首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ethnic people of the Himalayan regions of India, Nepal, Bhutan and China consume a variety of indigenous fermented milk products made from cows milk as well as yaks milk. These lesser-known ethnic fermented foods are dahi, mohi, chhurpi, somar, philu and shyow. The population of lactic acid bacteria (LAB) ranged from 10(7) to 10(8) cfu/g in these Himalayan milk products. A total of 128 isolates of LAB were isolated from 58 samples of ethnic fermented milk products collected from different places of India, Nepal and Bhutan. Based on phenotypic characterization including API sugar test, the dominant lactic acid bacteria were identified as Lactobacillus bifermentans, Lactobacillus paracasei subsp. pseudoplantarum, Lactobacillus kefir, Lactobacillus hilgardii, Lactobacillus alimentarius, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris and Enterococcus faecium. LAB produced a wide spectrum of enzymes and showed high galactosidase, leucine-arylamidase and phosphatase activities. They showed antagonistic properties against selected Gram-negative bacteria. None of the strains produced bacteriocin and biogenic amines under the test conditions used. Most strains of LAB coagulated skim milk with a moderate drop in pH. Some strains of LAB showed a high degree of hydrophobicity, suggesting these strains may have useful adhesive potential. This paper is the first report on functional lactic acid bacterial composition in some lesser-known ethnic fermented milk products of the Himalayas.  相似文献   

2.
Tarag is a characteristic fermented dairy product with rich microflora (especially lactic acid bacteria), developed by the people of Mongolian nationality in Inner Mongolia of China and Mongolia throughout history. One hundred and ninety-eight samples of Tarag were collected from scattered households in Eastern Inner Mongolia, and total of 790 isolates of lactic acid bacteria (LAB) were isolated by traditional pure culture method. To identify these isolates and analyze their biodiversity, 16S rRNA gene sequences analysis and PCR-DGGE were performed respectively. The results showed that 790 isolates could be classified as 31 species and subspecies. Among these isolates, Lactobacillus helveticus (153 strains, about 19.4%), Lactococcus lactis subsp. lactis (132 strains, about 16.7%) and Lactobacillus casei (106 strains, about 11.0%) were considered as the predominated species in the traditional fermented dairy products (Tarag) in Eastern Inner Mongolia. It was shown that the biodiversity of LAB in Tarag in Inner Mongolia was very abundant, and this traditional fermented dairy product could be considered as valuable resources for LAB isolation and probiotic selection.  相似文献   

3.
One hundred and twenty (120) strains of lactic acid bacteria (LAB) were enumerated and isolated from raw dromedary milk in Morocco using various cultured media. Strains isolated were characterized by phenotypic, physiological and biochemical properties. Results showed that high counts of LAB were found. Presumptive lactobacilli counts ranged from 2.5x10(2) to 6x10(7)cfu/ml, presumptive lactococci levels varied from 5x10(2) to 6x10(7)cfu/ml, presumptive streptococci counts varied from 4.2x10(2) to 8x10(7)cfu/ml, presumptive leuconostoc levels ranged from 5.4x10(2) to 5.4x10(7)cfu/ml. Results showed also that Lactobacillus and Lactococcus were the predominant genera with 37.5% and 25.8%, respectively. The dominated species found were Lactococcus lactis subsp. lactis (17.5%), Lactobacillus helveticus (10%), Streptococcus salivarius subsp. thermophilus (9.20%), Lactobacillus casei subsp. casei (5.80%) and Lactobacillus plantarum (5%). This is the first report on the characterization of LAB strains isolated from the one humped camel milk produced in Morocco.  相似文献   

4.
In order to investigate the Lactic Acid Bacteria (LAB) of the gut, fecal samples were collected and analyzed from 120 healthy Greek volunteers ranging from age 1 to age 85, all of whom declared daily consumption of local fermented dairy products. LAB strains were isolated using selective media under aerobic or anaerobic conditions. Identification of the isolates was based on their growth patterns, morphological characteristics, and carbohydrate fermentation profiles. There was no significant difference in the abundance of Lactobacillus brevis, Lactococcus lactis subsp. cremoris, Lactococcus lactis, Lactobacilus paracasei and Bifidobacterium sp., in all samples. Lactobacillus fermentum, Lactobacillus plantarum, Lactococcus casei, Lactococcus pentosus, Lactococcus lactis subsp. lactis, Lactococcus delbrueckii subsp. lactis, Enterococcus casseliflavus, Enterococcus faecalis, Enterococcus faecium, Enterococcus avium and Leuconostoc sp. were also recovered, mainly from the adults and elders rather than the children’s group. Despite the above differences in LAB species observed mostly between the younger and the other two age groups, differences were also observed within all groups, indicating that healthy subjects of all ages are colonized by a diverse lactoflora in terms of total or dominant species.  相似文献   

5.
内蒙古呼伦贝尔地区传统发酵乳中乳酸菌的多样性分析   总被引:2,自引:1,他引:1  
【目的】对内蒙古呼伦贝尔地区传统发酵乳制品中乳酸菌资源的生物多样性进行研究。【方法】采用纯培养和16S rRNA基因序列分析法对内蒙古呼伦贝尔地区传统发酵乳中的乳酸菌进行多样性分析。【结果】从8份传统发酵乳制品(6份酸牛奶和2份酸马奶)样品中分离到24株乳酸菌,通过16S rRNA基因序列分析和系统进化关系分析将24株乳酸菌鉴定为2株Lactobacillus kefiranofaciens、2株Lactobacillus kefiri、5株Lactobacillus paracasei、3株Lactobacillus plantarum、1株Lactobacillus rhamnosus、6株Lactococcus lactis subsp.lactis、2株Leuconostoc mesenteroides subsp.dextranicum、2株Streptococcus thermophilus和1株Enterococcus faecium。【结论】Lactococcus lactis subsp.lactis为内蒙古呼伦贝尔地区传统发酵乳制品的优势菌种,占总分离株的25%,其次为Lactobacillus paracasei,占总分离株的20.83%。  相似文献   

6.
Fourteen strains of Lactic Acid Bacteria (LAB) isolated from Qula, a Tibetan traditional yak cheese, were divided into four groups (A-D) according to morphological and biochemical characteristics. On the basis of the 16S rRNA gene sequence analysis, group A and group B strains were placed in the cluster making up the genus Leuconostoc, which together with Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides, formed a distinct cluster. The group C strain was clearly identified as Enterococcus faecium by forming a very well defined cluster with this species. The group D strains were placed in the lactobacilli cluster with Lactobacillus plantarum and Lactobacillus pentosus being the closely related species. On the basis of DNA-DNA hybridization, strains in the groups A, B, C and D were identified as Leuconostoc mesenteroides subsp. dextranicum, Leuconostoc pseudomesenteroides, Enterococcus faecium and Lactobacillus plantarum, respectively. Leuconostoc mesenteroides subsp. dextranicum was the dominate member of the population.  相似文献   

7.
Biodiversity of lactic acid bacteria in Moroccan soft white cheese (Jben)   总被引:4,自引:0,他引:4  
The bacterial diversity occurring in traditional Moroccan soft white cheese, produced in eight different regions in Morocco, was studied. A total of 164 lactic acid bacteria were isolated, purified and identified by whole-cell protein fingerprinting and rep-PCR genomic fingerprinting. The majority of the strains belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Enterococcus. Sixteen species were identified: Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus brevis, Lactobacillus buchneri, Lactococcus lactis, Lactococcus garvieae, Lactococcus raffinolactis, Leuconostoc pseudomesenteroides, Leuconostoc mesenteroides, Leuconostoc citreum, Eterococcus durans, Enterococcus faecalis, Enterococcus faecium, Enterococcus saccharominimus and Streptococcus sp.  相似文献   

8.
The development of the dominant bacterial populations during traditional Mozzarella cheese production was investigated using physiological analyses and molecular techniques for strain typing and taxonomic identification. Analysis of RAPD fingerprints revealed that the dominant bacterial community was composed of 25 different biotypes, and the sequence analysis of 16S rDNA demonstrated that the isolated strains belonged to Leuconostoc mesenteroides subsp. mesenteroides , Leuc. lactis , Streptococcus thermophilus , Strep. bovis , Strep. uberis, Lactococcus lactis subsp. lactis , L. garviae, Carnobacterium divergens , C. piscicola, Aerococcus viridans , Staphylococcus carnosus, Staph. epidermidis , Enterococcus faecalis , Ent. sulphureus and Enterococcus spp. The bacterial populations were characterized for their physiological properties. Two strains, belonging to Strep. thermophilus and L. lactis subsp. lactis , were the most acidifying; the L. lactis subsp. lactis strain was also proteolytic and eight strains were positive to citrate fermentation. Moreover, the molecular techniques allowed the identification of potential pathogens in a non-ripened cheese produced from raw milk.  相似文献   

9.
Human milk contains about 7% lactose and 1% human milk oligosaccharides (HMOs) consisting of lactose with linked fucose, N-acetylglucosamine and sialic acid. In infant formula, galactooligosaccharides (GOSs) are added to replace HMOs. This study investigated the ability of six strains of lactic acid bacteria (LAB), Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus reuteri, Streptococcus thermophilus and Leuconostoc mesenteroides subsp. cremoris, to digest HMO components, defined HMOs, and GOSs. All strains grew on lactose and glucose. N-acetylglucosamine utilization varied between strains and was maximal in L. plantarum; fucose utilization was low or absent in all strains. Both hetero- and homofermentative LAB utilized N-acetylglucosamine via the Embden-Meyerhof pathway. Lactobacillus acidophilus and L. plantarum were the most versatile in hydrolysing pNP analogues and the only strains releasing mono- and disaccharides from defined HMOs. Whole cells of all six LAB hydrolysed oNP-galactoside and pNP-galactoside indicating β-galactosidase activity. High β-galactosidase activity of L. reuteri, L. fermentum, S. thermophilus and L. mesenteroides subsp. cremoris whole cells correlated to lactose and GOS hydrolysis. Hydrolysis of lactose and GOSs by heterologously expressed β-galactosidases confirmed that LAB β-galactosidases are involved in GOS digestion. In summary, the strains of LAB used were not capable of utilizing complex HMOs but metabolized HMO components and GOSs.  相似文献   

10.
Three kinds of lactic acid bacteria were isolated from spoiling cooked meat products stored below 10 degrees C. They were identified as Leuconostoc mesenteroides subsp. mesenteroides, Lactococcus lactis subsp. lactis, and Leuconostoc citreum. All three strains grew well in MRS broth at 10 degrees C. In particular, L. mesenteroides subsp. mesenteroides and L. citreum grew even at 4 degrees C, and their doubling times were 23.6 and 51.5 h, respectively. On the other hand, although the bacteria were initially below the detection limit (<10 CFU/g) in model cooked meat products, the bacterial counts increased to 10(8) CFU/g at 10 degrees C after 7 to 12 days.  相似文献   

11.
Nisin-resistant Leuconostoc mesenteroides NCK293 and nisin-producing Lactococcus lactis subsp. lactis NCK401 were evaluated separately and in combination for growth and nisin production in a model sauerkraut fermentation. Strains were genetically marked and selectively enumerated by using antibiotic-containing media. The growth and survival of L. mesenteroides were similar in the presence and absence of Lactococcus lactis subsp. lactis. The growth of Lactococcus lactis subsp. lactis was not inhibited, although the maximum cell density was reduced and the population decline was more pronounced in the presence of L. mesenteroides. Nisin was detected within 24 h, and levels were relatively constant over the 12-day test period. The maximum cell populations and nisin level achieved could be altered by changing the initial cell ratios of L. mesenteroides and lactococcus lactis subsp. lactis. Isogenic nisin-producing and nisin-negative Lactococcus lactis subsp. lactis derivatives were used in combination with nisin-resistant L. mesenteroides to demonstrate that nisin levels produced in mixed culture were sufficient to retard the onset of the growth of nisin-sensitive, homofermentative Lactobacillus plantarum ATCC 14917.  相似文献   

12.
A selective medium (LUSM medium) for the isolation of Leuconostoc spp. was developed. This medium contained 1.0% glucose, 1.0% Bacto Peptone (Difco), 0.5% yeast extract (BBL), 0.5% meat extract (Difco), 0.25% gelatin (Difco), 0.5% calcium lactate, 0.05% sorbic acid, 75 ppm of sodium azide (Sigma), 0.25% sodium acetate, 0.1% (vol/vol) Tween 80, 15% tomato juice, 30 micrograms of vancomycin (Sigma) per ml, 0.20 microgram of tetracycline (Serva) per ml, 0.5 mg of cysteine hydrochloride per ml, and 1.5% agar (Difco). LUSM medium was used successfully for isolation and enumeration of Leuconostoc spp. in dairy products and vegetables. Of 116 colony isolates obtained from fresh raw milk, curdled milk, or various vegetables, 115 were identified as members of the genus Leuconostoc. A total of 89 of these isolates were identified to species; 13.5% of the isolates were Leuconostoc cremoris, 7.9% were Leuconostoc mesenteroides subsp. mesenteroides, 11.2% were Leuconostoc mesenteroides subsp. dextranicum, 16.9% were Leuconostoc mesenteroides subsp. paramesenteroides, 10.1% were leuconostoc lactis, and 40.4% were Leuconostoc oenos. When we compared the counts obtained for two Leuconostoc strains, Leuconostoc dextranicum 181 and L. cremoris JLL8, on MRS agar and LUSM medium, we found no significant difference between the values obtained on the two media.  相似文献   

13.
Nisin-resistant Leuconostoc mesenteroides NCK293 and nisin-producing Lactococcus lactis subsp. lactis NCK401 were evaluated separately and in combination for growth and nisin production in a model sauerkraut fermentation. Strains were genetically marked and selectively enumerated by using antibiotic-containing media. The growth and survival of L. mesenteroides were similar in the presence and absence of Lactococcus lactis subsp. lactis. The growth of Lactococcus lactis subsp. lactis was not inhibited, although the maximum cell density was reduced and the population decline was more pronounced in the presence of L. mesenteroides. Nisin was detected within 24 h, and levels were relatively constant over the 12-day test period. The maximum cell populations and nisin level achieved could be altered by changing the initial cell ratios of L. mesenteroides and lactococcus lactis subsp. lactis. Isogenic nisin-producing and nisin-negative Lactococcus lactis subsp. lactis derivatives were used in combination with nisin-resistant L. mesenteroides to demonstrate that nisin levels produced in mixed culture were sufficient to retard the onset of the growth of nisin-sensitive, homofermentative Lactobacillus plantarum ATCC 14917.  相似文献   

14.
AIMS: Investigation of the autochthonous lactic acid bacteria (LAB) population of the raw milk protected designation of origin Canestrato Pugliese cheese using phenotypic and genotypic methodologies. METHODS AND RESULTS: Thirty phenotypic assays and three molecular techniques (restriction fragment length polymorphism, partial sequencing of the 16S rRNA gene and recA multiplex PCR assay) were applied to the identification of 304 isolates from raw milk Canestrato Pugliese cheese. As a result, 168 of 207 isolates identified were ascribed to genus Enterococcus, 25 to Lactobacillus, 13 to Lactococcus and one to Leuconostoc. More in details among the lactobacilli, the species Lactobacillus brevis and Lactobacillus plantarum were predominant, including 13 and 10 isolates respectively, whereas among the lactococci, Lactococcus lactis subsp.cremoris [corrected] was the species more frequently detected (seven isolates). CONCLUSIONS: Except for the enterococci, phenotypic tests were not reliable enough for the identification of the isolates, if not combined to the genotype-based molecular techniques. The polyphasic approach utilized allowed 10 different LAB species to be detected; thus suggesting the appreciable LAB diversity of the autochthonous microbial population of the Canestrato Pugliese cheese. SIGNIFICANCE AND IMPACT OF THE STUDY: A comprehensive study of the resident raw milk Canestrato Pugliese cheese microbial population has been undertaken.  相似文献   

15.
A miniaturized most probable number (MPN) method for the selective enumeration of three bacteria species ( Lactobacillus plantarum A6, Leuconostoc mesenteroides and Lactococcus lactis ) is described. This selective count method, based on specific consumption of carbon substrate and resistance to antibiotics, was used for the quantitative assessment of the three bacteria during mixed cultures in a model cassava fermentation. A typical microbial succession pattern was observed: (i) Lactococcus lactis and Leuc. mesenteroides dominated during the first hours of fermentation as their growth was very rapid ; (ii) from hour 12, Lactobacillus plantarum replaced the two latter strains and Lactococcus lactis disappeared gradually, followed by Leuc. mesenteroides . The growth rates of each strain appeared to be independent of the others, while acidification rates increased strongly in mixed cultures compared with pure cultures. No positive interactions resulting from the amylolytic character of Lactobacillus plantarum A6, and no negative interactions resulting from the Nis+ property of Lactococcus lactis , were revealed between the three strains under the model conditions used.  相似文献   

16.
A total of 140 lactic acid bacteria (LAB) strains were isolated from corn, alfalfa, clover, sainfoin, and Indian goosegrass in the Tibetan Plateau. According to phenotypic and chemotaxonomic characteristics, 16S rDNA sequence, and recA gene PCR amplification, these LAB isolates were identified as belonging to five genera and nine species. Corn contained more LAB species than other forage crops. Leuconostoc pseudomesenteroides, Lactococcus lactis subsp. lactis, Lactobacillus brevis, and Weissella paramesenteroides were dominant members of the LAB population on alfalfa, clover, sainfoin, and Indian goosegrass, respectively. The comprehensive 16S rDNA and recA-based approach effectively described the LAB community structure of the relatively abundant LAB species distributed on different forage crops. This is the first report describing the diversity and natural populations of LAB associated with Tibetan forage crops, and most isolates grow well at or below 10°C. The results will be valuable for the future design of appropriate inoculants for silage fermentation in this very cold area.  相似文献   

17.
The lactic acid bacteria of kefir were isolated and characterized using phenotypical, biochemical, and genotypical methods. Polyphasic analyses of results permitted the identification of the microflora to the strain level. The genus Lactobacillus was represented by the species Lb. kefir and Lb. kefiranofaciens. Both subspecies of Lactococcus lactis (lactis and cremoris) were isolated. Leuconostoc mesenteroides subsp. cremoris was also found. The kefir studied contained few species of lactic acid bacteria but showed a high number of different strains. We found that the polyphasic analysis approach increases the confidence in strain determination. It helped confirm strain groupings and it showed that it could have an impact on the phylogeny of the strains.  相似文献   

18.
E Johansen  A Kibenich 《Plasmid》1992,27(3):200-206
We have cloned and characterized an insertion sequence from Leuconostoc mesenteroides subsp. cremoris strain DB1165. This element, designated IS1165, is 1553 bp, has imperfect inverted repeat ends, contains an open reading frame of 1236 bp, and is not related to any previously described insertion sequence. The copy number of IS1165 varies from 4 to 13 in L. mesenteroides subsp. cremoris strains allowing genetic fingerprinting of strains based on location and number of bands on hybridization. IS1165 or closely related elements have been detected by hybridization in L. lactis, L. oenos, Pediococcus sp., Lactobacillus helveticus, and Lb. casei but not in Lactococcus.  相似文献   

19.
A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and WEISSELLA: Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality.  相似文献   

20.
In this study, a polyphasic approach was used to study the ecology of fresh sausages and to characterize populations of lactic acid bacteria (LAB). The microbial profile of fresh sausages was monitored from the production day to the 10th day of storage at 4 degrees C. Samples were collected on days 0, 3, 6, and 10, and culture-dependent and -independent methods of detection and identification were applied. Traditional plating and isolation of LAB strains, which were subsequently identified by molecular methods, and the application of PCR-denaturing gradient gel electrophoresis (DGGE) to DNA and RNA extracted directly from the fresh sausage samples allowed the study in detail of the changes in the bacterial and yeast populations during storage. Brochothrix thermosphacta and Lactobacillus sakei were the main populations present. In particular, B. thermosphacta was present throughout the process, as determined by both DNA and RNA analysis. Other bacterial species, mainly Staphylococcus xylosus, Leuconostoc mesenteroides, and L. curvatus, were detected by DGGE. Moreover, an uncultured bacterium and an uncultured Staphylococcus sp. were present, too. LAB strains isolated at day 0 were identified as Lactococcus lactis subsp. lactis, L. casei, and Enterococcus casseliflavus, and on day 3 a strain of Leuconostoc mesenteroides was identified. The remaining strains isolated belonged to L. sakei. Concerning the yeast ecology, only Debaryomyces hansenii was established in the fresh sausages. Capronia mansonii was initially present, but it was not detected after the first 3 days. At last, L. sakei isolates were characterized by randomly amplified polymorphic DNA PCR and repetitive DNA element PCR. The results obtained underlined how different populations took over at different steps of the process. This is believed to be the result of the selection of the particular population, possibly due to the low storage temperature employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号