共查询到20条相似文献,搜索用时 0 毫秒
1.
J R Rodman A K Curran K S Henderson J A Dempsey C A Smith 《Journal of applied physiology》2001,91(1):328-335
We assessed the time course of changes in eupneic arterial PCO(2) (Pa(CO(2))) and the ventilatory response to hyperoxic rebreathing after removal of the carotid bodies (CBX) in awake female dogs. Elimination of the ventilatory response to bolus intravenous injections of NaCN was used to confirm CBX status on each day of data collection. Relative to eupneic control (Pa(CO(2)) = 40 +/- 3 Torr), all seven dogs hypoventilated after CBX, reaching a maximum Pa(CO(2)) of 53 +/- 6 Torr by day 3 post-CBX. There was no significant recovery of eupneic Pa(CO(2)) over the ensuing 18 days. Relative to control, the hyperoxic CO(2) ventilatory (change in inspired minute ventilation/change in end-tidal PCO(2)) and tidal volume (change in tidal volume/ change in end-tidal PCO(2)) response slopes were decreased 40 +/- 15 and 35 +/- 20% by day 2 post-CBX. There was no recovery in the ventilatory or tidal volume response slopes to hyperoxic hypercapnia over the ensuing 19 days. We conclude that 1) the carotid bodies contribute approximately 40% of the eupneic drive to breathe and the ventilatory response to hyperoxic hypercapnia and 2) there is no recovery in the eupneic drive to breathe or the ventilatory response to hyperoxic hypercapnia after removal of the carotid chemoreceptors, indicating a lack of central or aortic chemoreceptor plasticity in the adult dog after CBX. 相似文献
2.
3.
4.
M R Hodges C Opansky B Qian S Davis J M Bonis K Krause L G Pan H V Forster 《Journal of applied physiology》2005,98(4):1234-1242
Our aim was to determine the effects of carotid body denervation (CBD) on the ventilatory responses to focal acidosis and ibotenic acid (IA) injections into the medullary raphe area of awake, adult goats. Multiple microtubules were chronically implanted into the midline raphe area nuclei either before or after CBD. For up to 15 days after bilateral CBD, arterial PCO2 (PaCO2) (13.3 +/- 1.9 Torr) was increased (P < 0.001), and CO2 sensitivity (-53.0 +/- 6.4%) was decreased (P <0.001). Thereafter, resting PaCO2 and CO2 sensitivity returned (P <0.01) toward control, but PaCO2 remained elevated (4.8 +/- 1.9 Torr) and CO2 sensitivity reduced (-24.7 +/- 6.0%) > or =40 days after CBD. Focal acidosis (FA) at multiple medullary raphe area sites 23-44 days post-CBD with 50 or 80% CO(2) increased inspiratory flow (Vi), tidal volume (Vt), metabolic rate (VO2), and heart rate (HR) (P <0.05). The effects of FA with 50% CO2 after CBD did not differ from intact goats. However, CBD attenuated (P <0.05) the increase in Vi, Vt, and HR with 80% CO2, but it had no effect on the increase in VO2. Rostral but not caudal raphe area IA injections increased Vi, BP, and HR (P < 0.05), and these responses were accentuated (P <0.001) after CBD. CO2 sensitivity was attenuated (-20%; P <0.05) <7 days after IA injection, but thereafter it returned to prelesion values in CBD goats. We conclude the following: 1) the attenuated response to FA after CBD provides further evidence that the carotid bodies provide a tonic facilitory input into respiratory control centers, 2) the plasticity after CBD is not due to increased raphe chemoreceptor sensitivity, and 3) the "error-sensing" function of the carotid body blunts the effect of strong stimulation of the raphe. 相似文献
5.
Qiuli Liu Judy Kim Jamye Cinotte Patricia Homolka Margaret T T Wong-Riley 《Journal of applied physiology》2003,94(3):1115-1121
Previously, we found that the rat pre-B?tzinger complex (PBC) exhibited reduced cytochrome oxidase (CO) activity on postnatal days (P) 3-4 and especially on P12, with a concomitant decrease in glutamate and N-methyl-d-aspartate receptor subunit 1, and an increase in GABA, GABA(B), glycine receptor, and glutamate subunit 2. We hypothesized that the PBC would be more affected by carotid body denervation (CBD) during the two critical windows than at other times. Pairs of CBD and sham animals at each postnatal day from P2 to P14 and at P21 were operated on and survived for 3 days. Brain stems were processed for CO and neurokinin-1 receptor for the identification of PBC. Results indicate that CBD caused a significant loss in body weight in all animals and a reduction in PBC somal size when the surgery was between P2 and P7. CBD also induced a significant decrease in CO activity of the PBC in most animals and a distinct delay, as well as prolongation of the maturational process, especially when induced close to P3 and P11-P13. 相似文献
6.
7.
8.
9.
10.
Dwinell M. R.; Janssen P. L.; Pizarro J.; Bisgard G. E. 《Journal of applied physiology》1997,82(1):118-124
Dwinell, M. R., P. L. Janssen, J. Pizarro, and G. E. Bisgard. Effects of carotid body hypocapnia during ventilatory acclimatization to hypoxia. J. Appl.Physiol. 82(1): 118-124, 1997.Hypoxicventilatory sensitivity is increased during ventilatory acclimatizationto hypoxia (VAH) in awake goats, resulting in a time-dependent increasein expired ventilation (E). Theobjectives of this study were to determine whether the increasedcarotid body (CB) hypoxic sensitivity is dependent on the level of CB CO2 and whether the CBCO2 gain is changed during VAH.Studies were carried out in adult goats with CB blood gases controlled by an extracorporeal circuit while systemic (central nervous system) blood gases were regulated independently by the level of inhaled gases. Acute E responsesto CB hypoxia (CB PO2 40 Torr) and CBhypercapnia (CB PCO2 50 and 60 Torr)were measured while systemic normoxia and isocapnia were maintained. CBPO2 was then lowered to 40 Torr for 4 h while the systemic blood gases were kept normoxic and normocapnic.During the 4-h CB hypoxia, E increasedin a time-dependent manner. Thirty minutes after return to normoxia,the ventilatory response to CB hypoxia was significantly increasedcompared with the initial response. The slope of the CBCO2 response was also elevatedafter VAH. An additional group of goats(n = 7) was studied with asimilar protocol, except that CB PCO2was lowered throughout the 4-h hypoxic exposure to prevent reflexhyperventilation. CB PCO2 wasprogressively lowered throughout the 4-h CB hypoxic period to maintainE at the control level. After the 4-hCB hypoxic exposure, the ventilatory response to hypoxia was alsosignificantly elevated. However, the slope of the CBCO2 response was not elevatedafter the 4-h hypoxic exposure. These results suggest that CBsensitivity to both O2 andCO2 is increased after 4 h of CBhypoxia with systemic isocapnia. The increase in CB hypoxic sensitivityis not dependent on the level of CBCO2 maintained during the 4-hhypoxic period. 相似文献
11.
G E Bisgard H V Forster J A Orr D D Buss C A Rawlings B Rasmussen 《Journal of applied physiology》1976,40(2):184-190
Seven ponies were subjected to carotid body denervation (CD) and two ponies were sham operated (S). Measurement of arterial blood gases and arterial blood and cerebrospinal fluid (CSF) acid-base balance were made prior to and 1,2,4,9, and 17 wks after surgery in unanesthetized animals. Resting ventilation and ventilatory responsiveness to hypoxia and NaCN infusion were assessed prior to and 2,9, and 17 wks after surgery. Alveolar hypoventilation in the CD ponies was marked 1-2 wk after surgery when VE and VA were reduced 40% and 10%, respectively, from control and PaCO2 was 12-15 mmHg above control. However, the effect was not nearly as great 4, 9, and 17 wk after surgery when the PaCO2 stabilized at approximately 6 mmHg above control PaCO2. Arterial blood pH was normal in the hypercapnic CD ponies, but CSF pH remained acid relative to normal throughout the 17-wk period. Changes in ventilatory responsiveness to hypoxia and NaCN tended to parallel changes in resting ventilation. These findings suggest: 1) the carotid bodies are essential in ponies to maintain normal ventilation: 2) in CD ponies peripheral chemosensitivity is partially regained at some unestablished locus; and 3) pH compensating mechanisms in chronically hypercapnic ponies function relatively better in blood than in CSF. 相似文献
12.
A Serra D Brozoski N Hedin R Franciosi H V Forster 《Journal of applied physiology》2001,91(3):1298-1306
Carotid body denervation (CBD) in neonatal goats and piglets results in minimal irregular breathing and no fatalities. Redundancy and/or plasticity of peripheral chemosensitivity and a relatively mature ventilatory control system at birth may contribute to the paucity of CBD effects in these species. In the present study, we tested the hypothesis that CBD mortality would be greater in neonates of a less mature species such as the rat. We found that the mortality in rats denervated at 2-3 and 7-8 days of age was significantly higher (P < 0.05) than in sham-CBD rats. In all surviving rats, pulmonary ventilation during hypoxia was lower in CBD than in sham operated rats 2 days after denervation. In surviving rats denervated during the 7th and 8th postnatal days, there was also reduced weight gain and pulmonary ventilation during eupnea, including apneas up to 20 s in duration. However, the effects of CBD were compensated within 3 wk after denervation. Local injections of NaCN indicated that aortic chemoreceptors might have been one of the sites of recovery of peripheral chemosensitivity. We concluded that CBD has higher mortality in newborn rats than in other mammals, possibly because of the relative immaturity of these animals at birth. Nonetheless, in survivors there was enough redundancy and plasticity in the control of breathing to eventually compensate for the consequences of CBD. 相似文献
13.
14.
A A Etemadi 《Acta anatomica》1975,92(1):110-121
The carotid body of the camel is located between a mass of loose connective tissue at the point of separation of the internal carotid artery from the carotid trunk. A capsule-like connective tissue sheath sends strands in between the parenchyme of this organ and separates lobes and lobules, making it disseminated in type, as in man and in the horse. Two distinct types of cells were found in the parenchyma. Type I cells with specific electton-dense, cored vesicles, and type II cells with protoplasmic extensions. Unlike the previously reported arrangement in the carotid body of some species, the type I cells have direct contact with the basement membrane of glomi and capillaries. Synaptic contacts were seen on both cell types. 相似文献
15.
J Banbury M Siemionow S Porvasnik S Petras J E Zins 《Plastic and reconstructive surgery》1999,104(3):730-737
Whether sympathectomy and somatic denervation in muscle flaps increased microcirculatory flow in the short or long term, thus producing an effect similar to the delay phenomenon, which increases survival in transferred skin flaps, was determined. The rat cremaster muscle flap model was used for in vivo microscopy. In the left cremasters of 30 Sprague-Dawley rats, the genitofemoral nerve was divided and the proximal vessels were stripped of their adventitia. The muscle was not elevated. In each rat, the contralateral cremaster served as the control. The rats were assigned to one of five groups: no delay before observation, a 24-hour delay, a 48-hour delay, a 7-day delay, or a 14-day delay. After the delay, red blood cell velocity, vessel diameters, number of functional capillaries, and leukocyte-endothelial interactions were measured. Microvessel response to topical vasoactive substances was measured. Immediately after denervation, red blood cell velocity increased transiently (71 percent; p = 0.006). Main arterioles dilated (20 percent; p = 0.02) at 24 hours, and capillary perfusion increased 36 percent (p = 0.001) at 2 weeks. The microvessels had hyperactive responses to all vasoactive agents 2 weeks after denervation. These findings indicate that proximal sympathectomy with somatic denervation leads to a triphasic, dynamic response in the peripheral microcirculation of the cremaster muscle flap. An initial acute hyperadrenergic phase was followed by a nonadrenergic phase, with significant vasodilatation, and a sensitized phase, with increased capillary perfusion and hyperresponsiveness to vasoactive substances. This study shows that with minimal access to the cremaster muscle flap neurovascular pedicle and without changing the blood supply to the flap, significant hemodynamic improvements can be made in the peripheral microcirculation. 相似文献
16.
17.
18.
T F Lowry H V Forster L G Pan A Serra J Wenninger R Nash D Sheridan R A Franciosi 《Journal of applied physiology》1999,87(6):2128-2135
The purpose of these studies was to test the hypothesis that carotid chemoreceptor activity is necessary for postnatal maturation of the ventilatory control system. By using a lateral surgical access, 17 piglets were carotid body denervated (CBD) and 14 were sham denervated at 3-25 days of age. After surgery, there was no irregular breathing in any group. There was no significant hypoventilation when CBD was performed at less than 5 days of age (n = 5) and only a mild (arterial PCO(2) 5 Torr; P < 0.05) to moderate, transient (arterial PCO(2) 8 Torr; P < 0.5) hypoventilation in piglets denervated at 10-15 (n = 6) and 20-25 (n = 6) days of age, respectively. Three weeks after surgery, both breathing of a hypoxic gas mixture and jugular venous NaCN injections elicited a hyperpnea in the CBD piglets that was attenuated compared with that in sham CBD piglets. In the CBD piglets, there was no response to injections of NaCN in the carotid arteries, but there was a response to NaCN injected into the proximal descending aorta, suggesting the residual peripheral chemosensitivity was of aortic origin. Carotid chemoreceptor-intact piglets had carotid and aortic NaCN chemosensitivity by 2 days of age. The carotid response persisted for the 40 days of the study, but the aortic reflex persisted only until approximately 8 days of age. We conclude that 1) the major effect of CBD per se in neonatal piglets is age-dependent hypoventilation and 2) there is a high degree of plasticity in peripheral chemosensitivity in neonates that may contribute to minimizing the changes in breathing after CBD. 相似文献
19.
20.
George M Balanos Nicholas P Talbot Keith L Dorrington Peter A Robbins 《Journal of applied physiology》2003,94(4):1543-1551
Hypercapnia has been shown in animal experiments to induce pulmonary hypertension. This study measured the sensitivity and time course of the human pulmonary vascular response to sustained (4 h) hypercapnia and hypocapnia. Twelve volunteers undertook three protocols: 1) 4-h euoxic (end-tidal Po(2) = 100 Torr) hypercapnia (end-tidal Pco(2) was 10 Torr above normal), followed by 2 h of recovery with euoxic eucapnia; 2) 4-h euoxic hypocapnia (end-tidal Pco(2) was 10 Torr below normal) followed by 2 h of recovery; and 3) 6-h air breathing (control). Pulmonary vascular resistance was assessed at 0.5- to 1-h intervals by using Doppler echocardiography via the maximum tricuspid pressure gradient during systole. Results show progressive changes in pressure gradient over 1-2 h after the onset or offset of the stimuli, and sensitivities of 0.6 to 1 Torr change in pressure gradient per Torr change in end-tidal Pco(2). The human pulmonary circulatory response to changes in Pco(2) has a slower time course and greater sensitivity than is commonly assumed. Vascular tone in the normal pulmonary circulation is substantial. 相似文献