首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method to measure the pressure-flow behavior of the interstitium around large pulmonary vessels is presented. Isolated rabbit lungs were degassed, and the air spaces and vasculature were inflated with a silicon rubber compound. After the rubber had hardened the caudal lobes were sliced into 1-cm-thick slabs. Two chambers were bonded to opposite sides of a slab enclosing a large blood vessel and were filled with saline containing 3 g/dl albumin. The flow through the interstitium surrounding the vessel was measured at a constant driving pressure of 5 cmH2O and at various mean interstitial pressures. Flow decreased with a reduction of mean interstitial pressure and reached a limiting minimum value at approximately -9 cmH2O. The pressure-flow behavior was analyzed under the assumptions that the interstitium is a porous material described by a single permeability constant that increases with hydration and that the expansion of the interstitium with interstitial pressure was due to the elastic response of the surrounding rubber compound. This resulted in an interstitial resistance (reciprocal of permeability constant) of 1.31 +/- 1.03 (SD) cmH2O.h.cm-2 and a ratio of interstitial cuff thickness to vessel radius of 0.022 +/- 0.007 (SD), n = 11. The phenomenon of flow limitation was demonstrated by holding the upstream pressure constant at 15 cmH2O and measuring the flow while the downstream pressure was reduced. The flow was limited at downstream pressures below -10 cmH2O.  相似文献   

2.
The growth rate and albumin concentration of interstitial fluid cuffs were measured in isolated rabbit lungs inflated with albumin solution (3 g/dl) to constant airway (Paw) and vascular pressures for up to 10 h. Cuff size was measured from images of frozen lung sections, and cuff albumin concentration (Cc) was measured from the fluorescence of Evans blue labeled albumin that entered the cuffs from the alveolar space. At 5-cmH2O Paw, cuff size peaked at 1 h and then decreased by 75% in 2 h. The decreased cuff size was consistent with an osmotic absorption into the albumin solution that filled the vascular and alveolar spaces. At 15-cmH2O Paw, cuff size peaked at 0.25 h and then remained constant. Cc rose continuously at both pressures, but was greater at the higher pressure. The increasing Cc with a constant cuff size was modeled as diffusion through epithelial pores. Initial Cc-to-airway albumin concentration ratio was 0.1 at 5-cmH2O Paw and increased to 0.3 at 15 cmH2O, a behavior that indicated an increased permeability with lung inflation. Estimated epithelial reflection coefficient was 0.9 and 0.7, and equivalent epithelial pore radii were 4.5 and 6.1 nm at 5- and 15-cmH2O Paw, respectively. The initial cuff growth occurred against an albumin colloid osmotic pressure gradient because a high interstitial resistance reduced the overall epithelial-interstitial reflection coefficient to the low value of the interstitium.  相似文献   

3.
The role of the lung epithelium in lung fluid balance was studied by ventilating anesthetized sheep with an aerosol of 20 mg of elastase from Pseudomonas aeruginosa (Ps. elastase) to increase lung epithelial permeability without affecting lung endothelial permeability or lung vascular pressures. Ps. elastase had no effect on the lung vascular pressures, the alveolar-arterial PO2 gradient (A-aPO2), the flow or protein concentration of the lung lymph, or the postmortem water volume of the lungs. The morphological alveolar flooding score in these sheep was 2.5 times the control level, but this was only marginally significant. Elevation of the left atrial pressure by 20 cmH2O alone increased the postmortem lung water volume but had no effect on A-aPO2, the alveolar flooding score, or the lung epithelial permeability assessed by the clearance of 99mTc-labeled human serum albumin. Addition of aerosolized Ps. elastase to these sheep had no effect on the total lung water volume, but it caused a redistribution of water into the air spaces, as evidenced by significant increases in the alveolar flooding score and A-aPO2 (P less than 0.01). Elevation of the left atrial pressure by 40 cmH2O without elastase caused the same response as elevation of the left atrial pressure by 20 cmH2O with elastase, except the higher pressure caused a greater increase in the total lung water volume. We conclude that alteration of the integrity of the lung epithelium with aerosolized Ps. elastase causes a redistribution of lung water into the alveoli without affecting the total lung water volume.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We have determined regional lung interstitial fluid albumin concentration in lambs with hydrostatic pulmonary edema and correlated it with lung lymph and plasma albumin concentrations. In anesthetized lambs, we raised left atrial pressure to 25-30 cmH2O by obstructing the aorta and volume overloading the lambs with infusions of Ringer lactate solution (group I, n = 10) or sheep's blood (group II, n = 9). We measured lung lymph flow and concentrations of total protein and albumin in plasma and lymph. With micropipettes we also collected interstitial fluid from interlobular septal pools and peribronchial, periarterial, and perivenous liquid cuffs near the hilum for measurement of albumin concentration by the gel immunoelectrophoresis method. In both groups, lung lymph flow increased with left atrial hypertension, and the ratio of lymph to plasma protein concentration fell. For group I, plasma and lymph albumin concentrations during the phase of hydrostatic edema were 1.97 +/- 0.49 and 1.15 +/- 0.36, respectively; for group II, they were 3.77 +/- 0.42 and 2.43 +/- 0.39 g/dl, respectively. Lung wet-to-dry weight ratio averaged 6.0 in both groups. Albumin concentration was always lower in interstitial fluid than in plasma. In both groups, albumin concentration was similar in periarterial and peribronchial fluid cuffs (group I 1.19 +/- 0.6 and 1.36 +/- 0.79 g/dl, respectively; group II 2.87 +/- 1.05 and 2.33 +/- 0.58 g/dl, respectively) but was always greater than that in perivenous and interlobular septal pools (group I 0.61 +/- 0.21 and 0.67 +/- 0.23 g/dl, respectively; group II 1.76 +/- 0.49 and 1.55 +/- 0.52 g/dl, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have developed a method to characterize fluid transport through the perialveolar interstitium using micropuncture techniques. In 10 experiments we established isolated perfused rat lung preparations. The lungs were initially isogravimetric at 10 cmH2O arterial pressure, 2 cmH2O venous pressure, and 5 cmH2O alveolar pressure. Perialveolar interstitial pressure was determined by micropuncture at alveolar junctions by use of the servo-null technique. Simultaneously a second micropipette was placed in an alveolar junction 20-40 microns away, and a bolus of albumin solution (3.5 g/100 ml) was injected. The resulting pressure transient was recorded for injection durations of 1 and 4 s in nonedematous lungs. The measurements were repeated after gross edema formation induced by elevated perfusion pressure. We model the interstitium as a homogeneous linearly poroelastic material and assume the initial pressure distribution due to the injection to be Gaussian. The pressure decay is inversely proportional to time, with time constant T, where T is a measure of the ratio of interstitial tissue stiffness to interstitial resistance to fluid flow. A linear regression was performed on the reciprocal of the pressure for the decaying portion of the transients to determine T. Comparing pressure transients in nonedematous and edematous lungs, we found that T was 4.0 +/- 1.4 and 1.4 +/- 0.6 s, respectively. We have shown that fluid transport through the pulmonary interstitium on a local level is sensitive to changes in interstitial stiffness and resistance. These results are consistent with the decreased stiffness and resistance in the perialveolar interstitium that accompany increased hydration.  相似文献   

6.
We have determined the combined effects of lung expansion and increased extravascular lung water (EVLW) on the perialveolar interstitial pressure gradient. In the isolated perfused lobe of dog lung, we measured interstitial pressures by micropuncture at alveolar junctions (Pjct) and in adventitia of 30- to 50-microns microvessels (Padv) with stopped blood flow at vascular pressure of 3-5 cmH2O. We induced edema by raising vascular pressures. In nonedematous lobes (n = 6, EVLW = 3.1 +/- 0.3 g/g dry wt) at alveolar pressure of 7 cmH2O, Pjct averaged 0.5 +/- 0.8 (SD) cmH2O and the Pjct-Padv gradient averaged 0.9 +/- 0.5 cmH2O. After increase of alveolar pressure to 23 cmH2O the gradient was abolished in nonedematous lobes, did not change in moderately edematous lobes (n = 9, EVLW = 4.9 +/- 0.6 g/g dry wt), and increased in severely edematous lobes (n = 6, EVLW = 7.6 +/- 1.4 g/g dry wt). Perialveolar interstitial compliance decreased with increase of alveolar pressure. We conclude that increase of lung volume may reduce perialveolar interstitial liquid clearance by abolishing the Pjct-Padv gradient in nonedematous lungs and by compressing interstitial liquid channels in edematous lungs.  相似文献   

7.
To determine the effect of lung inflation and left atrial pressure on the hydrostatic pressure gradient for fluid flux across 20- to 60-microns-diam venules, we isolated and perfused the lungs from newborn rabbits, 7-14 days old. We used the micropuncture technique to measure venular pressures in some lungs and perivenular interstitial pressures in other lungs. For all lungs, we first measured venular or interstitial pressures at a constant airway pressure of 5 or 15 cmH2O with left atrial pressure greater than airway pressure (zone 3). For most lungs, we continued to measure venular or interstitial pressures as we lowered left atrial pressure below airway pressure (zone 2). Next, we inflated some lungs to whichever airway pressure had not been previously used, either 5 or 15 cmH2O, and repeated venular or interstitial pressures under one or both zonal conditions. We found that at constant blood flow a reduction of left atrial pressure below airway pressure always resulted in a reduction in venular pressure at both 5 and 15 cmH2O airway pressures. This suggests that the site of flow limitation in zone 2 was located upstream of venules. When left atrial pressure was constant relative to airway pressure, the transvascular gradient (venular-interstitial pressures) was greater at 15 cmH2O airway pressure than at 5 cmH2O airway pressure. These findings suggest that in newborn lungs edema formation would increase at high airway pressures only if left atrial pressure is elevated above airway pressure to maintain zone 3 conditions.  相似文献   

8.
The sequential pattern of perivascular interstitial cuff growth was studied in liquid-inflated rabbit lungs. Degassed isolated lungs were immersed in a saline bath and inflated to 5 cmH2O transpulmonary pressure with a 3% albumin solution or 3% albumin solution containing hyaluronidase. After inflation times varying between 1 and 7 h, the lungs were frozen in liquid N2. From blocks cut from the frozen lungs, interstitial cuff cross-sectional area was measured as a function of vessel size. No cuffs were observed around vessels less than 0.1 mm diam. At all inflation times, only approximately 50% of vessels less than 0.5 mm diam had cuffs, whereas virtually all vessels greater than 0.5 mm diam had cuffs. Cuff-to-vessel area ratio increased with inflation time, reaching a maximum of 1.0-1.4 by 5 h. The time constant of cuff growth was 1 h for the albumin-inflated lungs and was independent of vessel size. The time constant was reduced by 60% in the hyaluronidase-inflated lungs. The time constant for the response in perivascular interstitial pressure measured by micropuncture near the lung hilum was 2.5 h for albumin-inflated lungs and 1.2 h for hyaluronidase-inflated lungs. Electrical analog models were used to fit the experimental data of cuff growth and to determine interstitial liquid resistance. Interstitial resistance for the albumin-inflated rabbit lungs was 2- and 24-fold greater than values estimated previously for sheep and dog lungs, respectively.  相似文献   

9.
We examined the effects of elastase-induced emphysema on lung volumes, pulmonary mechanics, and airway responses to inhaled methacholine (MCh) of nine male Brown Norway rats. Measurements were made before and weekly for 4 wk after elastase in five rats. In four rats measurements were made before and at 3 wk after elastase; in these same animals the effects of changes in end-expiratory lung volume on the airway responses to MCh were evaluated before and after elastase. Airway responses were determined from peak pulmonary resistance (RL) calculated after 30-s aerosolizations of saline and doubling concentrations of MCh from 1 to 64 mg/ml. Porcine pancreatic elastase (1 IU/g) was administered intratracheally. Before elastase RL rose from 0.20 +/- 0.02 cmH2O.ml-1.s (mean +/- SE; n = 9) to 0.57 +/- 0.06 after MCh (64 mg/ml). A plateau was observed in the concentration-response curve. Static compliance and the maximum increase in RL (delta RL64) were significantly correlated (r = 0.799, P less than 0.01). Three weeks after elastase the maximal airway response to MCh was enhanced and no plateau was observed; delta RL64 was 0.78 +/- 0.07 cmH2O.ml-1.s, significantly higher than control delta RL64 (0.36 +/- 0.7, P less than 0.05). Before elastase, increase of end-expiratory lung volume to functional residual capacity + 1.56 ml (+/- 0.08 ml) significantly reduced RL at 64 mg MCh/ml from 0.62 +/- 0.05 cmH2O.ml-1.s to 0.50 +/- 0.03, P less than 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Pulmonary microvascular and alveolar epithelial permeability were evaluated in vivo by scintigraphic imaging during lung distension. A zone of alveolar flooding was made by instilling a solution containing 99mTc-albumin in a bronchus. Alveolar epithelial permeability was estimated from the rate at which this tracer left the lungs. Microvascular permeability was simultaneously estimated measuring the accumulation of (111)In-transferrin in lungs. Four levels of lung distension (corresponding to 15, 20, 25, and 30 cmH2O end-inspiratory airway pressure) were studied during mechanical ventilation. Computed tomography scans showed that the zone of alveolar flooding underwent the same distension as the contralateral lung during inflation with gas. Increasing lung tissue stretch by ventilation at high airway pressure immediately increased microvascular, but also alveolar epithelial, permeability to proteins. The same end-inspiratory pressure threshold (between 20 and 25 cmH2O) was observed for epithelial and endothelial permeability changes, which corresponded to a tidal volume between 13.7 +/- 4.69 and 22.2 +/- 2.12 ml/kg body wt. Whereas protein flux from plasma to alveolar space ((111)In-transferrin lung-to-heart ratio slope) was constant over 120 min, the rate at which 99mTc-albumin left air spaces decreased with time. This pattern can be explained by changes in alveolar permeability with time or by a compartment model including an intermediate interstitial space.  相似文献   

11.
Cardiogenic pulmonary edema results from increased hydrostatic pressures across the pulmonary circulation. We studied active Na(+) transport and alveolar fluid reabsorption in isolated perfused rat lungs exposed to increasing levels of left atrial pressure (LAP; 0--20 cmH(2)O) for 60 min. Active Na(+) transport and fluid reabsorption did not change when LAP was increased to 5 and 10 cmH(2)O compared with that in the control group (0 cmH(2)O; 0.50 +/- 0.02 ml/h). However, alveolar fluid reabsorption decreased by approximately 50% in rat lungs in which the LAP was raised to 15 cmH(2)O (0.25 +/- 0.03 ml/h). The passive movement of small solutes ((22)Na(+) and [(3)H]mannitol) and large solutes (FITC-albumin) increased progressively in rats exposed to higher LAP. There was no significant edema in lungs with a LAP of 15 cmH(2)O when all active Na(+) transport was inhibited by hypothermia or amiloride (10(-4) M) and ouabain (5 x 10(-4) M). However, when LAP was increased to 20 cmH(2)O, there was a significant influx of fluid (-0.69 +/- 0.10 ml/h), precluding the ability to assess the rate of fluid reabsorption. In additional studies, LAP was decreased from 15 to 0 cmH(2)O in the second and third hours of the experimental protocol, which resulted in normalization of lung permeability to solutes and alveolar fluid reabsorption. These data suggest that in an increased LAP model, the changes in clearance and permeability are transient, reversible, and directly related to high pulmonary circulation pressures.  相似文献   

12.
To describe the flow characteristics of vessels open in zone 1, we perfused isolated rabbit lungs with Tyrode's solution containing 1% albumin, 4% dextran, and papaverine (0.05 mg/ml). Lungs were expanded by negative pleural pressure (Ppl) of -10, -15, -20, and -25 cmH2O. Pulmonary arterial (Ppa) and venous (Ppv) pressures were varied relative to alveolar pressure (PA = 0) and measured 5-10 mm inside the pleura (i) and outside (o) of the lungs. With Ppa(o) at -2.5 cmH2O, we constructed pressure-flow (P-Q) curves at each Ppl by lowering Ppv(o) until Q reached a maximum, indicating fully developed zone 1 choke flow. Maximum flows were negligible until Ppl fell below -10 cmH2O, then increased rapidly at Ppl of -15 and -20 cmH2O, and at Ppl of -25 cmH2O reached about 15 ml.min-1.kg body wt-1. The Ppv(o) at which flow became nearly constant depended on degree of lung inflation and was 5-8 cmH2O more positive than Ppl. As Ppv(o) was lowered below Ppa(o), Ppv(i) remained equal to Ppv(o) until Ppv(i) became fixed at a pressure 2-3 cmH2O more positive than Ppl. At this point the choke flow was therefore located in veins near the pleural boundary. No evidence of choke flow (only ohmic resistance) was seen in the intrapulmonary segment of the vessels remaining open in zone 1. With Ppv(o) held roughly at Ppl, Q could be stopped by lowering Ppa(o), at which time Ppa(i) was several cmH2O above Ppv(i), showing that intrapulmonary vessel closure had occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We investigated whether platelet-activating factor (PAF) increased epithelial or endothelial permeability in isolated-perfused rabbit lungs. PAF was either injected into the pulmonary artery or instilled into the airway of lungs perfused with Tyrode's solution containing 1% bovine serum albumin. The effect of adding neutrophils or platelets to the perfusate was also tested. Perfusion was maintained 20-40 min after adding PAF and then a fluid filtration coefficient (Kf) was determined to assess vascular permeability. At the end of each experiment, one lung was lavaged, and the lavagate protein concentration (BALP) was determined. Wet weight-to-dry weight ratios (W/D) were determined on the other lung. PAF added to the vascular space increased peak pulmonary arterial pressure (Ppa) from 13.5 +/- 3.1 (mean +/- SE) to 24.2 +/- 3.3 cmH2O (P less than 0.05). The effect was amplified by platelets [Ppa to 70.8 +/- 8.0 cmH2O (P less than 0.05)] but not by neutrophils [Ppa to 22.0 +/- 1.4 cmH2O (P less than 0.05)]. Minimal changes in Ppa were observed after instilling PAF into the airway. The Kf, W/D, and BALP of untreated lungs were not increased by injecting PAF into the vasculature or into the air space. The effect of PAF on Kf, W/D, and BALP was unaltered by adding platelets or neutrophils to the perfusate. PAF increases intravascular pressure (at a constant rate of perfusion) but does not increase epithelial or endothelial permeability in isolated-perfused rabbit lungs.  相似文献   

14.
During acute inflammation, neutrophil-mediated injury to epithelium may lead to disruption of epithelial function, including the induction of epithelial apoptosis. Herein, we report the effects of neutrophil transmigration and of purified leukocyte elastase on epithelial cell survival. Neutrophil transmigration induced apoptosis of epithelial cells [control monolayers: 5 +/- 1 cells/25 high-power fields (HPF) vs. neutrophil-treated monolayers: 29 +/- 10 cells/HPF, P < 0.05, n = 3 as determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay] as did low concentrations (0.1 U/ml) of purified leukocyte elastase (control monolayers: 6.4 +/- 2.5% apoptotic vs. elastase: 26.2 +/- 2.9% apoptotic, P < 0.05, as determined by cytokeratin 18 cleavage). Treatment with elastase resulted in decreased mitochondrial membrane potential, release of cytochrome c to the cytosol, and cleavage of caspases-9 and -3 as determined by Western blot analysis, implicating altered mitochondrial membrane permeability as a primary mechanism for elastase-induced apoptosis. Additionally, incubation of epithelial cells with leukocyte elastase resulted in an early increase followed by a decrease in the phosphorylation of epithelial Akt, a serine/threonine kinase important in cell survival. Inhibition of epithelial Akt before elastase treatment potentiated epithelial cell apoptosis, suggesting that the initial activation of Akt represents a protective response by the epithelial cells to the proapoptotic effects of leukocyte elastase. Taken together, these observations suggest that epithelial cells exhibit a dual response to cellular stress imposed by leukocyte elastase with a proapoptotic response mediated via early alterations in mitochondrial membrane permeability countered by activation of the survival pathway involving Akt.  相似文献   

15.
We examined the effect of the air interface on pulmonary vascular resistance (PVR) in zones 1, 2, and 3 by comparing pressure-flow data of air- and liquid-filled isolated rabbit lungs. Lungs were perfused with Tyrode's solution osmotically balanced with 1% albumin and 4% dextran and containing the vasodilator papaverine (0.05 mg/ml). Lung volume was varied by negative pleural pressure form 0 to -25 cmH2O. Pulmonary artery (Ppa) and venous (Ppv) pressures were fixed at various levels relative to the lung base. Alveolar pressure (PA) was always zero, and perfusate flow was measured continuously. In zone 1 Ppa was -2.5 cmH2O and Ppv was -15 cmH2O. In zone 2 Ppa was 10 cmH2O and Ppv was -5 cmH2O. In zone 3 Ppa was 15 cmH2O and Ppv was 8 cmH2O. We found that in zone 1 the interface was essential for perfusion, but in zones 2 and 3 it had much lesser effects. In general, PVR depended almost uniquely (i.e., with small hysteresis) on transpulmonary pressure, whereas a large hysteresis existed between PVR and lung volume. PVR was high in collapsed and especially in atelectatic lungs, fell sharply with moderate inflation, and within the ranges of vascular pressure studied did not rise again toward total lung capacity. These results suggest that in zone 1 the interface maintains the patency of some alveolar vessels, probably in corners. The majority of alveolar septal vessels appears to be exposed directly to PA in zones 2 and 3, because at equal transpulmonary pressure the PVR is similar in the presence or absence of an interface.  相似文献   

16.
Pulmonary microvascular response to LTB4: effects of perfusate composition   总被引:1,自引:0,他引:1  
We examined the effects of leukotriene B4 (LTB4) on pulmonary hemodynamics and vascular permeability using isolated perfused guinea pig lungs and cultured monolayers of pulmonary arterial endothelial cells. In lungs perfused with Ringer solution, containing 0.5 g/100 ml albumin (R-alb), LTB4 (4 micrograms) transiently increased pulmonary arterial pressure (Ppa) and capillary pressure (Pcap). Pulmonary edema developed within 70 min after LTB4 injection despite a normal Pcap. The LTB4 metabolite, 20-COOH-LTB4 (4 micrograms), did not induce hemodynamic and lung weight changes. In lungs perfused with autologous blood hematocrit = 12 +/- 1%; protein concentration = 1.5 +/- 0.2 g/100 ml), the increases in Ppa and Pcap were greater, and both pressures remained elevated. The lung weight did not increase in blood-perfused lungs. In lungs perfused with R-alb (1.5 g/100 ml albumin) to match the blood perfusate protein concentration, LTB4 induced similar hemodynamic changes as R-alb (0.5 g/100 ml) perfusate, but the additional albumin prevented the pulmonary edema. LTB4 (10(-11)-10(-6) M) with or without the addition of neutrophils to the monolayer did not increase endothelial 125I-albumin permeability. Therefore LTB4 induces pulmonary edema when the perfusate contains a low albumin concentration, but increasing the albumin concentration or adding blood cells prevents the edema. The edema is not due to increased endothelial permeability to protein and is independent of hemodynamic alterations. Protection at higher protein-concentration may be the result of LTB4 binding to albumin.  相似文献   

17.
Neutrophil elastase is a mediator common to asthma, chronic obstructive pulmonary disease, and cystic fibrosis and thought to contribute to the pathophysiology of these diseases. Previously, we found that inhaled hyaluronan blocked elastase-induced bronchoconstriction in allergic sheep through its control of tissue kallikrein. Here, we extend those studies by determining if inhaled hyaluronan can protect against the elastase-induced depression in tracheal mucus velocity, a surrogate marker of whole lung mucociliary clearance. We measured tracheal mucus velocity in allergic sheep before, and sequentially for 6 h after, aerosol challenge with porcine pancreatic elastase alone and after pretreatment with 1.5 or 6 mg aerosolized hyaluronan. Elastase (2.55 U) decreased tracheal mucus velocity. Pretreatment with 6 mg, but not 1.5 mg, hyaluronan inhibited the elastase-induced decrease in tracheal mucus velocity. Hyaluronan (6 mg) given 1 h after elastase challenge was ineffective, suggesting the involvement of secondary mediators. The elastase-induced depression in mucus transport appeared to be mediated, in part, by reactive oxygen species and bradykinin because pretreatment with either aerosolized catalase (38 mg/3 ml) or the bradykinin B2-receptor antagonist HOE140 (400 nM/kg) was also effective in blocking the response. These latter two findings are consistent with oxygen radical-induced degradation of hyaluronan with concomitant loss of its regulatory effect on tissue kallikrein, resulting in kinin generation. This hypothesis is supported by the demonstration that hyaluronan failed to block the oxygen radical-induced fall in tracheal mucus velocity resulting from xanthine-xanthine oxidase challenge and that inhaled bradykinin itself can slow mucociliary transport.  相似文献   

18.
Asymmetric [14C]albumin transport across bullfrog alveolar epithelium   总被引:1,自引:0,他引:1  
Bullfrog lungs were prepared as planar sheets and bathed with Ringer solution in Ussing chambers. In the presence of a constant electrical gradient (20, 0, or -20 mV) across the tissue, 14C-labeled bovine serum albumin or inulin was instilled into the upstream reservoir and the rate of appearance of the tracer in the downstream reservoir was monitored. Two lungs from the same animal were used to determine any directional difference in tracer fluxes. An apparent permeability coefficient was estimated from a relationship between normalized downstream radioactivities and time. Results showed that the apparent permeability of albumin in the alveolar to pleural direction across the alveolar epithelial barrier is 2.3 X 10(-7) cm/s, significantly greater (P less than 0.0005) than that in the pleural to alveolar direction (5.3 X 10(-8) cm/s) when the tissue was short circuited. Permeability of inulin, on the other hand, did not show any directional dependence and averaged 3.1 X 10(-8) cm/s in both directions. There was no effect on radiotracer fluxes permeabilities of different electrical gradients across the tissue. Gel electrophoretograms and corresponding radiochromatograms suggest that the large and asymmetric isotope fluxes are not primarily due to digestion or degradation of labeled molecules. Inulin appears to traverse the alveolar epithelial barrier by simple diffusion through hydrated paracellular pathways. On the other hand, [14C]albumin crosses the alveolar epithelium more rapidly than would be expected by simple diffusion. These asymmetric and large tracer fluxes suggest that a specialized mechanism is present in alveolar epithelium that may be capable of helping to remove albumin from the alveolar space.  相似文献   

19.
A study was conducted to determine whether differences in the concentrations of large molecules between the air space and perfusate solutions altered the rates at which fluid was reabsorbed from isolated fluid-filled perfused rat lungs. Four groups of experiments were conducted: 1) 5 g/dl albumin in the air spaces and perfusate, 2) 15 g/dl albumin in the air space and 5 g/dl albumin in the perfusate, 3) 5 g/dl albumin in the air space and 15 g/dl albumin in the perfusate, and 4) a mixture of 5 g/dl albumin and 7 g/dl Dextran 70 in the air spaces and 5 g/dl albumin in the perfusate. Fluid reabsorption was determined by following the concentration of albumin labeled with Evans blue (T-1824) in the air space and perfusate compartments. Because leakage of protein between the air space and perfusate compartments is very slow, increases in T-1824 concentrations in the air spaces indicated loss of fluid from this compartment, whereas decreases in these concentrations in the perfusate compartment provided evidence of fluid transport into the vasculature. Approximately 30% of the air space fluid was reabsorbed in a 2-h period, and virtually all of this fluid reached the perfusate compartment. Despite oncotic differences that ranged from -65 to 65 Torr, variations in air space or perfusate albumin concentrations did not have a significant effect on this process. A 30% decrease in fluid reabsorption was observed when dextran was in the air space solution, but this decrease did not appear to be due to the oncotic properties of this solution because albumin did not have a measurable effect on reabsorption.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Importance of vasoconstriction in lipid mediator-induced pulmonary edema   总被引:2,自引:0,他引:2  
Lipid mediators of inflammation cause pulmonary edema, yet it is unclear to what degree hemodynamic alterations or increased vascular permeability contribute to lung edema formation. The isolated rat lung preparation was used to examine the effect of leukotriene C4 (LTC4) and platelet-activating factor (PAF) on pulmonary arterial pressure (Ppa), lung microvascular pressure (Pmv), lung wet-to-dry weight ratio, and the 125I-albumin escape index. We first defined the response of the isolated rat lung perfused with protein-free salt solution to hydrodynamic stress by raising the lung outflow pressure. Sustained elevation of the lung outflow pressure less than 5.5 cmH2O (4.01 mmHg) caused a negligible increase in Ppa and wet-to-dry lung weight ratio. Elevation of outflow pressures greater than 7.5 cmH2O (5.4 mmHg) increased the vascular albumin escape index more than the lung wet-to-dry weight ratio. Dibutyryl adenosine 3',5'-cyclic monophosphate (db-cAMP) inhibited the increase in albumin escape index because of increased lung outflow pressure, suggesting perhaps a pressure-independent microvascular membrane effect of db-cAMP. Both LTC4 (2-micrograms bolus) and PAF (2-2,000 ng/ml perfusate) increased the albumin escape index in association with increases in Ppa and Pmv. Because the increased albumin escape index after LTC4 or PAF injection was largely accounted for by the increased vascular pressures and because db-cAMP and papaverine inhibited the rise in vascular pressures and in the albumin escape index, we conclude that vasoconstriction is an important contributor to LTC4- and PAF-induced edema formation in rat lungs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号