首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Taking advantage of the slow exchange at the NMR time scale occurring in drug oligonucleotides complexes the 3P signals in the bound forms are assigned by using 31PNMR two dimensional chemical exchange. This technique was applied to complexes between Actinomycin D and d[CpGpCpG] or d[m5CpGpm 5CpG], As compared to the labelled 17O,18O this method proved to be a powerful and unique way to assign 31P in broad spectrum or with long oligonucleotides.  相似文献   

2.
The 400-MHz 1H- and 162-MHz 31P-nmr have been used to study complexes constituted by (a) the d(TpTpCpGpCpGpApA)2 or the d(CpGpCpG)2 self-complementary oligonucleotides and (b) two bifunctional 7H-pyrido [4,3-c] carbazole dimer drugs, the antitumoral ditercalinium (NSC 366241), a dimer with a rigid bis-piperidine linking chain and its pharmacologically inactive analogue, a dimer with a flexible spermine-like linking chain. Nearly all proton and phosphorus signals have been assigned by two-dimensional (2D) nmr (correlated spectroscopy, homonuclear Hartmann-Hahn, nuclear Overhauser enhancement spectroscopy, 2D 31P (1H) heteronuclear correlated spectroscopy and 31P-31P chemical exchange experiments). Both drugs bis-intercalate into the two CpG sites. The complexes show small differences in the position of the 7H-pyrido [4,3-c] carbazole ring into the intercalation site and possibly in the ribose-phosphate backbone deformation. However, the inactive analogue exhibits a longer residence lifetime in octanucleotide than the ditercalinium does. All these results are discussed in terms of differences in dimer activities.  相似文献   

3.
It is now possible to unambiguously assign all 31P resonances in the 31P NMR spectra of oligonucleotides by either two-dimensional NMR techniques or site-specific 17O labeling of the phosphoryl groups. Assignment of 31P signals in tetradecamer duplexes, (dTGTGAGCGCTCACA)2, (dTAT-GAGCGCTCATA)2, (dTCTGAGCGCTCAGA)2, and (dTGTGTGCGCACACA)2, and the dodecamer duplex d(CGTGAATTCGCG)2 containing one base-pair mismatch, combined with additional assignments in the literature, has allowed an analysis of the origin of the sequence-specific variation in 31P chemical shifts of DNA. The 31P chemical shifts of duplex B-DNA phosphates correlate reasonably well with some aspects of the Dickerson/Calladine sum function for variation in the helical twist of the oligonucleotides. Correlations between experimentally measured P-O and C-O torsional angles and results from molecular mechanics energy minimization calculations show that these results are consistent with the hypothesis that sequence-specific variations in 31P chemical shifts are attributable to sequence-specific changes in the deoxyribose phosphate backbone. The major structural variation responsible for these 31P shift perturbations appears to be P-O and C-O backbone torsional angles which respond to changes in the local helical structure. Furthermore, 31P chemical shifts and JH3'-P coupling constants both indicate that these backbone torsional angle variations are more permissive at the ends of the double helix than in the middle. Thus 31P NMR spectroscopy and molecular mechanics energy minimization calculations appear to be able to support sequence-specific structural variations along the backbone of the DNA in solution.  相似文献   

4.
The 31P NMR spectra of various 14-base-pair lac operators bound to both wild-type and mutant lac repressor headpiece proteins were analyzed to provide information on the backbone conformation in the complexes. The 31P NMR spectrum of a wild-type symmetrical operator, d(TGTGAGCGCTCACA)2, bound to the N-terminal 56-residue headpiece fragment of a Y7I mutant repressor was nearly identical to the spectrum of the same operator bound to the wild-type repressor headpiece. In contrast, the 31P NMR spectrum of the mutant operator, d(TATAGAGCGCTCATA)2, wild-type headpiece complex was significantly perturbed relative to the wild-type repressor-operator complex. The 31P chemical shifts of the phosphates of a second mutant operator, d(TGTGTGCGCACACA)2, showed small but specific changes upon complexation with either the wild-type or mutant headpiece. The 31P chemical shifts of the phosphates of a third mutant operator, d(TCTGAGCGCTCAGA)2, showed no perturbations upon addition of the wild-type headpiece. The 31P NMR results provide further evidence for predominant recognition of the 5'-strand of the 5'-TGTGA/3'-ACACT binding site in a 2:1 protein to headpiece complex. It is proposed that specific, strong-binding operator-protein complexes retain the inherent phosphate ester conformational flexibility of the operator itself, whereas the phosphate esters are conformationally restricted in the weak-binding operator-protein complexes. This retention of backbone torsional freedom in strong complexes is entropically favorable and provides a new (and speculative) mechanism for protein discrimination of different operator binding sites. It demonstrates the potential importance of phosphate geometry and flexibility on protein recognition and binding.  相似文献   

5.
Reaction of nucleoside phosphorothioates with N-bromosuccinimide in dioxane and H218O leads to the exchange of sulfur for oxygen-18. Using the Sp-isomers of adenosine 5'-O-(1-thiodiphosphate) and adenosine 3',5'-cyclic phosphorothioate, it can be shown by 31P NMR spectroscopy that this reaction proceeds with inversion of configuration yielding the Rp-isomers of [alpha-18O]ADP and [18O]cAMP, respectively. Adenosine 5'-O-(2-thiotriphosphate) and adenosine 5'-O-(3-thiotriphosphate) are likewise converted to [beta-18O]ATP and [gamma-18O]ATP although the stereochemistry of the former reaction has yet to be evaluated. With very slight modifications this reaction is applicable to all the common bases.  相似文献   

6.
One- and two-dimensional 1H NMR spectroscopy were used to characterize the binding of a homodimeric thiazole orange dye, 1,1'-(4,4,8,8-tetramethyl-4,8-diazaundecamethylene)-bis-4-(3 -methyl-2,3-dihydro-(benzo- 1,3-thiazole)-2-methylidene)-quinolinium tetraiodide (TOTO), to various double-stranded DNA oligonucleotides containing symmetric (5'-pyr-pyr-pu-pu-3')2 or (5'-pu-pu-pyr-pyr-3')2 sequences. It was found that TOTO binds preferentially to oligonucleotides containing a (5'-CTAG-3')2 or a (5'-CCGG-3')2 sequence. Binding to the (5'-CCGG-3')2 sequence is less favored than to the (5'-CTAG-3')2 sequence. The complexes of TOTO with d(CGCTAGCGCTAGCG)2 (10) and d(CGCTAGCCGGCG):d(CGCCGGCTAGCG) (11) oligonucleotides, each containing two preferential binding sites, was also examined. In both cases TOTO forms mixtures of 1:1 and 1:2 dsDNA-TOTO complexes in ratios dependent on the relative amount of TOTO and the oligonucleotides in the sample. Binding of TOTO to the two oligonucleotides is sequence selective at the (5'-CTAG-3')2 and (5'-CCGG-3')2 sites. The 1H NMR spectra of both the 1:2 complexes and the three different 1:1 complexes have been assigned. A slight negative cooperativity is observed in formation of the 1:2 complexes. The ratio between the two different 1:1 complexes formed with oligonucleotide 11 is 2.4 in favor of binding to the (5'-CTAG-3')2 site. This is very similar to results obtained when the two sites are in different oligonucleotides. Thus the distribution of TOTO among the (5'-CTAG-3')2 and (5'-CCGG-3')2 sites is independent of whether the two sites are in the same or two different oligonucleotides.  相似文献   

7.
Time-resolved Fourier transform infrared spectroscopy (FTIR) in combination with photo-induced release of (18)O-labeled caged nucleotide has been employed to address mechanistic issues of GTP hydrolysis by Ras protein. Infrared spectroscopy of Ras complexes with nitrophenylethyl (NPE)-[alpha-(18)O(2)]GTP, NPE-[beta-(18)O(4)]GTP, or NPE-[gamma-(18)O(3)]GTP upon photolysis or during hydrolysis afforded a substantially improved mode assignment of phosphoryl group absorptions. Photolysis spectra of hydroxyphenylacyl-GTP and hydroxyphenylacyl-GDP bound to Ras and several mutants, Ras(Gly(12))-Mn(2+), Ras(Pro(12)), Ras(Ala(12)), and Ras(Val(12)), were obtained and yielded valuable information about structures of GTP or GDP bound to Ras mutants. IR spectra revealed stronger binding of GDP beta-PO(3)(2-) moiety by Ras mutants with higher activity, suggesting that the transition state is largely GDP-like. Analysis of the photolysis and hydrolysis FTIR spectra of the [beta-nonbridge-(18)O(2), alphabeta-bridge-(18)O]GTP isotopomer allowed us to probe for positional isotope exchange. Such a reaction might signal the existence of metaphosphate as a discrete intermediate, a key species for a dissociative mechanism. No positional isotope exchange was observed. Overall, our results support a concerted mechanism, but the transition state seems to have a considerable amount of dissociative character. This work demonstrates that time-resolved FTIR is highly suitable for monitoring positional isotope exchange and advantageous in many aspects over previously used methods, such as (31)P NMR and mass spectrometry.  相似文献   

8.
Eukaryotic and viral messenger RNAs contain a CAP structure that plays an important role in the initiation of translation and several other cellular processes that involve mRNAs. In this paper, we report a convenient chemical approach to the preparation of milligram quantities of short, capped RNA oligonucleotides, which overcomes some of the limitations of previous approaches. The method is based on the use of a reactive precursor, m7GppQ [P1-7-methylguanosine-5'-O-yl, P2-O-8-(5-chloroquinolyl) pyrophosphate]. The precursor reacts smoothly with 5'-phosphorylated unprotected short RNA in the presence of CuCl2 in organic media. The feasibility of this approach was demonstrated by the synthesis of the capped pentaribonucleotide m7GpppGpApCpU. The synthesized capped oligonucleotide was isolated and purified by reverse phase and ion exchange HPLC with a final yield of 37%. The structure of the m7GpppGpApCpU was confirmed by 31P NMR, mass-spectrometry and enzymatic hydrolysis.  相似文献   

9.
Bisintercalation of ditercalinium, a potent antitumoral 7H-pyriodo[4,3-c]carbazole rigid dimer, into the self-complementary tetranucleotides d(CpGpCpG)2, d(m5CpGpm5CpG) and the self-complementary hexanucleotide d(CpGpApTpCpG)2 was investigated by 162-MHz 31P-nmr. The slow exchange, on the nmr time scale, observed between the free and complexed nucleotides allows identification of the phosphorus signals in the complexes through two-dimensional chemical exchange spectroscopy. Differences in 31P chemical shifts upon intercalation are discussed in relation to the complex geometry and nature of the drug.  相似文献   

10.
Eukaryotic and viral messenger RNAs contain a CAP structure that plays an important role in the initiation of translation and several other cellular processes that involve mRNAs. In this paper, we report a convenient chemical approach to the preparation of milligram quantities of short, capped RNA oligonucleotides, which overcomes some of the limitations of previous approaches. The method is based on the use of a reactive precursor, m7GppQ [P1‐7‐methylguanosine‐5′‐O‐yl, P2‐O‐8‐(5‐chloroquinolyl) pyrophosphate]. The precursor reacts smoothly with 5′‐phosphorylated unprotected short RNA in the presence of CuCl2 in organic media. The feasibility of this approach was demonstrated by the synthesis of the capped pentaribonucleotide m7GpppGpApCpU. The synthesized capped oligonucleotide was isolated and purified by reverse phase and ion exchange HPLC with a final yield of 37%. The structure of the m7GpppGpApCpU was confirmed by 31P NMR, mass‐spectrometry and enzymatic hydrolysis.  相似文献   

11.
The time course of oxygen-18 exchange between [18O]Pi and normal water, catalyzed by myosin subfragment 1 in the presence of MgADP, was followed using the shift in 31P NMR caused by the presence of oxygen-18 bound to the phosphorus. Essentially all molecules of [18O]Pi that bind to the enzyme undergo complete exchange and are released as [16O4]Pi. Exchange probably occurs by formation of myosin.ATP from a myosin.ADP.Pi complex and is rapid relative to release of Pi from this complex. The kinetics of exchange give a value for the rate constant for binding Pi to myosin.ADP of 0.23 M-1 S-1 (pH 8.0, 22 degrees C). This value is consistent with exchange occurring by reversal of the ATP-ase reaction back to the myosin.ATP complex.  相似文献   

12.
Proudfoot EM  Mackay JP  Karuso P 《Biochemistry》2001,40(15):4867-4878
The molecular recognition of oligonucleotides by chiral ruthenium complexes has been probed by NMR spectroscopy using the template Delta-cis-alpha- and Delta-cis-beta-[Ru(RR-picchxnMe(2)) (bidentate)](2+), where the bidentate ligand is one of phen (1,10-phenanthroline), dpq (dipyrido[3,2-f:2',3'-h]quinoxaline), or phi (9,10-phenanthrenequinone diimine) and picchxnMe(2)() is N,N'-dimethyl-N,N'-di(2-picolyl)-1,2-diaminocyclohexane. By varying only the bidentate ligand in a series of complexes, it was shown that the bidentate alone can alter binding modes. DNA binding studies of the Delta-cis-alpha-[Ru(RR-picchxnMe(2))(phen)](2+) complex indicate fast exchange kinetics on the chemical shift time scale and a "partial intercalation" mode of binding. This complex binds to [d(CGCGATCGCG)](2) and [d(ATATCGATAT)](2) at AT, TA, and GA sites from the minor groove, as well as to the ends of the oligonucleotide at low temperature. Studies of the Delta-cis-beta-[Ru(RR-picchxnMe(2))(phen)](2+) complex with [d(CGCGATCGCG)](2) showed that the complex binds only weakly to the ends of the oligonucleotide. The interaction of Delta-cis-alpha-[Ru(RR-picchxnMe(2))(dpq)](2+) with [d(CGCGATCGCG)](2) showed intermediate exchange kinetics and evidence of minor groove intercalation at the GA base step. In contrast to the phen and dpq complexes, Delta-cis-alpha- and Delta-cis-beta-[Ru(RR-picchxnMe(2))(phi)](2+) showed evidence of major groove binding independent of the metal ion configuration. DNA stabilization induced by complex binding to [d(CGCGATCGCG)](2) (measured as DeltaT(m)) increases in the order phen < dpq and DNA affinity in the order phen < dpq < phi. The groove binding preferences exhibited by the different bidentate ligands is explained with the aid of molecular modeling experiments.  相似文献   

13.
Spinach-leaf ribulose-5-phosphate kinase catalyzes the reaction of (Rp)-[beta, gamma-18O, gamma-18O]adenosine 5'-(3-thiotriphosphate) with ribulose 5-phosphate to form ribulose 1-[18O]phosphorothioate 5-phosphate. This product is incubated with CO2, Mg2+, and ribulose-bisphosphate carboxylase to form the [18O]phosphorothioate of D-glycerate. Reduction of this material using phosphoglycerate kinase/ATP, glyceraldehyde-3-phosphate dehydrogenase/NADH, triose-phosphate isomerase, and glycerol-phosphate dehydrogenase/NADH produces glycerol 3-[18O]phosphorothioate, which is subjected to ring closure using diethylphosphorochloridate. This in-line reaction produces a diastereoisomeric mixture of glycerol 2,3-cyclic phosphorothioates. 31P NMR spectroscopy was used to analyze the 18O content of the products. The anti-diastereoisomer, which is the major isomer formed and corresponds to the downfield 31P NMR signal (Pliura, D.H., Schomburg, D., Richard, J.P., Frey, P.A., and Knowles, J.R. (1980) Biochemistry 19, 325-329), retains the 18O label. This observation indicates that the ribulose-5-phosphate kinase reaction proceeds with inversion of configuration at phosphorus. The reaction is, therefore, unlikely to involve the participation of a covalent phosphoryl-enzyme intermediate.  相似文献   

14.
The synthesis and the characterization (elemental analysis, (1)H NMR and X-ray) of the first cyclopalladated complexes containing 4-hydroxyacridinate as complementary ligand are described. 4-Hydroxyacridine acts as a bidentate [N,O] chelating ligand, giving rise to square planar Pd(II) complexes in the coordination of a cyclopalladated fragment of phenylpyridine or phenylpyrimidine, characterized by the presence of two almost coplanar metalated rings. The biological activity studies conducted on these new Pd(II) complexes proved that the phenylpyridine Pd(II) derivative is more efficient than cis-platinum. The intrinsically substitutional inertness of the cyclopalladated ring and the presence of the [N,O] chelated acridine ligand make these systems of particular interest in their promising biological activity.  相似文献   

15.
The structural and fusogenic properties of large unilamellar vesicles (LUVs) composed of the cationic lipid N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) and 1,2-dioleoyl-3-phosphatidylethanotamine (DOPE) have been examined in the presence of pCMV5 plasmid and correlated with transfection potency. It is shown, employing lipid mixing fusion assays, that pCMV5 plasmid strongly promotes fusion between DOTMA/DOPE (1:1) LUVs and DOTMA/1,2-dioleoyl-3-phosphatidylcholine (DOTMA/DOPC) (1:1) LUVs such that at a cationic lipid-to-DNA charge ratio of 3.0, approximately 80% fusion is observed. The anions citrate and chloride can also trigger fusion, but at much higher concentrations. Freeze-fracture electron microscopy studies demonstrate the tendency of cationic vesicles to form clusters at low pCMV5 content, whereas macroscopic fused aggregates can be observed at higher plasmid levels. 31P NMR studies of the fused DNA-DOTMA/DOPE (1:1) complexes obtained at high plasmid levels (charge ratio 1.0) reveal narrow "isotropic" 31P NMR resonances, whereas the corresponding DOPC containing systems exhibit much broader "bilayer" 31P NMR spectra. In agreement with previous studies, the transfection potency of the DOPE-containing systems is dramatically higher than for the DOPC-containing complexes, indicating a correlation between transfection potential and the motional properties of endogenous lipids. Interestingly, it was found that the complexes could be separated by centrifugation into a pellet fraction, which exhibits superior transfection potencies, and a supernatant fraction. Again, the pellet fraction in the DOPE-containing system exhibits a significantly narrower 31P NMR resonance than the corresponding DOPC-containing system. It is suggested that the 31P NMR characteristics of complexes exhibiting higher transfection potencies are consistent with the presence of nonbilayer lipid structures, which may play a direct role in the fusion or membrane destabilization events vital to transfection.  相似文献   

16.
The restriction endonuclease EcoRI hydrolyzes the Rp diastereomer of d(pGGsAATTCC), an analogue of d(pGGAATTCC) containing a chiral phosphorothioate group at the cleavage site between the deoxyguanosine and the deoxyadenosine residues (Connolly, B.A., Potter, B.V.L., Eckstein, F., Pingoud, A., and Grotjahn, L. (1984) Biochemistry 23, 3343-3453). Performing the reaction in H2(18)O leads to d(pGG) and the hexanucleotide d([18O, S]pAATTCC) which has an 18O-containing phosphorothioate group at the 5' terminus. Further hydrolysis of this hexamer with nuclease P1 yields deoxyadenosine 5'-O-[18O]phosphorothioate which can be stereospecifically phosphorylated with adenylate kinase and pyruvate kinase to give Sp-[18O] deoxyadenosine 5'-O-(1-thiotriphosphate). 31P NMR spectroscopy shows the oxygen-18 in this compound to be in a bridging position between the alpha- and beta-phosphorus atoms. Thus, the hydrolysis reaction catalyzed by EcoRI proceeds with inversion of configuration at phosphorus. This result is compatible with a direct enzyme-catalyzed nucleophilic attack of H2O at phosphorus without involvement of a covalent enzyme intermediate.  相似文献   

17.
We have previously suggested that variations in the 31P chemical shifts of individual phosphates in duplex oligonucleotides are attributable to torsional angle changes in the deoxyribose phosphate backbone. This hypothesis is not directly supported by analysis of the 1H/31P two-dimensional J-resolved spectra of a number of mismatch dodecamer oligonucleotide duplexes including the following sequences: d-(CGTGAATTCGCG), d(CGUGAATTCGCG), d(CGGGAATTCGCG), d(CGAGAATTCGCG), and d(CGCGAATTCACG). The 31P NMR signals of the dodecamer mismatch duplexes were assigned by 2D 1H/31P pure absorption phase constant time (PAC) heteronuclear correlation spectra. From the assigned H3' and H4' signals, the 31P signals of the base-pair mismatch dodecamers were identified. JH3'-P coupling constants for each of the phosphates of the dodecamers were obtained from 1H/31P J-resolved selective proton flip 2D spectra. By use of a modified Karplus relationship, the C4'-C3'-O3'-P torsional angles (epsilon) were obtained. JH3'-P coupling constants were measured for many of the oligonucleotides as a function of temperature. There exists a good linear correlation between 31P chemical shifts and the epsilon torsional angle. This correlation can be further extended to the C3'-O3'-P-O5' torsional angle (zeta) by using a linear relationship between epsilon and zeta obtained from crystal structure studies. The 31P chemical shifts follow the general observation that the more internally the phosphate is located within the oligonucleotide sequence, the more upfield the 31P resonance occurs. In addition, 31P chemical shifts show sequence- and site-specific variations. Analysis of the backbone torsional angle variations from the coupling constant analysis has provided additional information regarding the origin of these variations in 31P chemical shifts.  相似文献   

18.
The partial encapsulation of platinum(II)-based DNA intercalators of the type [Pt(5-Cl-phen)(ancillary ligand)](2+), where 5-Cl-phen is 5-chloro-1,10-phenanthroline and the ancillary ligand is ethylenediamine, (1S,2S)-diaminocyclohexane (S,S-dach) or (1R,2R)-diaminocyclohexane, within cucurbit[n]uril (CB[n], where n is 6, 7 or 8) has been examined by (1)H and (195)Pt NMR and mass spectrometry. For CB[7], the molecule encapsulates over the ancillary ligand of all metal complexes, whether this is ethylenediamine or diaminocyclohexane. For CB[8], encapsulation occurs over the sides of the 5-Cl-phen ligand at low [Pt(5-Cl-phen)(S,S-dach)](2+) (5CLSS) to CB[8] ratios (i.e. 0.25:1) but over the ancillary ligand at higher ratios (i.e. 2:1). For CB[6] binding, 5CLSS exhibits both portal and cavity binding, with the ancillary ligand displaying chemical shifts consistent with fast exchange kinetics on the NMR timescale for portal binding and slow exchange kinetics for cavity binding. Binding constants could not be determined using UV-vis, circular dichroism or fluorescence spectrophotometry, but a binding constant for binding of 5CLSS to CB[6] of approximately 10(5) M(-1) was determined using (1)H NMR. Finally, the effect of CB[n] encapsulation on the cytotoxicity of the metal complexes was examined using L1210 murine leukaemia cells in vitro growth inhibition assays. The cytotoxicity is highly dependent on both the metal complex and the CB[n] size, and whilst CB[7] and CB[8] generally decreased cytotoxicity, it was found that CB[6] increased the cyotoxicity of 5CLSS up to 2.5-fold.  相似文献   

19.
The preparation of platinum(II) complexes containing L-serine using K(2)[PtCl(4)] and KI as raw materials was undertaken. The cis-trans isomer ratio of the complexes in the reaction mixture differed significantly depending on whether KI was present or absent in the reaction mixture. One of the two [Pt(L-ser-N,O)(2)] complexes (L-ser=L-serinate anion) prepared using KI crystallizes in the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions a=8.710(2) A, b=9.773(3) A, c=11.355(3) A, Z=4. The crystal data revealed that this complex has a cis configuration. The other [Pt(L-ser-N,O)(2)] complex also crystallizes in the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions a=7.0190(9) A, b=7.7445(6) A, c=20.946(2) A, Z=4. The crystal data revealed that this complex has a trans configuration. The 195Pt NMR chemical shifts of trans-[Pt(L-ser-N,O)(2)] and cis-[Pt(L-ser-N,O)(2)] complexes are -1632 and -1832 ppm, respectively. 195Pt NMR and HPLC measurements were conducted to monitor the reactions of the two [Pt(L-ser-N,O)(2)] complexes with HCl. Both 195Pt NMR and HPLC showed that the reactivities of cis- and trans-[Pt(L-ser-N,O)(2)] toward HCl are different: coordinated carboxyl oxygen atoms of trans-[Pt(L-ser-N,O)(2)] were detached faster than those for cis-[Pt(L-ser-N,O)(2)].  相似文献   

20.
The static geometry of the phosphodiesters in oriented fibers of DNA and a variety of polynucleotides was investigated by solid-state 31P nuclear magnetic resonance (NMR) spectroscopy. The structural parameters of the phosphodiester backbone expressed by two Euler angles beta and gamma were estimated on the basis of the NMR spectra of natural DNA, poly(dA).poly(dT), poly(rA).poly(dT), and poly-(rA).poly(rU). The Euler angles were calculated by using the known single crystal structures of a decamer, r(GCG)d(TATACGC), and a dodecamer, d(CGCGAATTCGCG). The distribution pattern of the Euler angles was quite different between these two oligonucleotides due to the different types of conformation, and it was fully consistent with the 31P NMR results, showing that the conformation of the B form DNA is very heterogeneous while that of the A or A' form is much more invariable with regard to the base composition. The structural parameters were also calculated by using various structures determined by the X-ray fiber diffraction studies, and they were evaluated on the basis of the 31P NMR data. Notably, poly(dA).poly(dT) fibers exhibited abnormal 31P NMR spectra which were very broad in line width and were not appreciably perturbed by hydration; a coiled double-helical structure is proposed as the most plausible model for this polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号