首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
目的 检测正常和突出的人颈椎间盘软骨终板、纤维环及髓核中Bcl2、Fas的表达情况,探讨其在各组中不同表达的意义。方法 先将各正常及突出颈椎间盘在解剖显微镜下分出软骨终板、纤维环、髓核并进行苏木精-伊红(HE)染色行形态学观察,再用免疫组化(SABC法)检测Bcl2、Fas在各组中的表达情况,并进行计算机显像系统图像分析。结果 Bcl2的表达在正常颈椎间盘的软骨终板、纤维环、髓核中均高于突出颈椎间盘的各相应组;Fas的表达在正常颈椎间盘的软骨终板、纤维环、髓核中均低于突出颈椎间盘的各相应组;在异常颈椎间盘的软骨终板中Bcl2的表达低于其在纤维环和髓核中的表达(P〈0.01);Fas的表达高于其在纤维环和髓核中的表达(P〈0.01);Bcl2及Fas的表达在纤维环和髓核中的差别无统计学差异(P〉0.05)。结论 细胞凋亡是椎间盘退变的重要原因,且凋亡可能始于软骨终板。  相似文献   

3.
Rubrivivax gelatinosus CBS, a purple nonsulfur photosynthetic bacterium, can grow photosynthetically using CO and N(2) as the sole carbon and nitrogen nutrients, respectively. R. gelatinosus CBS is of particular interest due to its ability to metabolize CO and yield H(2). We present the 5-Mb draft genome sequence of R. gelatinosus CBS with the goal of providing genetic insight into the metabolic properties of this bacterium.  相似文献   

4.
The tetraheme cytochrome subunits of the photosynthetic reaction centers (RCs) in two species of purple bacteria, Rubrivivax gelatinosus and Blastochloris (Rhodopseudomonas) viridis, were compared in terms of their capabilities to bind different electron-donor proteins. The wild-type RCs from both species and mutated forms of R. gelatinosus RCs (with amino acid substitutions introduced to the binding domain for electron-donor proteins) were tested for their reactivity with soluble cytochromes and high potential iron-sulfur protein. Cytochromes from both species were good electron donors to the B. viridis RC and the R. gelatinosus RC. The reactivity in the R. gelatinosus RC showed a clear dependence on the polarity of the charges introduced to the binding domain, indicating the importance of the electrostatic interactions. In contrast, high potential iron-sulfur protein, presumed to operate according to the hydrophobic mechanism of binding, reacted significantly only with the R. gelatinosus RC. Evolutionary substitution of amino acids in a region of the binding domain on the cytochrome subunit surface probably caused the change in the principal mode of protein-protein interactions in the electron-transfer chains.  相似文献   

5.
In several strains of the photosynthetic bacterium Rubrivivax gelatinosus, the synthesis of a high midpoint potential cytochrome is enhanced 4-6-fold in dark aerobically grown cells compared with anaerobic photosynthetic growth. This observation explains the conflicting reports in the literature concerning the cytochrome c content for this species. This cytochrome was isolated and characterized in detail from Rubrivivax gelatinosus strain IL144. The redox midpoint potential of this cytochrome is +300 mV at pH 7. Its molecular mass, 9470 kDa, and its amino acid sequence, deduced from gene sequencing, support its placement in the cytochrome c8 family. The ratio of this cytochrome to reaction center lies between 0.8 and 1 for cells of Rvi. gelatinosus grown under dark aerobic conditions. Analysis of light-induced absorption changes shows that this high-potential cytochrome c8 can act in vivo as efficient electron donor to the photooxidized high-potential heme of the Rvi. gelatinosus reaction center.  相似文献   

6.
Abstract Type strains of Rhodocyclus purpureus, R. gelatinosus and R. tenuis along with three local isolates of R. gelatinosus were tested for growth in the light on n -fatty acids ranging in chain length from C5 (valerate) to C22 (docosanoate).
R. purpureus , the type species of the genus, was anomalous in its limited ability to grow on n -fatty acids; no fatty acids of chain length greater than C9 (nonanoate) were utilized. R. gelatinosus and R. tenuis , on the other hand, utilized all fatty acids in the range C5 to C18 inclusive. R. gelatinosus showed some restricted ability to use C20 (eicosanoate) and C22 (docosanoate) fatty acids.  相似文献   

7.
A gene encoding the high-potential iron-sulfur protein (HiPIP) was cloned from the purple photosynthetic bacterium Rubrivivax gelatinosus. An insertional disruption of this gene by a kanamycin resistance cartridge resulted in a significant decrease in the growth rate under photosynthetic growth conditions. Flash-induced kinetic measurements showed that the rate of reduction of the photooxidized reaction center is greatly diminished in the mutant depleted in the HiPIP. On the other hand, mutants depleted in the low- and high-potential cytochromes c(8), the two other soluble electron carriers, which have been shown to donate an electron to the reaction center in Rvi. gelatinosus, showed growth rates similar to those of the wild type under both photosynthetic and respiratory growth conditions. It was concluded that HiPIP is the major physiological electron donor to the reaction center in Rvi. gelatinosus cells grown under photosynthetic conditions.  相似文献   

8.
Biosynthetic pathways for carotenoids in the purple photosynthetic bacterium, Rubrivivax gelatinosus, which synthesizes spirilloxanthin in addition to spheroidene and OH-spheroidene, were investigated by means of genetic manipulation. A phytoene desaturase gene (crtI) found in the photosynthesis gene cluster of this bacterium was expressed in an Escherichia coli strain that can produce phytoene. Both neurosporene and lycopene were synthesized in the recombinant, probably by three- and four-step desaturation reactions of CrtI. A mutant of RVI: gelatinosus lacking the crtI gene produced only phytoene, indicating that this organism had no other phytoene desaturases. When the crtI deletion mutant was complemented by the three-step phytoene desaturase of Rhodobacter capsulatus, spirilloxanthin and its precursors were not synthesized, although spheroidene and OH-spheroidene were accumulated. It was concluded that neurosporene and lycopene are produced by a single phytoene desaturase in RVI: gelatinosus resulting in the synthesis of spheroidene and spirilloxanthin, and that there are no pathways for spirilloxanthin synthesis via spheroidene.  相似文献   

9.
A gene coding for the photosynthetic reaction center-bound cytochrome subunit, pufC, of Blastochloris viridis, which belongs to the alpha-purple bacteria, was introduced into Rubrivivax gelatinosus, which belongs to the beta-purple bacteria. The cytochrome subunit of B. viridis was synthesized in the R. gelatinosus cells, in which the native pufC gene was knocked out, and formed a chimeric reaction center (RC) complex together with other subunits of R. gelatinosus. The transformant was able to grow photosynthetically. Rapid photo-oxidization of the hemes in the cytochrome subunit was observed in the membrane of the transformant. The soluble electron carrier, cytochrome c(2), isolated from B. viridis was a good electron donor to the chimeric RC. The redox midpoint potentials and the redox difference spectra of four hemes in the cytochrome subunit of the chimeric RC were almost identical with those in the B. viridis RC. The cytochrome subunit of B. viridis seems to retain its structure and function in the R. gelatinosus cell. The chimeric RC and its mutagenesis system should be useful for further studies about the cytochrome subunit of B. viridis.  相似文献   

10.
11.
The chemolithoautotrophic betaproteobacterium Tetrathiobacter kashmirensis belongs to the family Alcaligenaceae and is phylogenetically closely related to pathogens such as Taylorella and Bordetella species. While a complete inorganic sulfur oxidation gene cluster, soxCDYZAXWB, is present in its genome, pathogenicity islands or genes associated with virulence, disease, cellular invasion, and/or intracellular resistance are completely absent.  相似文献   

12.
We report the finished and annotated genome sequence of a denitrifying and N(2)O-reducing betaproteobacterium, Azoarcus sp. strain KH32C. The genome is composed of one chromosome and one megaplasmid and contains genes for plant-microbe interactions and the gene clusters for aromatic-compound degradations.  相似文献   

13.
The carotenoid 1,2-hydratase CrtC from Rubrivivax gelatinosus has been expressed in Escherichia coli in an active form and purified by affinity chromatography. The enzyme catalyzes the conversion of various acyclic carotenes including 1-hydroxy derivatives. This broad substrate specificity reflects the participation of CrtC in 1'-HO-spheroidene and in spirilloxanthin biosynthesis. Enzyme kinetic studies including the determination of substrate specificity constants indicate that among the alternative biosynthetic routes to 1'-HO-spheroidene the one via spheroidene is the dominating pathway. In contrast to CrtC from Rvi. gelatinosus, the equivalent enzyme from Rhodobacter capsulatus, a closely related bacterium which lacks the biosynthetic branch to spirilloxanthin and accumulates spheroidene instead of substantial amounts of 1'-HO-spheroidene, is extremely poor in converting 1-HO-carotenoids. The individual catalytic properties of both carotenoid 1,2-hydratases reflect the in situ carotenogenic pathways in both purple photosynthetic bacteria.  相似文献   

14.
Achromobacter piechaudii strain HLE is a betaproteobacterium (previously known as Alcaligenes faecalis) that was an early isolate with arsenite oxidase activity. This draft genome of 6.89 Mb is the second available genome for this species in the opportunistic pathogen Alcaligenaceae family.  相似文献   

15.
Two Amazonian freshwater trichomycterid catfishes, Sarcoglanis simplex and Malacoglanis gelatinosus , are described as new genera andspecies and placed in a new subfamily Sarcoglanidinae. The relationships of this new subfamily and those of the Trichomycterinae, Nematogenyinae, Phreatobiinae and Glanapteryginae are discussed.  相似文献   

16.
Alcaligenes faecalis subsp. faecalis NCIB 8687, the betaproteobacterium from which arsenite oxidase had its structure solved and the first "arsenate gene island" identified, provided a draft genome of 3.9 Mb in 186 contigs (with the largest 15 comprising 90% of the total) for this opportunistic pathogen species.  相似文献   

17.
Molecular Genetics and Genomics - Rhodocyclus gelatinosus grew photosynthetically in the light and consumed H2 at a rate of about 665 nmol/min per mg protein. The uptake-hydrogenase (H2ase) was...  相似文献   

18.
Biochemical analyses of Rubrivivax gelatinosus membranes have revealed that the cytochrome bc(1) complex is highly resistant to classical inhibitors including myxothiazol, stigmatellin, and antimycin. This is the first report of a strain exhibiting resistance to inhibitors of both catalytic Q(0) and Q(i) sites. Because the resistance to cytochrome bc(1) inhibitors is primarily related to the cytochrome b primary structure, the petABC operon encoding the subunits of the cytochrome bc(1) complex of Rubrivivax gelatinosus was sequenced. In addition to homologies to the corresponding proteins from other organisms, the deduced amino acid sequence of the cytochrome b polypeptide shows (i) an E303V substitution in the highly conserved PEWY loop involved in quinol/stigmatellin binding, (ii) other substitutions that could be involved in resistance to cytochrome bc(1) inhibitors, and (iii) 14 residues instead of 13 between the histidines in helix IV that likely serve as the second axial ligand to the b(H) and b(L) hemes, respectively. These characteristics imply different functional properties of the cytochrome bc(1) complex of this bacterium. The consequences of these structural features for the resistance to inhibitors and for the properties of R. gelatinosus cytochrome bc(1) are discussed with reference to the structure and function of the cytochrome bc(1) complexes from other organisms.  相似文献   

19.
During austral summer and winter of 2003, three specimens of Aphyonus gelatinosus and one specimen of Barathronus bicolor (Ophidiiformes: Aphyonidae) were trawled off Rio de Janeiro, Brazil.  相似文献   

20.
In order to reduce the protein content of wastewater, photosynthetic bacteria producing proteinases were screened from wastewater of various sources and stocked in culture. An isolated strain, KDDS1, was identified as Rubrivivax gelatinosus, a purple nonsulfur bacterium that secretes proteinase under micro-aerobic conditions under light at 35 degrees C. Molecular weight of the purified enzyme was estimated to be 32.5 kDa. The enzyme showed the highest activity at 45 degrees C and pH 9.6, and the activity was completely inhibited by phenylmethyl sulfonyl fluoride (PMSF), but not by EDTA. The amino-terminal 24 amino acid sequence of the enzyme showed about 50% identity to those of serine proteinases from Pseudoalteromonas piscicida strain O-7 and Burkholderia pseudomallei. Thus, the enzyme from Rvi. gelatinosus KDDS1 was thought to be a serine-type proteinase. This was the first serine proteinase characterized from photosynthetic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号