首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pseudomonas aeruginosa strains from the chronic lung infections of cystic fibrosis (CF) patients are phenotypically and genotypically diverse. Using strain PAO1 whole genome DNA microarrays, we assessed the genomic variation in P. aeruginosa strains isolated from young children with CF (6 months to 8 years of age) as well as from the environment. Eighty-nine to 97% of the PAO1 open reading frames were detected in 20 strains by microarray analysis, while subsets of 38 gene islands were absent or divergent. No specific pattern of genome mosaicism defined strains associated with CF. Many mosaic regions were distinguished by their low G + C content; their inclusion of phage related or pyocin genes; or by their linkage to a vgr gene or a tRNA gene. Microarray and phenotypic analysis of sequential isolates from individual patients revealed two deletions of greater than 100 kbp formed during evolution in the lung. The gene loss in these sequential isolates raises the possibility that acquisition of pyomelanin production and loss of pyoverdin uptake each may be of adaptive significance. Further characterization of P. aeruginosa diversity within the airways of individual CF patients may reveal common adaptations, perhaps mediated by gene loss, that suggest new opportunities for therapy.  相似文献   

2.
The outer carbohydrate layer, or O antigen, of Pseudomonas aeruginosa varies markedly in different isolates of these bacteria, and at least 20 distinct O-antigen serotypes have been described. Previous studies have indicated that the major enzymes responsible for O-antigen synthesis are encoded in a cluster of genes that occupy a common genetic locus. We used targeted yeast recombinational cloning to isolate this locus from the 20 internationally recognized serotype strains. DNA sequencing of these isolated segments revealed that at least 11 highly divergent gene clusters occupy this region. Homology searches of the encoded protein products indicated that these gene clusters are likely to direct O-antigen biosynthesis. The O15 serotype strains lack functional gene clusters in the region analyzed, suggesting that O-antigen biosynthesis genes for this serotype are harbored in a different portion of the genome. The overall pattern underscores the plasticity of the P. aeruginosa genome, in which a specific site in a well-conserved genomic region can be occupied by any of numerous islands of functionally related DNA with diverse sequences.  相似文献   

3.
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that infects immunocompromised patients and trauma victims and causes fatal lung infections in people with cystic fibrosis. This microorganism produces a number of virulence factors, one of which is lipopolysaccharide (LPS), which has been shown to mediate many biological effects including resistance to serum killing and phagocytosis. These biological activities have been correlated to the length of the O-polysaccharide and its distribution on the outer membrane. Wzz is responsible for regulation of the size distribution of the O-antigen. Wzz has been found to participate solely in the Wzy-dependent pathway for LPS biosynthesis, which produces heteropolymeric O-polysaccharide such as the B-band LPS of P. aeruginosa. Our laboratory has previously reported characterization of a Wzz protein encoded in the B-band O-antigen biosynthesis cluster of PAO1. The availability of the genome sequence of P. aeruginosa PAO1 has made it possible to identify a second functional Wzz protein (PA0938, Wzz2). Gene replacement was used to generate an unmarked wzz2delta knock-out and a wzz2delta/wzz1::Gm double knock-out. As expected, the wzz2delta strain produced LPS with modal length imparted by Wzz1, and the wzz2delta/wzz1::Gm strain produced LPS O-antigen with a non-modal (random) length. Both wzz1 and wzz2 from P. aeruginosa PAO1 were cloned and expressed with an N-terminal His6 tag. His6-Wzz1 and His6-Wzz2 were purified to near homogeneity by immobilized metal affinity chromatography (IMAC). These preparations were used to develop specific polyclonal antibodies against each of the proteins. In vivo protein cross-linking followed by Western immunoblotting indicated that Wzz1 forms dimers whereas Wzz2 forms octamers. By generation of a wzz2delta/rmlC double mutant and analysis of the LPS, we have made the novel observation that polymerization of modal chain length-distributed O-antigen occurred before ligation to the lipid A core. We have shown an association between the Wzz proteins and O-antigen polymer chains using immunoprecipitation with anti-O5 O-antigen monoclonal antibody MF15-4. Both Wzz1 and Wzz2 could be co-precipitated with O5 polymer.  相似文献   

4.
Pseudomonas aeruginosa chronic lung infections are the major cause of morbidity and mortality in cystic fibrosis (CF) patients. The P. aeruginosa strains PAO1 and PA14 were compared with the Liverpool epidemic strain LESB58 to assess in vivo growth, infection kinetics, and bacterial persistence and localization within tissues in a rat model of chronic lung infection. The three P. aeruginosa strains demonstrated similar growth curves in vivo but differences in tissue distribution. The LESB58 strain persisted in the bronchial lumen, while the PAO1 and PA14 strains were found localized in the alveolar regions and grew as macrocolonies after day 7 postinfection. Bacterial strains were compared for swimming and twitching motility and for the production of biofilm. The P. aeruginosa LESB58 strain produced more biofilm than PAO1 and PA14. Competitive index (CI) analysis of PAO1, PA14, and LESB58 in vivo indicated CI values of 0.002, 0.0002, and 0.14 between PAO1-PA14, PAO1-LESB58, and LESB58-PA14, respectively. CI analysis comparing the in vivo growth of the PAO1 DeltaPA5441 mutant and four PA14 surface attachment-defective (sad) mutants gave CI values 10 to 1,000 times lower in competitions with their respective wild-type strains PAO1 and PA14. P. aeruginosa strains studied in the rat model of chronic lung infection demonstrated similar in vivo growth but differences in virulence as shown with a competitive in vivo assay. These differences were further confirmed with biofilm and motility in vitro assays, where strain LESB58 produced more biofilm but had less capacity for motility than PAO1 and PA14.  相似文献   

5.
We have recently described the presence of a high proportion of Pseudomonas aeruginosa isolates (20%) with an increased mutation frequency (mutators) in the lungs of cystic fibrosis (CF) patients. In four out of 11 independent P. aeruginosa strains, the high mutation frequency was found to be complemented with the wild-type mutS gene from P. aeruginosa PAO1. Here, we report the cloning and sequencing of two additional P. aeruginosa mismatch repair genes and the characterization, by complementation of deficient strains, of these two putative P. aeruginosa mismatch repair genes (mutL and uvrD). We also describe the alterations in the mutS, mutL and uvrD genes responsible for the mutator phenotype of hypermutable P. aeruginosa strains isolated from CF patients. Seven out of the 11 mutator strains were found to be defective in the MMR system (four mutS, two mutL and one uvrD). In four cases (three mutS and one mutL), the genes contained frameshift mutations. The fourth mutS strain showed a 3.3 kb insertion after the 10th nucleotide of the mutS gene, and a 54 nucleotide deletion between two eight nucleotide direct repeats. This deletion, involving domain II of MutS, was found to be the main one responsible for mutS inactivation. The second mutL strain presented a K310M mutation, equivalent to K307 in Escherichia coli MutL, a residue known to be essential for its ATPase activity. Finally, the uvrD strain had three amino acid substitutions within the conserved ATP binding site of the deduced UvrD polypeptide, showing defective mismatch repair activity. Interestingly, cells carrying this mutant allele exhibited a fully active UvrABC-mediated excision repair. The results shown here indicate that the putative P. aeruginosa mutS, mutL and uvrD genes are mutator genes and that their alteration results in a mutator phenotype.  相似文献   

6.
Pseudomonas aeruginosa causes chronic infections in the lungs of cystic fibrosis (CF) individuals and remains the leading cause of morbidity and mortality associated with the disease. Biofilm growth and phenotypic diversification are factors thought to contribute to this organism's persistence. Most studies have focused on laboratory isolates such as strain PAO1, and there are relatively few reports characterizing the properties of CF strains, especially under decreased oxygen conditions such as occur in the CF lung. This study compared the phenotypic and functional properties of P. aeruginosa from chronically infected CF adults with those of strain PAO1 and other clinical non-CF isolates under aerobic and anaerobic culture conditions. The CF isolates overall displayed a reduced ability to form biofilms in standard in vitro short-term models. They also grew more slowly in culture, and exhibited decreased adherence to glass and decreased motilities (swimming, swarming and twitching). All of these characteristics were markedly accentuated by anaerobic growth conditions. Moreover, the CF strain phenotypes were not readily reversed by culture manipulations designed to encourage planktonic growth. The CF strains were thus inherently different from strain PAO1 and most of the other non-CF clinical P. aeruginosa isolates tested. In vitro models used to research CF isolate biofilm growth need to take the above properties of these strains into account.  相似文献   

7.
The O antigen of Pseudomonas aeruginosa B-band lipopolysaccharide is synthesized by assembling O-antigen-repeat units at the cytoplasmic face of the inner membrane by nonprocessive glycosyltransferases, followed by polymerization on the periplasmic face. The completed chains are covalently attached to lipid A core by the O-antigen ligase, WaaL. In P. aeruginosa the process of ligating these O-antigen molecules to lipid A core is not clearly defined, and an O-antigen ligase has not been identified until this study. Using the sequence of waaL from Salmonella enterica as a template in a BLAST search, a putative waaL gene was identified in the P. aeruginosa genome. The candidate gene was amplified and cloned, and a chromosomal knockout of PAO1 waaL was generated. Lipopolysaccharide (LPS) from this mutant is devoid of B-band O-polysaccharides and semirough (SR-LPS, or core-plus-one O-antigen). The mutant PAO1waaL is also deficient in the production of A-band polysaccharide, a homopolymer of D-rhamnose. Complementation of the mutant with pPAJL4 containing waaL restored the production of both A-band and B-band O antigens as well as SR-LPS, indicating that the knockout was nonpolar and waaL is required for the attachment of O-antigen repeat units to the core. Mutation of waaL in PAO1 and PA14, respectively, could be complemented with waaL from either strain to restore wild-type LPS production. The waaL mutation also drastically affected the swimming and twitching motilities of the bacteria. These results demonstrate that waaL in P. aeruginosa encodes a functional O-antigen ligase that is important for cell wall integrity and motility of the bacteria.  相似文献   

8.
Considerable lung injury results from the inflammatory response to Pseudomonas aeruginosa infections in patients with cystic fibrosis (CF). The P. aeruginosa laboratory strain PAO1, an environmental isolate, and isolates from CF patients were cultured in vitro and outer membrane vesicles from those cultures were quantitated, purified, and characterized. Vesicles were produced throughout the growth phases of the culture and vesicle yield was strain-independent. Strain-dependent differences in the protein composition of vesicles were quantitated and identified. The aminopeptidase PaAP (PA2939) was highly enriched in vesicles from CF isolates. Vesicles from all strains elicited IL-8 secretion by lung epithelial cells. These results suggest that P. aeruginosa colonizing the CF lung may produce vesicles with a particular composition and that the vesicles could contribute to inflammation.  相似文献   

9.
Pseudomonas aeruginosa is one of the major causative agents of mortality and morbidity in hospitalized patients due to a multiplicity of virulence factors associated with both chronic and acute infections. Acute P. aeruginosa infection is primarily mediated by planktonic bacteria expressing the type III secretion system (TTSS), a surface-attached needle-like complex that injects cytotoxins directly into eukaryotic cells, causing cellular damage. Lipopolysaccharide (LPS) is the principal surface-associated virulence factor of P. aeruginosa. This molecule is known to undergo structural modification (primarily alterations in the A- and B-band O antigen) in response to changes in the mode of life (e.g., from biofilm to planktonic). Given that LPS exhibits structural plasticity, we hypothesized that the presence of LPS lacking O antigen would facilitate eukaryotic intoxication and that a correlation between the LPS O-antigen serotype and TTSS-mediated cytotoxicity would exist. Therefore, strain PAO1 (A+ B+ O-antigen serotype) and isogenic mutants with specific O-antigen defects (A+ B-, A- B+, and A- B-) were examined for TTSS expression and cytotoxicity. A strong association existed in vitro between the absence of the large, structured B-band O antigen and increased cytotoxicity of these strains. In vivo, all three LPS mutant strains demonstrated significantly increased lung injury compared to PAO1. Clinical strains lacking the B-band O antigen also demonstrated increased TTSS secretion. These results suggest the existence of a cooperative association between LPS O-antigen structure and the TTSS in both laboratory and clinical isolates of P. aeruginosa.  相似文献   

10.
The airways of individuals with cystic fibrosis (CF) often become chronically infected with unique strains of the opportunistic pathogen Pseudomonas aeruginosa. Several lines of evidence suggest that the infecting P. aeruginosa lineage diversifies in the CF lung niche, yet so far this contemporary diversity has not been investigated at a genomic level. In this work, we sequenced the genomes of pairs of randomly selected contemporary isolates sampled from the expectorated sputum of three chronically infected adult CF patients. Each patient was infected by a distinct strain of P. aeruginosa. Single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) were identified in the DNA common to the paired isolates from different patients. The paired isolates from one patient differed due to just 1 SNP and 8 indels. The paired isolates from a second patient differed due to 54 SNPs and 38 indels. The pair of isolates from the third patient both contained a mutS mutation, which conferred a hypermutator phenotype; these isolates cumulatively differed due to 344 SNPs and 93 indels. In two of the pairs of isolates, a different accessory genome composition, specifically integrated prophage, was identified in one but not the other isolate of each pair. We conclude that contemporary isolates from a single sputum sample can differ at the SNP, indel, and accessory genome levels and that the cross-sectional genomic variation among coeval pairs of P. aeruginosa CF isolates can be comparable to the variation previously reported to differentiate between paired longitudinally sampled isolates.  相似文献   

11.
Clones C and PA14 are the worldwide most abundant clonal complexes in the Pseudomonas aeruginosa population. The microevolution of clones C and PA14 was investigated in serial cystic fibrosis (CF) airway isolates collected over 20 years since the onset of colonization. Intraclonal evolution in CF lungs was resolved by genome sequencing of first, intermediate and late isolates and subsequent multimarker SNP genotyping of the whole strain panel. Mapping of sequence reads onto the P. aeruginosa PA14 reference genome unravelled an intraclonal and interclonal sequence diversity of 0.0035% and 0.68% respectively. Clone PA14 diversified into three branches in the patient's lungs, and the PA14 population acquired 15 nucleotide substitutions and a large deletion during the observation period. The clone C genome remained invariant during the first 3 years in CF lungs; however, 15 years later 947 transitions and 12 transversions were detected in a clone C mutL mutant strain. Key mutations occurred in retS, RNA polymerase, multidrug transporter, virulence and denitrification genes. Late clone C and PA14 persistors in the CF lungs were compromised in growth and cytotoxicity, but their mutation frequency was normal even in mutL mutant clades.  相似文献   

12.
The ability of 59 wild-type strains of Pseudomonas aeruginosa to adhere to the HeLa and Buffalo Green Monkey Kidney (BGMK) cells was investigated. Twenty strains were isolated from sputa of cystic fibrosis patients, while 19 strains were isolated from tracheal aspirates and 20 from bronchial secretions of patients without cystic fibrosis, and they were used as a control group of strains. The statistically significant difference between adherence ability of strains was observed (p < 0.01). While most of the tracheal and bronchial isolates were hyperadhesive (51-110 bacteria per cell) most of the cystic fibrosis isolates adhered poorly to the HeLa and BGMK cells (1-10 bacteria per cell). The bacterial binding to the cells was blocked when bacteria were incubated at 80 degrees C for 20 min before the adherence assay. These results indicate that alginate is not involved in the adherence of P. aeruginosa to the used epithelial cell lines, and, because of that, mucoid strains isolated from persistently colonized cystic fibrosis patients showed poor adherence ability.  相似文献   

13.
The entire amino acid sequence for Pseudomonas aeruginosa PAO pilin was determined through peptide sequencing and from the complete nucleotide sequence encoding the pilin gene. The precursor PAO pilin is 149 amino acids in length which includes a 6-amino-acid positively charged leader sequence. Comparison of the amino acid sequences of pilin produced by P. aeruginosa PAO and PAK reveals a region of high homology corresponding to the leader peptide and residues 1 to 54 of the mature pilin. The amino acid sequence of the peptide encompassing the major antigenic determinant of PAK differs greatly from that of the equivalent region in PAO. The C-terminal regions of these proteins are semiconserved. Few major differences were found when the predicted secondary structures for PAO and PAK pilins were compared. Major nucleotide sequence variation between the equivalent restriction fragments from PAO and PAK occurred within the areas coding for the peptides containing the immunodominant site for PAK pilin and the C termini.  相似文献   

14.
15.
Adaptation of bacterial pathogens to a permanently host-associated lifestyle by means of deletion or acquisition of genetic material is usually examined through comparison of present-day isolates to a distant theoretical ancestor. This limits the resolution of the adaptation process. We conducted a retrospective study of the dissemination of the P.aeruginosa DK2 clone type among patients suffering from cystic fibrosis, sequencing the genomes of 45 isolates collected from 16 individuals over 35 years. Analysis of the genomes provides a high-resolution examination of the dynamics and mechanisms of the change in genetic content during the early stage of host adaptation by this P.aeruginosa strain as it adapts to the cystic fibrosis (CF) lung of several patients. Considerable genome reduction is detected predominantly through the deletion of large genomic regions, and up to 8% of the genome is deleted in one isolate. Compared with in vitro estimates the resulting average deletion rates are 12- to 36-fold higher. Deletions occur through both illegitimate and homologous recombination, but they are not IS element mediated as previously reported for early stage host adaptation. Uptake of novel DNA sequences during infection is limited as only one prophage region was putatively inserted in one isolate, demonstrating that early host adaptation is characterized by the reduction of genomic repertoire rather than acquisition of novel functions. Finally, we also describe the complete genome of this highly adapted pathogenic strain of P.aeruginosa to strengthen the genetic basis, which serves to help our understanding of microbial evolution in a natural environment.  相似文献   

16.
The whole genomic typing of 21 isolates of Pseudomonas aeruginosa from 15 intensive care unit (ICU) patients was performed by pulsed-field gel electrophoresis (PFGE using SpeI) and Riboprinting (using EcoRI and PvuII), and then the results were compared with predictions made from the whole genome sequence of P. aeruginosa PAO1. The analysis of electronic images from PFGE and Riboprinting by GelComparII demonstrated similar discrimination between PFGE and Riboprinting with PvuII enzyme; however, Riboprinting by EcoRI had reduced banding patterns and was shown to be of lower discrimination than PvuII. When analyzing isolates from patients, both PFGE and Riboprinting using PvuII enzyme gave equivalent results, with the exception of two isolates that were closely related by PvuII Riboprinting and unrelated by PFGE. These discrepancies in typing results can be explained and adjusted for by comparisons with the rrn properties and the SpeI restriction fragments predicted from the whole genome of P. aeruginosa PAO1. Properties of the rrn operon that need to be taken into account include: (i) restriction enzyme sites that produce one or two fragments for each rrn operon; (ii) genomic variability in ISR sequence length; (iii) different enzymes need to be used to determine differences in rrn operon copy number from Riboprints; and (iv) choice of a restriction enzyme that produces riboprinter bands derived from rrn operon regions that are highly variable within the genome and between isolates. This knowledge has ramifications for PFGE and Riboprinter design and analysis so that for each new species to be typed comparisons can be made using the whole genome sequence.  相似文献   

17.
18.
The genomic relatedness of 573 Pseudomonas aeruginosa strains from environmental and clinical habitats was examined by digesting the genome with the rare-cutting enzyme SpeI. Thirty-nine strains were collected from environmental habitats mainly of aquatic origin, like rivers, lakes, or sanitary facilities. Four hundred fifty strains were collected from 76 patients with cystic fibrosis (CF) treated at four different centers, and 25 additional clinical isolates were collected from patients suffering from other diseases. Twenty-nine P. aeruginosa isolates were collected from the environment of one CF clinic. Thirty strains from culture collections were of environmental and clinic origin. A common macrorestriction fingerprint pattern was found in 13 of 46 CF patients, 5 of 29 environmental isolates from the same hospital, in a single ear infection isolate from another hospital, and 8 of 38 isolates from aquatic habitats about 300 km away from the CF clinic. The data indicate that closely related variants of one major clone (called clone C) persisted in various spatially and temporally separated habitats. Southern analysis of the clonal variants with six gene probes and two probes for genes coding for rRNA revealed almost the same hybridization patterns. With the exception of the phenotypically rapidly evolving CF isolates, the close relatedness of the strains of the clone was also shown by their identical responses in pyocin typing, phage typing, and serotyping. Besides clone C, three other P. aeruginosa clones were isolated from more than one clinical or environmental source.  相似文献   

19.
Bacteria inhabiting biofilms usually produce one or more polysaccharides that provide a hydrated scaffolding to stabilize and reinforce the structure of the biofilm, mediate cell-cell and cell-surface interactions, and provide protection from biocides and antimicrobial agents. Historically, alginate has been considered the major exopolysaccharide of the Pseudomonas aeruginosa biofilm matrix, with minimal regard to the different functions polysaccharides execute. Recent chemical and genetic studies have demonstrated that alginate is not involved in the initiation of biofilm formation in P. aeruginosa strains PAO1 and PA14. We hypothesized that there is at least one other polysaccharide gene cluster involved in biofilm development. Two separate clusters of genes with homology to exopolysaccharide biosynthetic functions were identified from the annotated PAO1 genome. Reverse genetics was employed to generate mutations in genes from these clusters. We discovered that one group of genes, designated psl, are important for biofilm initiation. A PAO1 strain with a disruption of the first two genes of the psl cluster (PA2231 and PA2232) was severely compromised in biofilm initiation, as confirmed by static microtiter and continuous culture flow cell and tubing biofilm assays. This impaired biofilm phenotype could be complemented with the wild-type psl sequences and was not due to defects in motility or lipopolysaccharide biosynthesis. These results implicate an as yet unknown exopolysaccharide as being required for the formation of the biofilm matrix. Understanding psl-encoded exopolysaccharide expression and protection in biofilms will provide insight into the pathogenesis of P. aeruginosa in cystic fibrosis and other infections involving biofilms.  相似文献   

20.
Pseudomonas aeruginosa is an opportunistic pathogen and an important cause of infection, particularly amongst cystic fibrosis (CF) patients. While specific strains capable of patient-to-patient transmission are known, many infections appear to be caused by unique and unrelated strains. There is a need to understand the relationship between strains capable of colonising the CF lung and the broader set of P. aeruginosa isolates found in natural environments. Here we report the results of a multilocus sequence typing (MLST)-based study designed to understand the genetic diversity and population structure of an extensive regional sample of P. aeruginosa isolates from South East Queensland, Australia. The analysis is based on 501 P. aeruginosa isolates obtained from environmental, animal and human (CF and non-CF) sources with particular emphasis on isolates from the Lower Brisbane River and isolates from CF patients obtained from the same geographical region. Overall, MLST identified 274 different sequence types, of which 53 were shared between one or more ecological settings. Our analysis revealed a limited association between genotype and environment and evidence of frequent recombination. We also found that genetic diversity of P. aeruginosa in Queensland, Australia was indistinguishable from that of the global P. aeruginosa population. Several CF strains were encountered frequently in multiple ecological settings; however, the most frequently encountered CF strains were confined to CF patients. Overall, our data confirm a non-clonal epidemic structure and indicate that most CF strains are a random sample of the broader P. aeruginosa population. The increased abundance of some CF strains in different geographical regions is a likely product of chance colonisation events followed by adaptation to the CF lung and horizontal transmission among patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号