首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Aequorin is a calcium-dependent bioluminescent protein isolated from the hydromedusan Aequorea victoria. The gene for aequorin has been cloned and overexpressed in Escherichia coli [Prasher et al. (1985) Biochem. Biophys. Res. Commun. 126, 1259; Prasher et al. (1987) Biochemistry 26, 1326]. Higher levels of expression have recently been obtained by subcloning aequorin cDNA into the pRC23 plasmid vector such that its expression is under control of the lambda PL promoter [Cormier et al. (1989) Photochem. Photobiol. 49, 509]. Purification of recombinant apoaequorin from E. coli containing this new recombinant plasmid (pAEQ1.3) was accomplished by a two-step procedure involving gel filtration and anion-exchange chromatography on Sephadex G-100 and DEAE-Sepharose, respectively. Typically, 400-500 mg of recombinant protein was obtained from 100 L of fermentation culture. The purified recombinant apoaequorin could be converted to aequorin in high yield upon incubation with synthetic coelenterate luciferin, dissolved oxygen, and a thiol reagent with a photon yield similar to the native photoprotein. Detection of recombinant aequorin in the Dynatech ML1000 Microplate luminometer was linear between 10(-18) and 10(-12) mol, and little loss of specific activity was observed when the protein was derivatized with biotin. The biotinylated derivative was stable when frozen, lyophilized, or stored at 4 degrees C. The feasibility of using biotinylated aequorin as a nonradioactive tag was established by its application in a variety of solid-phase assay formats using the high-affinity streptavidin/biotin interaction. A microtiter-based bioluminescent immunoassay (BLIA) using biotinylated aequorin and the ML1000 luminometer was developed for the detection of subnanogram amounts of a glycosphingolipid (Forsmann antigen). In addition, nanogram to subnanogram quantities of protein antigens and DNA, immobilized on Western and Southern blots, respectively, were detected on instant and X-ray films using biotinylated aequorin.  相似文献   

2.
Rat liver protein disulfide isomerase (PDI) catalyzes the oxidative folding of proteins containing disulfide bonds. We have developed an efficient method for its overproduction in Escherichia coli. Using a T7 RNA polymerase expression system, isolated yields of 15-30 mg/liter of recombinant rat PDI are readily obtained. Convenient purification of the enzyme from E. coli lysates involves ion-exchange (DEAE) chromatography combined with zinc chelate chromatography. The recombinant PDI shows catalytic activity identical to that of PDI isolated from bovine liver in both the reduction of insulin and the oxidative folding of ribonuclease A. The enzyme is expressed in E. coli as a soluble, cytoplasmic protein. After complete reduction and denaturation in 6 M guanidinium hydrochloride, PDI regains complete activity within 3 min after removal of the denaturant, implying that disulfide bonds are not essential for the maintenance of PDI tertiary structure. Both the protein isolated from E. coli and the protein isolated from liver contained free cysteine residues (1.8 +/- 0.2 and 1.4 +/- 0.3 SH/monomer, respectively).  相似文献   

3.
Human prostate-specific antigen (PSA), a 33 kDa serine protease with comprehensive homology to glandular kallikrein, is secreted from prostatic tissue into the seminal fluid and enters into the circulation. The level of PSA increases in the serum of patients with prostatic cancer and hence is widely employed as a marker of the disease status. In particular, an enzymatically active PSA that is a form cleaved at the N-terminal seven-amino-acids prosequence, APLILSR, of proPSA may play an important roll in the progression of prostate cancer. Thus, the presence of the active form would selectively discriminate the cancer from benign prostatic hyperplasia. In this study, we developed a convenient purification method for the acquisition of active PSA and proPSA. Recombinant proPSA and active PSA were expressed directly in Escherichia coli, easily and efficiently isolated from inclusion bodies, refolded, and purified. Moreover, the enzymatic activity of the recombinant active PSA was confirmed as serine protease using chromogenic chymotrypsin substrate. This purified active PSA could be further applied to scrutinize the biological or conformational characteristics of the protein and to develop specific diagnostic and/or therapeutic agents against prostate cancer.  相似文献   

4.

Background

Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species.

Methodology/Principal Findings

As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus), a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications.

Conclusion/Significance

Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.  相似文献   

5.
Expression and purification of a recombinant LL-37 from Escherichia coli   总被引:2,自引:0,他引:2  
Human cathelicidin-derived LL-37 is a 37-residue cationic, amphipathic alpha-helical peptide. It is an active component of mammalian innate immunity. LL-37 has several biological functions including a broad spectrum of antimicrobial activities and LPS-neutralizing activity. In order to determine the high-resolution three-dimensional structure of LL-37 using NMR spectroscopy, it is important to obtain the peptide with isotopic labels such as (15)N, (13)C and/or (2)H. Since it is less expensive to obtain such a peptide biologically, in this study, we report for the first time a method to express in E. coli and purify LL-37 using Glutathione S-transferase (GST) fusion system. LL-37 gene was inserted into vector pGEX-4T3 and expressed as a GST-LL-37 fusion protein in BL21(DE3) strain. The recombinant GST-LL-37 protein was purified with a yield of 8 mg/l by affinity chromatography and analyzed its biochemical and spectroscopic properties. Factor Xa was used to cleave a 4.5-kDa LL-37 from the GST-LL-37 fusion protein and the peptide was purified using a reverse-phase HPLC on a Vydac C(18) column with a final yield of 0.3 mg/l. The protein purified using reverse-phase HPLC was confirmed to be LL-37 by the analyses of Western blot and MALDI-TOF-Mass spectrometry. E. coli cells harboring the expression vector pGEX-4T3-LL-37 were grown in the presence of the (15)N-labeled M9 minimal medium and culture conditions were optimized to obtain uniform (15)N enrichment in the constitutively expressed LL-37 peptide. These results suggest that our production method will be useful in obtaining a large quantity of recombinant LL-37 peptide for NMR studies.  相似文献   

6.
An expression system has been designed for the rapid and economic expression of recombinant neurotensin for biophysical studies. A synthetic gene for neurotensin (Glu(1)-Leu(2)-Tyr(3)-Glu(4)-Asn(5)-Lys(6)-Pro(7)-Arg(8)-Arg(9)-Pro(1 0)-Tyr(11)-Ile(12)-Leu(13)) was cloned into the pGEX-5X-2 vector to allow expression of neurotensin as a glutathione S-transferase (GST) fusion protein. The inclusion of a methionine residue between the glutathione S-transferase and the neurotensin has facilitated the rapid cleavage of the neurotensin from its carrier protein. Purification of recombinant neurotensin was performed by reverse-phase HPLC. This method produced a relatively high yield of peptide and offers the potential for economic partial or uniform labeling of small peptides (<15 amino acids) with isotopes for NMR or other biophysical techniques.  相似文献   

7.
The availability of target proteins in sufficient quantity is a limiting factor in crystallographic studies and therefore in rational drug design. Even after optimisation, expression of recombinant proteins may be low and the only way to produce enough protein is by large scale cell growth/purification. HIV-1 proteinase in Escherichia coli, which due to its toxicity is expressed as a soluble protein only at around 0.1% of total protein, is a paradigm for this. In this paper a detailed process for large scale expression and purification of HIV-1 proteinase which delivers material of suitable quantity (30 mg from 500 g of wet weight of cells) and quality for crystallographic studies is described.  相似文献   

8.
The purification of shikimate dehydrogenase from Escherichia coli.   总被引:4,自引:4,他引:0       下载免费PDF全文
A procedure was developed for the purification of shikimate dehydrogenase from Escherichia coli. Homogeneous enzyme with specific activity 1100 units/mg of protein was obtained in 21% overall yield. The subunit Mr estimated by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate was 32 000. The native Mr, estimated by gel-permeation chromatography on a TSK G2000SW column, was also 32 000. E. coli shikimate dehydrogenase is therefore a monomeric NADP-linked dehydrogenase.  相似文献   

9.
In this work, the expression conditions of fusion protein thioredoxin (Trx)-soluble B lymphocyte stimulator (sBLyS) in shake flask and bioreactor from the recombinant Escherichia coli BL21 (DE3) with a pET system encoding the fusion protein gene of Trx-sBLyS and the purification method of the sBLyS were optimized to effectively obtain the bioactive protein sBLyS with a high purity. A yield of about 250 mg Trx-sBLyS/g DWC (1686 mg Trx-sBLyS/L) and expression level of about 38.5% in soluble Trx-sBLyS were obtained in a 30 1 bioreactor after optimization of the fermentation conditions. After the completion of the optimized purification procedure in order of affinity chromatography, enzymatic cleavage with enterokinase and DEAE ion exchange chromatography, about 200 mg sBLyS per liter fermentation broth was obtained with a purity of about 95% and a yield of near 30%, respectively. Furthermore, the molecular weight (MW) and the isoelectric point (pI) of the purified sBLyS were determined by 2-D gel electrophoresis and SDS-PAGE analysis and estimated to be over 16 kDa and about pH 4.15, respectively. In addition, the bioactivities of the soluble Trx-sBLyS in fermentation broth and the purified sBLyS were tested by two kinds of analytical methods of bioactivity. The good fermentation yield and the satisfied, purified sBLyS product with high purity, yield and bioactivity demonstrated the sBLyS production procedure was promising in industry.  相似文献   

10.
The two-kringle domain of tissue-type plasminogen activator (TK1-2) has been identified as a potent angiogenesis inhibitor by suppressing endothelial cell proliferation, in vivo angiogenesis, and in vivo tumor growth. Escherichia coli-derived, non-glycosylated TK1-2 more potently inhibits in vivo tumor growth, whereas Pichia expression system is more efficient for producing TK1-2 as a soluble form, albeit accompanying N-glycosylation. Therefore, in order to avoid immune reactivity and improve in vivo efficacy, we expressed the non-glycosylated form of TK1-2 in Pichia pastoris and evaluated its activity in vitro. When TK1-2 was mutated at either Asn(117) or Asn(184) by replacing with Gln, the mutated proteins produced the glycosylated form in Pichia, of which sugar moiety could be deleted by endoglycosidase H treatment. When both sites were replaced by Gln, the resulting mutant produced a non-glycosylated protein, NQ-TK1-2. Secreted NQ-TK1-2 was purified from the culture broth by sequential ion exchange chromatography using SP-sepharose, Q-spin, and UNO-S1 column. The purified NQ-TK1-2 migrated as a single protein band of approximately 20 kDa in SDS-PAGE and its mass spectrum showed one major peak of 19,950.71 Da, which is smaller than those of two glycosylated forms of wild type TK1-2. Functionally, the purified NQ-TK1-2 inhibited endothelial cell proliferation and migration stimulated by bFGF and VEGF, respectively. Therefore, the results suggest that non-glycosylated TK1-2 useful for the treatment of cancer can be efficiently produced in Pichia, with retaining its activity.  相似文献   

11.
The conversion of glucose into glucose 6-phosphate (Glc 6-P)1 traps glucose in a chemical state in which it cannot leave the cell and hence commits glucose to metabolism. In human tissues there are at least three hexokinase isoenzymes responsible for hexose phosphorylation. These enzymes are constituted by a single polypeptide chain with a molecular weight of approximately 100 kDa. Among these isoenzymes, hexokinase type I is the most widely expressed in mammalian tissues and shows reversion of Glc 6-P inhibition by physiological levels of inorganic phosphate. In this work the hexokinase I from human brain was overexpressed in Escherichia coli, as a hexahistidine-tagged protein with the tag extending the C-terminal end. An average of 900 U per liter of culture was obtained. The expressed protein was one-step purified by metal chelate affinity chromatography performed in NTA-agarose column charged with Ni(2+) ions. In order to stabilize the enzymatic activity 0.5 M ammonium sulfate was added to elution buffer. The specific activity of purified hexokinase I was 67.8 U/mg. The recombinant enzyme shows kinetic properties in agreement with those described for the native enzyme, and thus it can be used for biophysical and biochemical investigation.  相似文献   

12.
Recombinant purine nucleoside phosphorylase (PNPase) from Escherichia coli was prepared in high yield in order to facilitate its use in coupled assays to measure the kinetics of phosphate-liberating enzymes. The E. coli enzyme was overexpressed in E. coli by inserting the genomic fragment containing the deoD gene downstream of the isopropyl beta-d-thiogalactoside-inducible promotor of pSE380 expression vector. The recombinant protein was purified to approximately 90% homogeneity and with a yield of approximately 9000 units of activity/L of culture, using an efficient one-column procedure. A continuous spectrophotometric assay coupling P(i) release to the phosphorolysis of the nucleoside analogue 7-methylinosine (m(7)Ino) was recently described. Here, we report the steady-state kinetic parameters of the recombinant E. coli PNPase catalyzed reaction with m(7)Ino and P(i) as substrates and compare these parameters with those of a bacterial PNPase commercially available for use in coupled assays. Under the assay conditions described, the recombinant E. coli protein is active at higher pH values and is stable up to a temperature of approximately 55 degrees C and following multiple freeze-thaw cycles. It is activated by high ionic strength but loses some activity following dialysis or concentration under pressure. Finally, a new procedure for the synthesis of m(7)Ino from inosine is described which is safe and cost effective, making the use of this methylated nucleoside in PNPase-coupled P(i) assays more attractive.  相似文献   

13.
A method is presented for the direct extraction of the recombinant protein Long-R3-IGF-I from inclusion bodies located in the cytoplasm of intact Escherichia coli cells. Chemical treatment with 6M urea, 3 mM EDTA, and 20 mM dithiothreitol (DTT) at pH 9.0 proved an effective combination for extracting recombinant protein from intact cells. Comparable levels of Long-R3-IGF-I were recovered by direct extraction as achieved by in vitro dissolution following mechanical disruption. However, the purity of directly extracted recombinant protein was lower due to contamination by bacterial cell components. The kinetics of direct extraction are described using a first-order equation with the time constant of 3 min. Urea appears important for permeabilization of the cell and dissolution of the inclusion body. Conversely, EDTA is involved in permeabilization of the cell wall and DTT enhances protein release. pH proved to be important with lower levels of protein release achieved at low pH values (<9). Cell concentration also had a minor effect on Long-R3-IGF-I release and caused an observable increase in viscosity. Advantages of the direct extraction method include its speed, simplicity, and efficiency at releasing product.  相似文献   

14.
Lethal toxin (LT) that composed by protective antigen and lethal factor (LF) is the major virulence factor of Bacillus anthracis. The treatments of LT in animals could reproduce most manifestations of B. anthracis infections that greatly improves our knowledge in LT-mediated pathogenesis and facilitates anthrax-related researches without having to directly contact the hazardous bacterium B. anthracis. The recombinant protein of LF (rLF), however, still lacks a simple purification method. Herein, we developed single-step nickel affinity purification of rLF with yield up to 3mg/l. By fusion to the leader sequence of outer membrane protein OmpA, rLF could easily be purified from the periplasm of Escherichia coli. To investigate whether the rLT is functional in our system, both wild type rLF and the catalytic mutant rLF that contains a single amino acid substitution at zinc-binding site (LF(E687A)), were subjected to macrophage cytotoxicity analysis. Our data showed that the rLT is fully functional, while the LF(E687A) fail to induce cell death of tested macrophage cells. These findings suggested that the purification protocol herein is a user-friendly method that allows researchers to obtain the functional rLF by single-step purification.  相似文献   

15.
Listeria monocytogenes is an emerging foodborne pathogen that is responsible for about 28% of the food-related deaths in the United States. It causes meningitis, septicaemia and in pregnant women, abortions and stillbirths. It secretes the toxin listeriolysin O (LLO) that allows the bacteria to enter the cytoplasm of host cells, where they can replicate and cause further infection. The rapid and sensitive detection of LLO in food samples is a key to monitoring and prevention of listeriosis. To facilitate the development of an assay for the specific detection of LLO, a source of LLO is essential. We outline a method of producing a large amount of functional LLO by expressing the hlyA gene (encoding LLO) in Escherichia coli and purifying the recombinant LLO using a one-step purification method. Purification of the protein takes only about 4 h. We compared three different expression constructs for the production of the toxin, which tends to interact strongly with a number of column surfaces. The first construct, using an intein fusion system, could not be purified from the column. The second LLO construct contained an N-terminus His tag; it gave a yield of 3.5–8 mg l−1. The third contained a C-terminus His tag; it gave a yield of 2.5 mg l−1 LLO. The purified LLO from the latter two constructs retained its activity at 4°C for over a year as determined by bovine red blood cell hemolysis assay. This paper provides a much-needed, high-yield, one-step purification method of recombinant LLO, and is the first to provide evidence of long-term stability of the toxin for further applications.  相似文献   

16.
The Plasmodium falciparum circumsporozoite (PfCS) protein (aa 19–405) has been cloned and expressed in E. coli. The protein was purified in a two-step process that was rapid and reproducible. E. coli cells were grown to a high density before induction for 1 h. Cells were disrupted by high pressure microfluidization and the total bacterial protein solubilized in 6 M Gu-HCl. The protein was refolded while bound to Ni–NTA agarose by exchange of 6 M Gu-HCl for 8 M urea and then slow removal of the urea. The eluted protein was further purified on Q Sepharose Fast Flow using conditions developed to remove E. coli proteins and reduce endotoxin (to 10 EU/50 μg). Yield was 20 mg of PfCS protein from 10 g of wet cell paste. The final protein product bound to HepG2 liver cells in culture and inhibited the invasion of those cells by sporozoites in an ISI assay greater than 80% over control cultures when used at 10 μg/ml.  相似文献   

17.
Catalase in plants is a heme-coordinated tetrameric protein that primarily disproportionates hydrogen peroxide into water and oxygen. It plays an important role in maintaining cellular concentration of hydrogen peroxide to a level, necessary for all aspects of normal plant growth and development. Except for its recombinant expression in transgenic plants and insect cell line, the protein is yet to be synthesized in its bio-active form in prokaryotic expression system. Attempts made in past for recombinant expression of plant catalase in Escherichia coli consistently resulted in formation of insoluble and inactive aggregates of inclusion body. Here we have shown the specific requirement of a thioredoxin fusion partner, the involvement of trigger factor protein and the low temperature treatment during induction period for synthesis of completely solubilized rice plant catalase-A in recombinant E. coli. Furthermore, the bacteria required the supplementation of δ-aminolevulinic acid to produce bio-active recombinant rice catalase-A. The molecular and biochemical properties of the purified recombinant protein showed the characteristic features of a typical mono-functional plant catalase. These results attest to the usefulness of the present protocol for production of plant catalase using E. coli as heterologous expression system.  相似文献   

18.
The lymphokine human interleukin 4 (IL-4) has been expressed from a plasmid in the cytoplasm of Escherichia coli. Advantage has been taken of insolubility of the human IL-4 in E. coli for rapid purification of this protein in only a few steps. We describe extraction and renaturation procedures which solubilize human IL-4 yielding biologically active protein. The protein was purified to homogeneity by one passage over a gel-filtration column. The refolded human IL-4 was characterized by N-terminal sequence analysis, amino acid analysis and bioassays. The refolded E. coli-derived human IL-4 has biological activity on T and B cells and binds to the human IL-4 receptor, comparable to mammalian expressed human IL-4, indicating that the protein is folded correctly.  相似文献   

19.
Human annexin V cDNA was cloned into plasmid pET19b and fused to a ten consecutive histidine tag at N-terminal. When expressed in E. coli BL21(DE3) LysS, the recombinant His10-annexin V accumulated in soluble form in the cytoplasm. By two-step chromatography, i.e., metal chelate affinity chromatography and anion exchange chromatography, recombinant His10-annexin V was purified to homogeneity on silver-stained SDS-PAGE gel. Recombinant annexin V, 7.4 mg, was obtained from a 1 litre flask culture.  相似文献   

20.
A rapid procedure for the large-scale isolation of recombinant integration host factor (IHF) protein from Escherichia coli is presented. The protein was overproduced in the E. coli K5746 strain, whose construction has already been described. The procedure consists of a mild extraction of protein and fractionation by ammonium sulfate. A single-step affinity chromatography on heparin-Sepharose provided very pure IHF protein. A Mono-S FPLC column was used to highly concentrate the pure IHF for crystallization trials. Attempts to crystallize IHF produced small stable crystals that have a large number of molecules in the asymmetric unit and to date diffract poorly. Further attempts to crystallize IHF under other conditions as well as in a complex with the putative DNA binding site are underway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号