首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cse gene of Streptococcus thermophilus encodes an extracytoplasmic protein involved in cell segregation. The Cse protein consists of two putative domains: a cell wall attachment LysM domain and a catalytic CHAP domain. These two domains are spaced by an interdomain linker, known as Var-Cse, previously reported to be highly divergent between two S. thermophilus strains. The aim of this study was to assess the extent of this intraspecific variability and the functional involvement of the var-cse region in cell segregation. Analysis of the var-cse sequence of 19 different strains allowed detection of 11 different alleles, varying from 390 bp to 543 bp, all containing interspersed and tandem nucleotides repeats. Overall, 11 different repeat units were identified and some series of these small repeats, named supermotifs, form large repeats. Results suggested that var-cse evolved by deletion of all or part of the repeats and by duplication of repeats or supermotifs. Moreover, sequence analysis of the whole cse locus revealed that the cse ORF is mosaic suggesting that var-cse polymorphism resulted from horizontal transfer. The partial deletion of the var-cse region of the S. thermophilus strain CNRZ368 led to the lengthening of the number of cells per streptococcal chain, indicating that this region is required for full cell segregation in S. thermophilus strain CNRZ368.  相似文献   

2.
The extracellular proteases of Aspergillus nidulans are produced in response to limitation of carbon, nitrogen, or sulfur, even in the absence of exogenous protein. Mutations in the A. nidulans xprF and xprG genes have been shown to result in elevated levels of extracellular protease in response to carbon limitation. The xprF gene was isolated and sequence analysis indicates that it encodes a 615-amino-acid protein, which represents a new type of fungal hexokinase or hexokinase-like protein. In addition to their catalytic role, hexokinases are thought to be involved in triggering carbon catabolite repression. Sequence analysis of the xprF1 and xprF2 alleles showed that both alleles contain nonsense mutations. No loss of glucose or fructose phosphorylating activity was detected in xprF1 or xprF2 mutants. There are two possible explanations for this observation: (1) the xprF gene may encode a minor hexokinase or (2) the xprF gene may encode a protein with no hexose phosphorylating activity. Genetic evidence suggests that the xprF and xprG genes are involved in the same regulatory pathway. Support for this hypothesis was provided by the identification of a new class of xprG(-) mutation that suppresses the xprF1 mutation and results in a protease-deficient phenotype.  相似文献   

3.
Summary The streptococcal cloning vector pIL253 (4.96-kbp, Emr) was used to introduce the Streptomyces antibioticus tyrosinase (mel) gene (1.56-kbp) into S. thermophilus, an important microbe in dairy fermentations. Electrotransformants of S. thermophilus ST128 contained 6.51-kbp recombinant plasmids which probed positively in Southern hybridizations with the biotin-labeled mel fragment. Western blots of cell extracts resolved by SDS-PAGE showed the presence of a ca. 31-kDa band thus confirming the synthesis of tyrosinase protein by genetic transformants.  相似文献   

4.
FPA is a gene that regulates flowering time in Arabidopsis via a pathway that is independent of daylength (the autonomous pathway). Mutations in FPA result in extremely delayed flowering. FPA was identified by means of positional cloning. The predicted FPA protein contains three RNA recognition motifs in the N-terminal region. FPA is expressed most strongly in developing tissues, similar to the expression of FCA and LUMINIDEPENDENS, two components of the autonomous pathway previously identified. Overexpression of FPA in Arabidopsis causes early flowering in noninductive short days and creates plants that exhibit a more day-neutral flowering behavior.  相似文献   

5.
To investigate how roots respond to directional cues, we characterized a T-DNA-tagged Arabidopsis mutant named sku5 in which the roots skewed and looped away from the normal downward direction of growth on inclined agar surfaces. sku5 roots and etiolated hypocotyls were slightly shorter than normal and exhibited a counterclockwise (left-handed) axial rotation bias. The surface-dependent skewing phenotype disappeared when the roots penetrated the agar surface, but the axial rotation defect persisted, revealing that these two directional growth processes are separable. The SKU5 gene belongs to a 19-member gene family designated SKS (SKU5 Similar) that is related structurally to the multiple-copper oxidases ascorbate oxidase and laccase. However, the SKS proteins lack several of the conserved copper binding motifs characteristic of copper oxidases, and no enzymatic function could be assigned to the SKU5 protein. Analysis of plants expressing SKU5 reporter constructs and protein gel blot analysis showed that SKU5 was expressed most strongly in expanding tissues. SKU5 was glycosylated and modified by glycosyl phosphatidylinositol and localized to both the plasma membrane and the cell wall. Our observations suggest that SKU5 affects two directional growth processes, possibly by participating in cell wall expansion.  相似文献   

6.
《Gene》1997,203(2):89-93
Recent studies in yeast, Drosophila and humans have revealed the existence of a highly conserved gene encoding a novel protein, Dodo, comprised of four modules: a WW domain, involved in protein–protein interactions, a peptidyl–prolyl cis–trans isomerase (PPIase) domain belonging to a recently described third family of PPIases involved in protein folding and unfolding, a nuclear localization motif and finally, a long, surface-exposed α-helix that is likely to be involved in binding to a cell cycle serine/threonine kinase. The genetic, molecular, biochemical and structural data are reviewed in the context of the potential biological properties of this new protein family.  相似文献   

7.
8.
Cytokinesis (septation) in the fungus Aspergillus nidulans occurs through the formation of a transient actin ring at the incipient division site. Temperature-sensitive mutations in the sepA gene prevent septation and cause defects in the maintenance of cellular polarity, without affecting growth and nuclear division. The sepA gene encodes a member of the growing family of FH1/2 proteins, which appear to have roles in morphogenesis and cytokinesis in organisms such as yeast and Drosophila. Results from temperature shift and immunofluorescence microscopy experiments strongly suggest that sepA function requires a preceding mitosis and that sepA acts prior to actin ring formation. Deletion mutants of sepA exhibit temperature-sensitive growth and severe delays in septation at the permissive temperature, indicating that expression of another gene may compensate for the loss of sepA. Conidiophores formed by sepA mutants exhibit abnormal branching of the stalk and vesicle. These results suggest that sepA interacts with the actin cytoskeleton to promote formation of the actin ring during cytokinesis and that sepA is also required for maintenance of cellular polarity during hyphal growth and asexual morphogenesis.  相似文献   

9.
10.
Controlling microtubule dynamics and spatial organization is a fundamental requirement of eukaryotic cell function. Members of the ORBIT/MAST/CLASP family of microtubule-associated proteins associate with the plus ends of microtubules, where they promote the addition of tubulin subunits into attached kinetochore fibers during mitosis and stabilize microtubules in the vicinity of the plasma membrane during interphase. To date, nothing is known about their function in plants. Here, we show that the Arabidopsis thaliana CLASP protein is a microtubule-associated protein that is involved in both cell division and cell expansion. Green fluorescent protein-CLASP localizes along the full length of microtubules and shows enrichment at growing plus ends. Our analysis suggests that CLASP promotes microtubule stability. clasp-1 T-DNA insertion mutants are hypersensitive to microtubule-destabilizing drugs and exhibit more sparsely populated, yet well ordered, root cortical microtubule arrays. Overexpression of CLASP promotes microtubule bundles that are resistant to depolymerization with oryzalin. Furthermore, clasp-1 mutants have aberrant microtubule preprophase bands, mitotic spindles, and phragmoplasts, indicating a role for At CLASP in stabilizing mitotic arrays. clasp-1 plants are dwarf, have significantly reduced cell numbers in the root division zone, and have defects in directional cell expansion. We discuss possible mechanisms of CLASP function in higher plants.  相似文献   

11.
In Streptococcus thermophilus, the eps clusters involved in exopolysaccharide (EPS) biosynthesis are very polymorphic, nevertheless they all contain a highly conserved sequence corresponding to that of orf14.9. This open reading frame (ORF) is transcribed in a reverse direction with respect to eps genes. Amino acid sequence analysis showed a possible transmembrane location of the putative Orf14.9 protein but did not permit a proposed function. Insertional mutants of orf14.9 were obtained in strains NST2280 and A054 of S. thermophilus. EPS yields of these mutants are similar to those of their respective wild strains, suggesting that orf14.9 does not modify the quantity of produced EPS. Growth parameter determination for wild strains and their respective mutants showed that orf14.9 is involved in the cell growth of S. thermophilus.  相似文献   

12.
Human hemoglobin (Hb) is a metalloprotein used by pathogens as a source of iron during invasive process. It can support the Helicobacter pylori growth and several proteins are induced during iron starvation. However, the identity of those proteins remains unknown. In this work, by in silico analysis we identified FrpB2 in H. pylori genome. This protein was annotated as an iron-regulated outer membrane protein. Multiple amino acid alignment showed the motifs necessary for Hb-binding. We demonstrate the ability of FrpB2 to bind Hb by overlay experiments. In addition, the overexpression of this gene allowed the cell growth in media without free iron but supplemented with Hb. All these results support the idea that frpB2 is a gene of H. pylori involved in iron acquisition when Hb is used as a sole iron source.  相似文献   

13.
We describe the characterization of a mutant strain of Streptococcus pneumoniae previously isolated on the basis of its sensitivity to Methyl Methane Sulphonate (MMS). The mutant strain also exhibited increased sensitivity to UV light and to X-rays, together with a reduced capacity for recombination and Hex-mediated generalized mismatch repair. We show that the original mutant contains two unlinked mutations in the mmsA and in the pms genes. The mmsA wild-type region was cloned and the nucleotide sequence of the mmsA gene was determined. mmsA encodes a polypeptide of 671 amino acids related to a large family of DNA–RNA helicases, with the highest similarity to Escheri-chia coli RecG, a protein involved in the branch migration of Holliday junctions. A plasmid carrying the intact mmsA coding region was shown to restore UV resistance to E. coli recG mutant strains. An mmsA -null mutant constructed by insertion of a chloramphenicol-resistance gene exhibited a 25-fold reduction in recombination during transformation. We suggest that MmsA recognizes and branch migrates three-strand transformation intermediates to extend donor–recipient heteroduplex regions. The mmsA -null mutant exhibited the other phenotypes of the original mutant, apart from mismatch-repair deficiency and, in addition, an alteration in colony-forming ability was noticed. In the pms mutant background, all phenotypes caused by the mmsA mutation were attenuated. Therefore, the pms mutation, although it affected mismatch repair and, to some extent, DNA repair and recombination, acted as a suppressor of the mmsA mutation.  相似文献   

14.
The gene pgaM is involved in the biosynthesis of an angucycline-type polyketide antibiotic in Streptomyces sp. PGA64. It encodes a two-domain polypeptide consisting of an N-terminal flavoprotein oxygenase and a C-terminal short-chain alcohol dehydrogenase/reductase, which are fused together at the translational level as a result of end codon deletion. Here we show that translation also initiates at an internal start codon that enables independent expression of a separate reductase subunit, PgaMred. This confirms that the gene exhibits a rare viral-like arrangement of two overlapping reading frames that allows simultaneous expression of two alternative forms of the protein. Together, these two proteins associate to form a stable non-covalent complex, the native form of PgaM. The reductase subunit PgaMred is shown to provide enzyme stability and to affect the redox state of the oxygenase domain FAD. Finally, a model for the quaternary structure of the complex that explains the necessity for a nested gene system and the unusual behaviour of the protein subunits in vitro is presented.  相似文献   

15.
16.
Several pGEM5- and pUC19-derived plasmids containing a selectable erythromycin resistance marker were integrated into the chromosome of Streptococcus thermophilus at the loci of the lactose-metabolizing genes. Integration occurred via homologous recombination and resulted in cointegrates between plasmid and genome, flanked by the homologous DNA used for integration. Selective pressure on the plasmid-located erythromycin resistance gene resulted in multiple amplifications of the integrated plasmid. Release of this selective pressure, however, gave way to homologous resolution of the cointegrate structures. By integration and subsequent resolution, we were able to replace the chromosomal lacZ gene with a modified copy carrying an in vitro-generated deletion. In the same way, we integrated a promoterless chloramphenicol acetyltransferase (cat) gene between the chromosomal lacS and lacZ genes of the lactose operon. The inserted cat gene became a functional part of the operon and was expressed and regulated accordingly. Selective pressure on the essential lacS and lacZ genes under normal growth conditions in milk ensures the maintenance and expression of the integrated gene. As there are only minimal repeated DNA sequences (an NdeI site) flanking the inserted cat gene, it was stably maintained even in the absence of lactose, i.e., when grown on sucrose or glucose. The methodology represents a stable system in which to express and regulate foreign genes in S. thermophilus, which could qualify in the future for an application with food.  相似文献   

17.
18.
19.
Domains belonging to the immunoglobulin-like fold are responsible for a wide variety of molecular recognition processes. Here we describe a new family of domains, the HYR family, which is predicted to belong to this fold, and which appears to be involved in cellular adhesion. HYR domains were identified in several eukaryotic proteins, often associated with Complement Control Protein (CCP) modules or arranged in multiple copies. Our analysis provides a sequence and structural basis for understanding the role of these domains in interaction mechanisms and leads to further characterization of heretofore undescribed repeated domains with similar folds found in several bacterial proteins involved in enzymatic activities (some chitinases) or in cell surface adhesion (streptococcal C-alpha antigen).  相似文献   

20.
The ROX3 gene was identified during a hunt for mutants with increased expression of the heme-regulated CYC7 gene, which encodes the minor species of cytochrome c in the yeast Saccharomyces cerevisiae. The rox3 mutants caused a 10-fold increase in CYC7 expression both in the presence and absence of heme, had slightly increased anaerobic expression of the heme-activated CYC1 gene, and caused decreases in the anaerobic expression of the heme-repressed ANB1 gene and the aerobic expression of its heme-induced homolog. The wild-type ROX3 gene was cloned, and the sequence indicated that it encodes a 220-amino-acid protein. This protein is essential; deletion of the coding sequence was lethal. The coding sequence for beta-galactosidase was fused to the 3' end of the ROX3 coding sequence, and the fusion product was found to be localized in the nucleus, strongly suggesting that the wild-type protein carries out a nuclear function. Mutations in the rox3 gene showed an interesting pattern of intragenic complementation. A deletion of the 5' coding region complemented a nonsense mutation at codon 128 but could not prevent the lethality of the null mutation. These results suggest that the amino-terminal domain is required for an essential function, while the carboxy-terminal domain can be supplied in trans to achieve the wild-type expression of CYC7. Finally, RNA blots demonstrated that the ROX3 mRNA was expressed at higher levels anaerobically but was not subject to heme repression. The nuclear localization and the lack of viability of null mutants suggest that the ROX3 protein is a general regulatory factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号