首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
F Bourgoin  A Pluvinet  B Gintz  B Decaris  G Guédon 《Gene》1999,233(1-2):151-161
A 32.5kb variable locus of the Streptococcus thermophilus CNRZ368 chromosome, the eps locus, contains 25 ORF and seven insertion sequences (IS). The putative products of 17 ORF are related to proteins involved in the synthesis of polysaccharides in various bacteria. The two distal regions and a small central region of the eps locus are constant and present in all or almost all of the S. thermophilus strains tested. The other regions are variable and present in only some S. thermophilus strains tested, particularly in the closely related strains CNRZ368 and A054. A 13.6kb variable region of the eps locus of S. thermophilus CNRZ368 contains two ORF that are almost identical to epsL and orfY of the eps locus of Lactococcus lactis NIZOB40 and seven IS belonging to four different families, ISS1, IS981, IS1193 and IS1194. Five of these sequences were probably acquired by horizontal transfer from L. lactis (Bourgoin, F., et al., 1996. Gene 178, 15-23). Three probes of this 13.6kb region hybridized with the DNA of several L. lactis strains tested. A specific probe for another sequence within the S. thermophilus eps locus, epsF, hybridized with the DNA of one of the L. lactis strains tested. Sequence comparisons also suggest that five ORF of the eps locus have a mosaic structure and probably result from recombinations between sequences that are 10 to 50% divergent. The chimeric structure of the eps locus suggests a very complex evolution. This evolution probably involves both the acquisition of the 13.6kb region from L. lactis by horizontal transfer and exchanges within the S. thermophilus species.  相似文献   

4.
The cse gene of Streptococcus thermophilus encodes an extracytoplasmic protein involved in cell segregation. The Cse protein consists of two putative domains: a cell wall attachment LysM domain and a catalytic CHAP domain. These two domains are spaced by an interdomain linker, known as Var-Cse, previously reported to be highly divergent between two S. thermophilus strains. The aim of this study was to assess the extent of this intraspecific variability and the functional involvement of the var-cse region in cell segregation. Analysis of the var-cse sequence of 19 different strains allowed detection of 11 different alleles, varying from 390 bp to 543 bp, all containing interspersed and tandem nucleotides repeats. Overall, 11 different repeat units were identified and some series of these small repeats, named supermotifs, form large repeats. Results suggested that var-cse evolved by deletion of all or part of the repeats and by duplication of repeats or supermotifs. Moreover, sequence analysis of the whole cse locus revealed that the cse ORF is mosaic suggesting that var-cse polymorphism resulted from horizontal transfer. The partial deletion of the var-cse region of the S. thermophilus strain CNRZ368 led to the lengthening of the number of cells per streptococcal chain, indicating that this region is required for full cell segregation in S. thermophilus strain CNRZ368.  相似文献   

5.
6.
Streptococcus thermophilus bacteria are used as a starter in the fermentation of yogurts and many cheeses. To construct mutants of S. thermophilus CNRZ368, the use of the plasmid pGh9:ISS1 was considered. This plasmid is known to be a good tool for insertional mutagenesis in gram-positive bacteria, owing to its ability to integrate in the genome by a mechanism of replicative transposition. However, the presence of three endogenous ISS1 copies in the genome of S. thermophilus CNRZ368 and the possible occurrence of homologous recombination could reduce the efficiency of pGh9:ISS1 as a tool for generating mutants. To address this question, the ability of pGh9:ISS1 to transpose randomly in the genome of strain CNRZ368 was investigated. The results of our experiments indicated that: (i) the frequency of transposition of ISS1 was high, approximately 2 x 10(-2), in S. thermophilus CNRZ368; (ii) the integration of multiple tandem copies of the plasmid was frequent; (iii) homologous recombination events between ISS1 were not predominant; and (iv) plasmid pGh9:ISS1 transposed randomly around the S. thermophilus CNRZ368 chromosome. In addition, we describe the strategy used to localize the pGh9:ISS1 insertion locus on the physical map of strain CNRZ368 and the method used to clone the regions flanking this insertion site, especially when multiple copies of the plasmid were integrated in tandem.  相似文献   

7.
A novel type II restriction and modification (R-M) system, Sth368I, which confers resistance to phiST84, was found in Streptococcus thermophilus CNRZ368 but not in the very closely related strain A054. Partial sequencing of the integrative conjugative element ICESt1, carried by S. thermophilus CNRZ368 but not by A054, revealed a divergent cluster of two genes, sth368IR and sth368IM. The protein sequence encoded by sth368IR is related to the type II endonucleases R.LlaKR2I and R.Sau3AI, which recognize and cleave the sequence 5'-GATC-3'. The protein sequence encoded by sth368IM is very similar to numerous type II 5-methylcytosine methyltransferases, including M.LlaKR2I and M.Sau3AI. Cell extracts of CNRZ368 but not A054 were found to cleave at the GATC site. Furthermore, the C residue of the sequence 5'-GATC-3' was found to be methylated in CNRZ368 but not in A054. Cloning and integration of a copy of sth368IR and sth368IM in the A054 chromosome confers on this strain phenotypes similar to those of CNRZ368, i.e., phage resistance, endonuclease activity of cell extracts, and methylation of the sequence 5'-GATC-3'. Disruption of sth368IR removes resistance and restriction activity. We conclude that ICESt1 encodes an R-M system, Sth368I, which recognizes the sequence 5'-GATC-3' and is related to the Sau3AI and LlaKR2I restriction systems.  相似文献   

8.
9.
Abstract Homologous rDNA probes were used to study the number of rRNA genes in a five-generation genealogy of Streptococcus thermophilus CNRZ368. Whereas the CNRZ368 strain contained six rRNA loci, four independant mutants with five rrn loci were obtained. The deletion frequency was 5 × 10−2. Molecular analysis provided identical hybridization patterns for all the deletion mutants. The deletion was shown to occur within the two close rRNA loci, rrnD and rrnE , probably due to a homologous recombination event and to give rise to a hybrid rrnD/E locus.  相似文献   

10.
Centromere-specific H3-like proteins (CenH3s) are conserved across the eukaryotic kingdom and are required for packaging centromere DNA into a specialized chromatin structure required for kinetochore assembly. Cse4 is the CenH3 protein of the budding yeast Saccharomyces cerevisiae. Like all CenH3 proteins, Cse4 consists of a conserved histone fold domain (HFD) and a divergent N terminus (NT). The Cse4 NT contains an essential domain designated END (for essential N-terminal domain); deletion of END is lethal. To investigate the role of the Cse4 NT in centromere targeting, a series of deletion alleles (cse4DeltaNT) were analyzed. No part of the Cse4 NT was required to target mutant proteins to centromere DNA in the presence of functional Cse4. A Cse4 degron strain was used to examine targeting of a Cse4DeltaNT protein in the absence of wild-type Cse4. The END was not required for centromere targeting under these conditions, confirming that the HFD confers specificity of Cse4 centromere targeting. Surprisingly, overexpression of the HFD bypassed the requirement for the END altogether, and viable S. cerevisiae strains in which the cells express only the Cse4 HFD and six adjacent N-terminal amino acids (Cse4Delta129) were constructed. Despite the complete absence of the NT, mitotic chromosome loss in the cse4Delta129 strain increased only 6-fold compared to a 15-fold increase in strains overexpressing wild-type Cse4. Thus, when overexpressed, the Cse4 HFD is sufficient for centromere function in S. cerevisiae, and no posttranslational modification or interaction of the NT with other kinetochore component(s) is essential for accurate chromosome segregation in budding yeast.  相似文献   

11.
12.
The 35.5-kb ICESt1 element of Streptococcus thermophilus CNRZ368 is bordered by a 27-bp repeat and integrated into the 3' end of a gene encoding a putative fructose-1,6-biphosphate aldolase. This element encodes site-specific integrase and excisionase enzymes related to those of conjugative transposons Tn5276 and Tn5252. The integrase was found to be involved in a site-specific excision of a circular form. ICESt1 also encodes putative conjugative transfer proteins related to those of the conjugative transposon Tn916. Therefore, ICESt1 could be or could be derived from an integrative conjugative element.  相似文献   

13.
Insertional mutagenesis was used to isolate clones from Streptococcus thermophilus CNRZ368 that were modified in their abilities to tolerate oxidative stress. During this process, two menadione-sensitive clones (6G4 and 18C3) were found to display abnormal cell morphologies and distorted chain topologies and were further studied. Molecular characterization of both 6G4 and 18C3 mutants indicated that they were disrupted in open reading frames homologous to rodA and pbp2b, respectively. Both genes encoded proteins in Escherichia coli that were described as being implicated in peptidoglycan synthesis during the process of cell elongation and to function in determining the rod shape of the cell. This work reports a possible connection between peptidoglycan biosynthesis and oxidative stress defense in S. thermophilus CNRZ368.  相似文献   

14.
Cse4p is an evolutionarily conserved histone H3-like protein that is thought to replace H3 in a specialized nucleosome at the yeast (Saccharomyces cerevisiae) centromere. All known yeast, worm, fly, and human centromere H3-like proteins have highly conserved C-terminal histone fold domains (HFD) but very different N termini. We have carried out a comprehensive and systematic mutagenesis of the Cse4p N terminus to analyze its function. Surprisingly, only a 33-amino-acid domain within the 130-amino-acid-long N terminus is required for Cse4p N-terminal function. The spacing of the essential N-terminal domain (END) relative to the HFD can be changed significantly without an apparent effect on Cse4p function. The END appears to be important for interactions between Cse4p and known kinetochore components, including the Ctf19p/Mcm21p/Okp1p complex. Genetic and biochemical evidence shows that Cse4p proteins interact with each other in vivo and that nonfunctional cse4 END and HFD mutant proteins can form functional mixed complexes. These results support different roles for the Cse4p N terminus and the HFD in centromere function and are consistent with the proposed Cse4p nucleosome model. The structure-function characteristics of the Cse4p N terminus are relevant to understanding how other H3-like proteins, such as the human homolog CENP-A, function in kinetochore assembly and chromosome segregation.  相似文献   

15.
16.
Cse4p is a structural component of the core centromere of Saccharomyces cerevisiae and is a member of the conserved CENP-A family of specialized histone H3 variants. The histone H4 allele hhf1-20 confers defects in core centromere chromatin structure and mitotic chromosome transmission. We have proposed that Cse4p and histone H4 interact through their respective histone fold domains to assemble a nucleosome-like structure at centromeric DNA. To test this model, we targeted random mutations to the Cse4p histone fold domain and isolated three temperature-sensitive cse4 alleles in an unbiased genetic screen. Two of the cse4 alleles contain mutations at the Cse4p-H4 interface. One of these requires two widely separated mutations demonstrating long-range cooperative interactions in the structure. The third cse4 allele is mutated at its helix 2-helix 3 interface, a region required for homotypic H3 fold dimerization. Overexpression of wild-type Cse4p and histone H4 confer reciprocal allele-specific suppression of cse4 and hhf1 mutations, providing strong evidence for Cse4p-H4 protein interaction. Overexpression of histone H3 is dosage lethal in cse4 mutants, suggesting that histone H3 competes with Cse4p for histone H4 binding. However, the relative resistance of the Cse4p-H4 pathway to H3 interference argues that centromere chromatin assembly must be highly regulated.  相似文献   

17.
The centromeric histone H3 variant (CenH3) is essential for chromosome segregation in eukaryotes. We identify posttranslational modifications of Saccharomyces cerevisiae CenH3, Cse4. Functional characterization of cse4 phosphorylation mutants shows growth and chromosome segregation defects when combined with kinetochore mutants okp1 and ame1. Using a phosphoserine-specific antibody, we show that the association of phosphorylated Cse4 with centromeres increases in response to defective microtubule attachment or reduced cohesion. We determine that evolutionarily conserved Ipl1/Aurora B contributes to phosphorylation of Cse4, as levels of phosphorylated Cse4 are reduced at centromeres in ipl1 strains in vivo, and in vitro assays show phosphorylation of Cse4 by Ipl1. Consistent with these results, we observe that a phosphomimetic cse4-4SD mutant suppresses the temperature-sensitive growth of ipl1-2 and Ipl1 substrate mutants dam1 spc34 and ndc80, which are defective for chromosome biorientation. Furthermore, cell biology approaches using a green fluorescent protein–labeled chromosome show that cse4-4SD suppresses chromosome segregation defects in dam1 spc34 strains. On the basis of these results, we propose that phosphorylation of Cse4 destabilizes defective kinetochores to promote biorientation and ensure faithful chromosome segregation. Taken together, our results provide a detailed analysis, in vivo and in vitro, of Cse4 phosphorylation and its role in promoting faithful chromosome segregation.  相似文献   

18.
Cell separation is dependent on cell wall hydrolases that cleave the peptidoglycan shared between daughter cells. In Streptococcus thermophilus , this step is performed by the Cse protein whose depletion resulted in the formation of extremely long chains of cells. Cse, a natural chimeric enzyme created by domain shuffling, carries at least two important domains for its activity: the LysM expected to be responsible for the cell wall-binding and the CHAP domain predicted to contain the active centre. Accordingly, the localization of Cse on S. thermophilus cell surface has been undertaken by immunogold electron and immunofluorescence microscopies using of antibodies raised against the N-terminal end of this protein. Immunolocalization shows the presence of the Cse protein at mature septa. Moreover, the CHAP domain of Cse exhibits a cell wall lytic activity in zymograms performed with cell walls of Micrococcus lysodeikticus , Bacillus subtilis and S. thermophilus . Additionally, RP-HPLC analysis of muropeptides released from B. subtilis and S. thermophilus cell wall after digestion with the CHAP domain shows that Cse is an endopeptidase. Altogether, these results suggest that Cse is a cell wall hydrolase involved in daughter cell separation of S. thermophilus .  相似文献   

19.
20.
Aims: To develop a general method for site‐directed mutagenesis in the dairy starter strain Streptococcus thermophilus LMG 18311 which does not depend on antibiotic‐resistance genes or other selection markers for the identification of transformants. Methods and Results: In a previous study, we demonstrated that Strep. thermophilus LMG 18311 can be made competent for natural genetic transformation by overexpression of the alternative sigma factor ComX. In the present study, we wanted to investigate whether the natural transformation mechanism of Strep. thermophilus LMG 18311 is efficient enough to make it feasible to perform site‐directed mutagenesis in this strain without the use of a selection marker. Competent bacteria were mixed with a DNA fragment engineered to contain a nonsense and a frameshift mutation in the middle of the target gene (lacZ) and subsequently seeded on agar plates. By performing colony‐lift hybridization using a digoxigenin‐labelled oligonucleotide probe, we succeeded in identifying transformants containing the sought after mutation. Conclusions: By exploiting the natural transformability of Strep. thermophilus LMG 18311 and standard molecular methods, we have demonstrated that the genome of this bacterium can be altered at preselected sites without introduction of any foreign DNA. Significance and Impact of the Study: A food‐grade site‐directed mutagenesis system has been developed for Strep. thermophilus LMG 18311 that can be used by the dairy industry to construct starter strains with novel and/or improved properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号