational states with different selectivities which interconvert upon binding one calcium ion. Possible general schemes for the organisation of calcium channels in excitable membranes are also discussed. Finally, using a mathematical model of synaptic transmission, possible mechanisms of toxic action of spider venoms are considered.  相似文献   

15.
Ionic selectivity of the sodium channel of frog skeletal muscle   总被引:4,自引:4,他引:0       下载免费PDF全文
The ionic selectivity of the Na channel to a variety of metal and organic cations is studied in frog semitendinosus muscle. Na channel currents are measured under voltage clamp conditions in fibers bathed in solutions with all Na+ replaced by a test ion. Permeability ratios are calculated from measured reversal potentials using the Goldman-Hodgkin-Katz equation. The permeability sequence was Na+ approximately Li+ approximately hydroxylammonium greater than hydrazinium greater than ammonium greater than guanidinium greater than K+ greater than aminoguanidinium in the ratios 1:0.96:0.94:0.31:0.11:0.093:0.048:0.031. No inward currents were observed for Ca++, methylammonium, methylguanidinium, tetraethylammonium, and tetramethylammonium. The results are consistent with the Hille model of the Na channel selectivity filter of the node of Ranvier and suggest that the selectivity filter of the two channels is the same.  相似文献   

16.
The single-channel properties for monovalent and divalent cations of a voltage-independent cation channel from Tetrahymena cilia were studied in planar lipid bilayers. The single-channel conductance reached a maximum value as the K+ concentration was increased in symmetrical solutions of K+. The concentration dependence of the conductance was approximated to a simple saturation curve (a single-ion channel model) with an apparent Michaelis constant of 16.3 mM and a maximum conductance of 354 pS. Divalent cations (Ca2+, Ba2+, Sr2+, and Mg2+) also permeated this channel. The sequence of permeability determined by zero current potentials at high ionic concentrations was Ba2+ greater than or equal to K+ greater than or equal to Sr2+ greater than Mg2+ greater than Ca2+. Single-channel conductances for Ca2+ were nearly constant (13.9 pS-20.5 pS) in the concentrations between 0.5 mM and 50 mM Ca-gluconate. In the experiments with mixed solutions of K+ and Ca2+, a maximum conductance of Ca2+ (gamma Camax) and an apparent Michaelis constant of Ca2+ (K Cam) were obtained by assuming a simple competitive relation between the cations. Gamma Camax and K Cam were 14.0 pS and 0.160 mM, respectively. Single-channel conductances in mixed solutions were well-fitted to this competitive model supporting that this cation channel behaves as a single-ion channel. This channel had relatively high-affinity Ca2+-binding sites.  相似文献   

17.
M Chua  W J Betz 《Biophysical journal》1991,59(6):1251-1260
The channels present on the surface membrane of isolated rat flexor digitorum brevis muscle fibers were surveyed using the patch clamp technique. 85 out of 139 fibers had a novel channel which excluded the anions chloride, sulfate, and isethionate with a permeability ratio of chloride to sodium of less than 0.05. The selectivity sequence for cations was Na+ = K+ = Cs+ greater than Ca++ = Mg++ greater than N-Methyl-D-Glucamine. The channel remained closed for long periods, and had a large conductance of approximately 320 pS with several subconductance states at approximately 34 pS levels. Channel activity was not voltage dependent and the reversal potential for cations in muscle fibers of approximately 0 mV results in the channel's behaving as a physiological leakage conductance. Voltage activated potassium channels were present in 65 of the cell attached patches and had conductances of mostly 6, 12, and 25 pS. The voltage sensitivity of the potassium channels was consistent with that of the delayed rectifier current. Only three patches contained chloride channels. The scarcity of chloride channels despite the known high chloride conductance of skeletal muscle suggests that most of the chloride channels must be located in the transverse tubular system.  相似文献   

18.
The mechanism of block of voltage-dependent Na+ channels by extracellular divalent cations was investigated in a quantitative comparison of two distinct Na+ channel subtypes incorporated into planar bilayers in the presence of batrachotoxin. External Ca2+ and other divalent cations induced a fast voltage-dependent block observed as a reduction in unitary current for tetrodotoxin-sensitive Na+ channels of rat skeletal muscle and tetrodotoxin-insensitive Na+ channels of canine heart ventricular muscle. Using a simple model of voltage-dependent binding to a single site, these two distinct Na+ channel subtypes exhibited virtually the same affinity and voltage dependence for fast block by Ca2+ and a number of other divalent cations. This group of divalent cations exhibited an affinity sequence of Co congruent to Ni greater than Mn greater than Ca greater than Mg greater than Sr greater than Ba, following an inverse correlation between binding affinity and ionic radius. The voltage dependence of fast Ca2+ block was essentially independent of CaCl2 concentration; however, at constant voltage the Ca2+ concentration dependence of fast block deviated from a Langmuir isotherm in the manner expected for an effect of negative surface charge. Titration curves for fast Ca2+ block were fit to a simplified model based on a single Ca2+ binding site and the Gouy-Chapman theory of surface charge. This model gave similar estimates of negative surface charge density in the vicinity of the Ca2+ blocking site for muscle and heart Na+ channels. In contrast to other divalent cations listed above, Cd2+ and Zn2+ are more potent blockers of heart Na+ channels than muscle Na+ channels. Cd2+ induced a fast, voltage-dependent block in both Na+ channel subtypes with a 46-fold higher affinity at 0 mV for heart (KB = 0.37 mM) vs. muscle (KB = 17 mM). Zn2+ induced a fast, voltage-dependent block of muscle Na+ channels with low affinity (KB = 7.5 mM at 0 mV). In contrast, micromolar Zn2+ induced brief closures of heart Na+ channels that were resolved as discrete substate events at the single-channel level with an apparent blocking affinity of KB = 0.067 mM at 0 mV, or 110-fold higher affinity for Zn2+ compared with the muscle channel. High-affinity block of the heart channel by Cd2+ and Zn2+ exhibited approximately the same voltage dependence (e-fold per 60 mV) as low affinity block of the muscle subtype (e-fold per 54 mV), suggesting that the block occurs at structurally analogous sites in the two Na+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The cation complexation equilibria between ionophore A23187 and several alkaline earth and first transition series divalent cations have been investigated. Absorption and fluorescence spectroscopy were used to monitor the reactions which were studied in solutions of 80% methanol/water, at 25 degrees C, and under conditions of controlled ionic strength and pH. Titration of the ionophore with divalent cations results first in formation of the dimeric species MA2 and subsequently in the formation of MA+ by disproportionation of the first product. With Zn2+, Ni2+, and Co2+ (above pH approximately 6), a third species is detected which is postulated to be MA.OH. The existence of this species with Mn2+ and alkaline earth cations is uncertain. For formation of MA2, the second stepwise stability constant is similar to or exceeds the first value with all cations studied. However, it is possible to isolate the first reaction and determine accurate stability constants by working at an ionophore concentration of 3 X 10(-8) M or less and by employing pH values which preclude interference by the mixed ionophore/hydroxide species. Under these conditions, the relationship between log KMA' and pH is linear and displays a slope of 1.0. pH-independent stability constants were calculated by using pH-dependent stability constants and the known value of the ionophore's protonation constant in this solvent. The logarithms of the values obtained ranged from 7.54 +/- 0.06 for Ni2+ to 3.60 +/- 0.06 for Ba2+. The selectivity sequence and relative affinities (in parentheses) for the species MA+ are as follows: Ni2+ (977) greater than Co2+ (331) greater than Zn2+ (174) greater than Mn2+ (34) greater than Mg2+ (1.00) approximately equal to Ca2+ (0.89) greater than Sr2+ (0.20) greater than Ba2+ (0.11). Data are discussed in comparison to other studies on the complexation properties of A23187 and in terms of their significance to interpreting the transport properties of this ionophore.  相似文献   

20.
A calcium sensitive univalent cation channel could be formed by lysotriphosphoinositide on an artificial bilayer membrane made of oxidized cholesterol. The modified membrane was selectively permeable to univalent cations, but was only very sparingly permeable to anions or divalent cations. Selectivity sequence among group IA cations was Rb+ greater than Cs+ greater than Na+ greater than K+ greater than Li+. The conductance of the membrane was increased up to a value of about 10-2 ohm-1/cm2 with an increase in the concentration of univalent cation, and was drastically depressed by a relatively small increase in the concentration of calcium ion or other divalent cations. The sequence of depressing efficiency among divalent cations was Zn+ greater than Cd2+ greater than Ca2+ greater than Sr2+ greater than Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号