首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrate is an important nitrogen source for organism, but whether and how nitrate improves poly-γ-glutamic acid (γ-PGA) production of bacterial is not clear. The effect of nitrate on γ-PGA production of Bacillus licheniformis WX-02 was investigated. By addition of 50 mmol/L nitrate, the γ-PGA yield reached 12.3 ± 0.21 g/L, which increased 2.3-fold compared to the control. The mechanism of enhanced γ-PGA production was further investigated by analysis of nitrate reduction, physiology, pyruvate overflow metabolism and energy synthesis. Nitrate reduction was only carried out in the middle stage of γ-PGA fermentation. The result of consumption of nutrients showed that glucose uptake was not effected and the l-glutamic acid utilization efficiency increased from 48.3 to 77.0 %. The date of overflow metabolism obtained from high-performance liquid chromatography showed that the metabolism of pyruvate, formate, lactate and acetoin was both heightened by nitrate reduction, while the 2,3-butanediol biosynthesis was decreased. Meanwhile, the change of energy indicated that more ATP was synthesized during nitrate reduction. In summary, nitrate was a positive effector of γ-PGA biosynthesis in B. licheniformis WX-02 and nitrate reduction affected multi-metabolism pathways, including glycolysis, overflow metabolism and energy metabolism.  相似文献   

2.
Bioprocess and Biosystems Engineering - Acetolactate synthase catalyzes two molecules of pyruvates to form α-acetolactate, which is further converted to acetoin and 2,3-butanediol. In this...  相似文献   

3.
4.
The complete nucleotide sequence of 5-S RNA from Bacillus licheniformis was determined by analysis of complete and partial digests obtained with either T1 or pancreatic ribonuclease. The molecule was found to have a length of 116 nucleotides and may possess a minor sequence heterogeneity. There is a large degree of homology between the sequence of B. licheniformis 5-S RNA and those published for 5-S RNA from B. megatherium and B. stearothermophilus. The difference between the three 5-S RNA species are limited mainly to the two terminal and one internal sequence. B. licheniformis 5-S RNA contains the sequence U95-G-A-G-A-G100, which in B. subtilis has been implicated in the processing of precursor 5-S RNA. Possible models for the secondary structure of prokaryotic 5-S RNA are discussed on the basis of the results of limited digestion of B. licheniformis 5-S RNA by ribonuclease T1.  相似文献   

5.
6.
《Gene》1996,173(2):189-194
A protein present on the cell surface of Bacillus licheniformis (Bl) NM105 was identified as an S-layer (OlpA in this paper), a protein present on many bacterial cell surfaces. Purification, SDS-PAGE and isoelectrofocusing showed one 94-kDa, slightly acidic (pI 6.5) protein band (defined as OlpA). The pure protein OlpA, has a tetragonal symmetry of its morphological subunits. Following Edman degradation, three 17-mer oligodeoxyribonucleotide (oligo) probes corresponding to the N-terminal sequence of OlpA were synthesized and used for gene cloning. The nucleotide (nt) sequence of the cloned gene (olpA) showed an ORF and encoded an 874 amino acid (aa) protein. In the promoter region of olpA, there appear to be -10 and -35 ∂A-binding sites, as well as -10 and -35 regions specific for∂H. The existence of these two potential promoters suggests that OlpA would be produced during both the vegetative and sporulating stages of growth. The ribosome-binding site (RBS) sequence perfectly matched its consensus sequence, suggesting a high efficiency of translation of olpA. A typical 29-aa leader peptide, characteristic of secretory proteins in Bacilli, is present in the OlpA pre-protein sequence. In olpA, there are two stem-loop structures in tandem, downstream from the stop codon. These stem-loops are probably involved in prolonged olpA expression, by extending the half life of the mRNA.  相似文献   

7.
The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.  相似文献   

8.

Background

Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature.

Results

We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs.

Conclusions

Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae.  相似文献   

9.
10.
11.
The spore-forming bacterium Bacillus licheniformis is a common contaminant of milk and milk products. Strains of this species isolated from dairy products can be differentiated into three major groups, namely, G, F1, and F2, using random amplification of polymorphic DNA (RAPD) analysis; however, little is known about the genomic differences between these groups and the identity of the fragments that make up their RAPD profiles. In this work we obtained high-quality draft genomes of representative strains from each of the three RAPD groups (designated strain G-1, strain F1-1, and strain F2-1) and compared them to each other and to B. licheniformis ATCC 14580 and Bacillus subtilis 168. Whole-genome comparison and multilocus sequence typing revealed that strain G-1 contains significant sequence variability and belongs to a lineage distinct from the group F strains. Strain G-1 was found to contain genes coding for a type I restriction modification system, urease production, and bacitracin synthesis, as well as the 8-kbp plasmid pFL7, and these genes were not present in strains F1-1 and F2-1. In agreement with this, all isolates of group G, but no group F isolates, were found to possess urease activity and antimicrobial activity against Micrococcus. Identification of RAPD band sequences revealed that differences in the RAPD profiles were due to differences in gene lengths, 3′ ends of predicted primer binding sites, or gene presence or absence. This work provides a greater understanding of the phylogenetic and phenotypic differences observed within the B. licheniformis species.  相似文献   

12.
13.
L Li  F Su  Y Wang  L Zhang  C Liu  J Li  C Ma  P Xu 《Journal of bacteriology》2012,194(15):4133-4134
Both Bacillus licheniformis strains 10-1-A and 5-2-D are efficient producers of 2,3-butanediol. Here we present 4.3-Mb and 4.2-Mb assemblies of their genomes. The key genes for the regulation and metabolism of 2,3-butanediol production were annotated, which may provide further insights into the molecular mechanism for the production of 2,3-butanediol with high yield and productivity.  相似文献   

14.
15.
应用单因素和正交试验设计试验法对地衣芽胞杆菌在摇瓶水平上进行了培养基配方和培养条件的研究。结果表明:最适培养基配方为山芋淀粉1.0%,豆粕0.6%,玉米芯粉0.8%,K2HPO4 0.1%,MgSO40.1%。最适培养条件为37℃,摇床转速150r/min,250mL三角瓶装液50mL,接种量5.0%,振荡培养48h,pH7.0。在20L自动发酵罐中进行了扩大培养试验,考察溶氧对菌体生长的影响,并根据试验结果进一步扩大至1m^3发酵罐,通过控制搅拌速度和通气量,1m^3发酵罐中地衣芽胞杆菌培养液菌浓为7.2×10^9efu/mL,芽胞率达到90%。  相似文献   

16.
17.
T Imanaka  T Himeno    S Aiba 《Journal of bacteriology》1987,169(9):3867-3872
The penicillinase antirepressor gene, penJ, of Bacillus licheniformis ATCC 9945a was cloned in Escherichia coli by using pMB9 as a vector plasmid. The penicillinase gene, penP, its repressor gene, penI, and penJ were encoded on the cloned 5.2-kilobase HindIII fragment of the recombinant plasmid pTTE71. The penJ open reading frame was composed of 1,803 bases and 601 amino acid residues (molecular weight, 68,388). A Shine-Dalgarno sequence was found 7 bases upstream from the translation start site. Since this sequence was located in the 3'-terminal region of the penI gene, penJ might be transcribed together with penI as a polycistronic mRNA from the penI promoter. Frameshift mutations of penJ were constructed in vitro from pTTE71, and the penJ mutant gene was introduced into B. licheniformis by chromosomal recombination. The transformant B. licheniformis U173 (penP+ penI+ penJ) turned out to be uninducible for penicillinase production, whereas the wild-type strain (penP+ penI+ penJ+) was inducible. Only when these three genes (penP, penI, and PenJ) were simultaneously subcloned in Bacillus subtilis did the plasmid carrier exhibit inducible penicillinase production, as did wild-type B. licheniformis. It was concluded that penJ is involved in the penicillinase induction. The regulation of penP expression by penI and penJ is discussed.  相似文献   

18.
19.
Tannase production by Bacillus licheniformis   总被引:1,自引:0,他引:1  
Bacillus licheniformis KBR 6 produced maximum extracellular tannase activity at 0.21 U ml–1 with 1.5% (w/v) tannic acid either in the absence or presence of glucose (1 g l–1) after 18–21 h growth though the organism did not attain maximum growth until 36 h.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号