首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dust seeds that germinate by obtaining nutrients from symbiotic fungi have evolved independently in orchids and 11 other plant lineages. The fungi involved in this 'mycoheterotrophic' germination have been identified in some orchids and non-photosynthetic Ericaceae, and proved identical to mycorrhizal fungi of adult plants. We investigated a third lineage, the Pyroleae, chlorophyllous Ericaceae species whose partial mycoheterotrophy at adulthood has recently attracted much attention. We observed experimental Pyrola asarifolia germination at four Japanese sites and investigated the germination pattern and symbiotic fungi, which we compared to mycorrhizal fungi of adult plants. Adult P. asarifolia, like other Pyroleae, associated with diverse fungal species that were a subset of those mycorrhizal on surrounding trees. Conversely, seedlings specifically associated with a lineage of Sebacinales clade B (endophytic Basidiomycetes) revealed an intriguing evolutionary convergence with orchids, some of which also germinate with Sebacinales clade B. Congruently, seedlings clustered spatially together, but not with adults. This unexpected transition in specificity and ecology of partners could support the developmental transition from full to partial mycoheterotrophy, but probably challenges survival and distribution during development. We discuss the physiological and ecological traits that predisposed to the repeated recruitment of Sebacinales clade B for dust seed germination.  相似文献   

2.
Fungal-induced seed germination is a phenomenon characteristic of mycorrhizal plants that produce dust-like seeds with only minimal nutritional reserves. In such systems, fungi trigger germination and/or subsidize development. We studied mycorrhizal germination in relation to mycorrhizal specificity in the Monotropoideae, a lineage of dust-seeded non-photosynthetic plants that are dependent upon ectomycorrhizal fungi of forest trees. A total of 1695 seed packets, each containing two to five compartments with seeds from different sources, were buried for up to 2 years near known ectomycorrhizal fungi in six different native forest locations. Upon harvest, seedlings were analysed by cultivation-independent molecular methods to identify their mycorrhizal fungi. We report that (i) germination is only induced by the same fungus that associates with mature plants or by closely related congeners; (ii) seedlings associated with the latter fungi develop less than those associated with maternal fungal species in most settings; and (iii) exceptions to this pattern occur in allopatric settings, where novel plant-fungal associations can result in the greatest seedling development. We interpret these results as evidence of performance trade-offs between breadth of host range and rate of development. We propose that in conjunction with host-derived germination cues, performance trade-offs can explain the extreme mycorrhizal specificity observed at maturity. The allopatric exceptions support the idea that performance trade-offs may be based on a coevolutionary arms race and that host range can be broadened most readily when naive fungal hosts are encountered in novel settings.  相似文献   

3.
Fungal specificity bottlenecks during orchid germination and development   总被引:2,自引:0,他引:2  
Fungus-subsidized growth through the seedling stage is the most critical feature of the life history for the thousands of mycorrhizal plant species that propagate by means of 'dust seeds.' We investigated the extent of specificity towards fungi shown by orchids in the genera Cephalanthera and Epipactis at three stages of their life cycle: (i) initiation of germination, (ii) during seedling development, and (iii) in the mature photosynthetic plant. It is known that in the mature phase, plants of these genera can be mycorrhizal with a number of fungi that are simultaneously ectomycorrhizal with the roots of neighbouring forest trees. The extent to which earlier developmental stages use the same or a distinctive suite of fungi was unclear. To address this question, a total of 1500 packets containing orchid seeds were buried for up to 3 years in diverse European forest sites which either supported or lacked populations of helleborine orchids. After harvest, the fungi associated with the three developmental stages, and with tree roots, were identified via cultivation-independent molecular methods. While our results show that most fungal symbionts are ectomycorrhizal, differences were observed between orchids in the representation of fungi at the three life stages. In Cephalanthera damasonium and C. longifolia , the fungi detected in seedlings were only a subset of the wider range seen in germinating seeds and mature plants. In Epipactis atrorubens , the fungi detected were similar at all three life stages, but different fungal lineages produced a difference in seedling germination performance. Our results demonstrate that there can be a narrow checkpoint for mycorrhizal range during seedling growth relative to the more promiscuous germination and mature stages of these plants' life cycle.  相似文献   

4.
 We followed the colonization frequency of ectomycorrhizal (EM), vesicular-arbuscular mycorrhizal (VAM), and dark septate (DS) fungi in 1- to 5-month-old bishop pine seedlings reestablishing after a wildfire. Seedlings were collected on a monthly basis at either a VAM-dominated chaparral scrub site or an EM-dominated forest site, both of which were burned. In both vegetation types, fully developed EM were observed from the third month after germination. EM fungi observed on the seedlings from the scrub site were limited to Rhizopogon subcaerulescens, R. ochraceorubens and Suillus pungens. Seedlings from the forest were colonized by a greater variety of EM fungi including Amanita spp., Russula brevipes and a member of the Cantharellaceae. VAM structures (vesicles, arbuscules or hyphal coils) were observed in the seedling root systems beginning 1 month after germination at the scrub site and 3 months after germination at the forest site. Seedlings from the scrub site consistently had more frequent VAM fungal colonization than those from the forest site through the fifth month after germination. DS fungi were observed in most seedlings from both the scrub and forest sites beginning in the first month post-germination. We propose that these fungi survived as a resident inoculum in the soils and did not disperse into the sites after the fire. Accepted: 14 February 1998  相似文献   

5.
Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.  相似文献   

6.
带叶兜兰种子原地共生萌发及有效菌根真菌的分离与鉴定   总被引:1,自引:0,他引:1  
为获得带叶兜兰(Paphiopedilum hirsutissimum)种子萌发的共生真菌,采用原地共生萌发技术获得了2株自然萌发的小幼苗,并分离和筛选出了有效的种子萌发共生菌——瘤菌根菌(Epulorhiza sp.)。为验证分离菌株对带叶兜兰种子萌发的有效性,将Phs34号菌株与带叶兜兰种子在灭菌后的原生境基质上进行室内共生萌发试验,结果表明,经过6周的培养,对照组没有观察到种子的萌发;接菌的种子胚明显膨大,突破种皮,形成原球茎,平均萌发率为(58.35±3.41)%。这表明分离得到的瘤菌根菌能促进带叶兜兰的种子萌发。  相似文献   

7.
We studied the relative importance of the aboveground and belowground environment for survival and growth of emerged seedlings of Centaurea jacea to better understand the general difficulty of establishing late-successional species at restoration sites on ex-arable land. Potted seedlings growing on soil from six late-successional grasslands and from six ex-arable (restoration) sites were reciprocally exchanged, and survival and relative growth rate of the seedlings monitored. In addition, we assessed aboveground herbivory and colonization of roots by arbuscular myccorhizal fungi of all plants, as well as nutrient availability, and microbial biomass and community composition using PLFA techniques in all twelve soils. Seedling survival was higher in restoration habitat and soil than in grassland habitat and soil, but growth did not differ between the aboveground and belowground environment types. Shoot growth rate was initially correlated with soil nutrient content, and later in the experiment with mycorrhizal colonization levels. Our results indicate that arbuscular mycorhizal fungi may be important for the successful establishment of C. jacea and that abiotic soil factors, like K availability and N:P ratio, can promote mycorrhizal colonization. Hence, the belowground environment should be considered when selecting sites for restoring species-rich grasslands.  相似文献   

8.
? Nonrandom species-species associations may arise from a range of factors, including localized dispersal, intra- and interspecific interactions and heterogeneous environmental conditions. Because seed germination and establishment in orchids are critically dependent upon the availability of suitable mycorrhizal fungi, species-species associations in orchids may reflect associations with mycorrhizal fungi. ? To test this hypothesis, we examined spatial association patterns, mycorrhizal associations and germination success in a hybrid zone containing three species of the genus Orchis (Orchis anthropophora, Orchis militaris and Orchis purpurea). ? Hybridization occurred predominantly between O. purpurea and O. militaris. The spatial distribution patterns of most pure species and hybrids were independent from each other, except that of O. purpurea and its hybrids. The fungal community composition of established individuals differed significantly between pure species, but not between hybrids and O. purpurea. Seed germination experiments using pure seeds showed that the highest number of protocorms were found in regions where adult individuals were most abundant. In the case of hybrid seeds, germination was restricted to areas where the mother plant was most abundant. ? Overall, these results suggest that the observed nonrandom spatial distribution of both pure and hybrid plants is dependent on the contingencies of the spatial distribution of suitable mycorrhizal fungi.  相似文献   

9.
Mycoheterotrophic plants obtain organic carbon from associated mycorrhizal fungi, fully or partially. Angiosperms with this form of nutrition possess exceptionally small ‘dust seeds’ which after germination develop ‘seedlings’ that remain subterranean for several years, fully dependent on fungi for supply of carbon. Mycoheterotrophs which as adults have photosynthesis thus develop from full to partial mycoheterotrophy, or autotrophy, during ontogeny. Mycoheterotrophic plants may represent a gradient of variation in a parasitism–mutualism continuum, both among and within species. Previous studies on plant–fungal associations in mycoheterotrophs have focused on either germination or the adult life stages of the plant. Much less is known about the fungal associations during development of the subterranean seedlings. We investigated germination and seedling development and the diversity of fungi associated with germinating seeds and subterranean seedlings (juveniles) in five Monotropoideae (Ericaceae) species, the full mycoheterotroph Monotropa hypopitys and the putatively partial mycoheterotrophs Pyrola chlorantha, P. rotundifolia, Moneses uniflora and Chimaphila umbellata. Seedlings retrieved from seed sowing experiments in the field were used to examine diversity of fungal associates, using pyrosequencing analysis of ITS2 region for fungal identification. The investigated species varied with regard to germination, seedling development and diversity of associated fungi during juvenile ontogeny. Results suggest that fungal host specificity increases during juvenile ontogeny, most pronounced in the fully mycoheterotrophic species, but a narrowing of fungal associates was found also in two partially mycoheterotrophic species. We suggest that variation in specificity of associated fungi during seedling ontogeny in mycoheterotrophs represents ongoing evolution along a parasitism–mutualism continuum.  相似文献   

10.
高越  郭顺星  邢晓科 《菌物学报》2019,38(11):1808-1825
自然环境下,兰科植物种子细小无胚乳,需要和适宜的真菌共生才能萌发,因而与真菌有天然的共生关系。自身繁殖率低加之近年来栖息地环境破坏导致兰科植物资源更加濒危,而通过筛选适合的真菌进行种子的共生萌发可以有效地实现兰科植物的种质保育及濒危种类野生居群的生态恢复。本文对地生型、附生型以及腐生型等兰科植物已发现的萌发真菌的多样性进行了系统地梳理,发现担子菌门的胶膜菌科、角担菌科以及蜡壳耳目真菌为已报道共生萌发真菌的主要类群;同时对兰科植物种子的共生萌发机制,包括形态学机制、营养机制和分子机制等方面的相关研究进行了归纳论述,但是当前关于兰科植物和真菌互作机制方面的研究还相对较少,许多问题需要进一步明确。本文对共生萌发真菌在兰科植物保育和繁育中的应用以及共生萌发机制的研究等方面具有一定的参考价值。  相似文献   

11.
The community of indigenous mycorrhizal fungi on planted-out nursery seedlings of Scots pine (Pinus sylvestris L.) was surveyed for two years at two sites in Sweden. Factors studied were the effect of forests versus clearcuts on these communities, age of clearcut, planting-out in early summer versus autumn, age of planted-out seedlings and time of soil scarification. Analyses of variance and detrended correspondence analysis showed that the relative magnitude of the effects of these factors upon the composition of the ectomycorrhizal community on seedlings planted out was site > time of outplanting > forest/clearcut > age of clearcut > time of soil scarification. In general, clear-cutting had a minor effect, both qualitatively and quantitatively. Nineteen different mycorrhizal types were recorded. After two seasons, seedlings hosted an average of 1.8 indigenous mycorrhizal types and 0.95 nursery mycorrhizal types comprising 35% and 65% of the mycorrhizal roots, respectively.Piloderma croceum colonized seedlings significantly more frequently in forests than in clearcuts, whereas the reverse was found forCenococcum geophilum, and two other mycorrhizal types. However, there is a general agreement between mature coniferous forests and clearcuts as regards both the inoculum potential of dominant fungi adapted to early colonization, and the composition of these fungal species. The fungal adaptations to forests obviously resemble those conditions occurring at clearcuts.  相似文献   

12.
Orchids typically depend on fungi for establishment from seeds, forming mycorrhizal associations with basidiomycete fungal partners in the polyphyletic group rhizoctonia from early stages of germination, sometimes with very high specificity. This has raised important questions about the roles of plant and fungal phylogenetics, and their habitat preferences, in controlling which fungi associate with which plants. In this issue of Molecular Ecology, Martos et al. (2012) report the largest network analysis to date for orchids and their mycorrhizal fungi, sampling a total of over 450 plants from nearly half the 150 tropical orchid species on Reunion Island, encompassing its main terrestrial and epiphytic orchid genera. The authors found a total of 95 operational taxonomic units of mycorrhizal fungi and investigated the architecture and nestedness of their bipartite networks with 73 orchid species. The most striking finding was a major ecological barrier between above‐ and belowground mycorrhizal fungal networks, despite both epiphytic and terrestrial orchids often associating with closely related taxa across all three major lineages of rhizoctonia fungi. The fungal partnerships of the epiphytes and terrestrial species involved a diversity of fungal taxa in a modular network architecture, with only about one in ten mycorrhizal fungi partnering orchids in both groups. In contrast, plant and fungal phylogenetics had weak or no effects on the network. This highlights the power of recently developed ecological network analyses to give new insights into controls on plant–fungal symbioses and raises exciting new hypotheses about the differences in properties and functioning of mycorrhiza in epiphytic and terrestrial orchids.  相似文献   

13.
Information on plant seed dispersal, natural loss dynamics of seeds and germination are critical for understanding natural regeneration mechanisms. The aim of this study was to assess the effect of different forest stand densities on seedfall, seed predation, and seedling germination of two populations of the endangered Spanish black Pine forests located at lower (Central population) and higher elevation near the limit of the species?? range (peripheral population) in the Cuenca Mountains of Central Spain. The seed predation and germination experiment also included a nested site preparation treatment. Seed fall varied significantly between 2006 and 2005 or 2007 in both populations. During the only mast year of 2006, higher seedfall was observed at lower elevation and in higher density stands. Predation rates were influenced by the seed crop since predators consumed more than 75?% of seeds in years with lower production and less than 15?% in a mast year. Seed germination is influenced by forest habitat, stand density and soil scalping. For common habitat types, and in a high seed production year, better seed germination rates were observed in medium and dense stands (25?C30 and 35?C40?m2?ha?1, respectively, in terms of basal area). No statistical difference in seed germination rate was found for Spanish black pine forest at its ecological distribution limit between lower and higher densities (15?C20 and 35?C40?m2?ha?1, in terms of basal area). In both sites, closed stands with soil scalping exhibited higher germination rates.  相似文献   

14.
Mycorrhizal association is a common characteristic in a majority of land plants, and the survival and distribution of a species can depend on the distribution of suitable fungi in its habitat. Orchidaceae is one of the most species‐rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and some also for subsequent growth and survival. Given this obligate dependence, at least in the early growth stages, elucidating the patterns of orchid–mycorrhizal relationships is critical to orchid biology, ecology and conservation. To assess whether rarity of an orchid is determined by its specificity towards its fungal hosts, we studied the spatial and temporal variability in the host fungi associated with one of the rarest North American terrestrial orchids, Piperia yadonii. The fungal internal transcribed spacer region was amplified and sequenced by sampling roots from eight populations of P. yadonii distributed across two habitats, Pinus radiata forest and maritime chaparral, in California. Across populations and sampling years, 26 operational taxonomic units representing three fungal families, the Ceratobasidiaceae, Sebacinaceae and Tulasnellaceae, were identified. Fungi belonging to the Sebacinaceae were documented in orchid roots only at P. radiata forest sites, while those from the Ceratobasidiaceae and Tulasnellaceae occurred in both habitats. Our results indicate that orchid rarity can be unrelated to the breadth of mycorrhizal associations. Our data also show that the dominance of various fungal families in mycorrhizal plants can be influenced by habitat preferences of mycorrhizal partners.  相似文献   

15.
We have used molecular techniques to investigate the diversity and distribution of the arbuscular mycorrhizal (AM) fungi colonizing tree seedling roots in the tropical forest on Barro Colorado Island (BCI), Republic of Panama. In the first year, we sampled newly emergent seedlings of the understory treelet Faramea occidentalis and the canopy emergent Tetragastris panamensis, from mixed seedling carpets at each of two sites. The following year we sampled surviving seedlings from these cohorts. The roots of 48 plants were analysed using AM fungal-specific primers to amplify and clone partial small subunit (SSU) ribosomal RNA gene sequences. Over 1300 clones were screened for random fragment length polymorphism (RFLP) variation and 7% of these were sequenced. Compared with AM fungal communities sampled from temperate habitats using the same method, the overall diversity was high, with a total of 30 AM fungal types identified. Seventeen of these types have not been recorded previously, with the remainder being similar to types reported from temperate habitats. The tropical mycorrhizal population showed significant spatial heterogeneity and nonrandom associations with the different hosts. Moreover there was a strong shift in the mycorrhizal communities over time. AM fungal types that were dominant in the newly germinated seedlings were almost entirely replaced by previously rare types in the surviving seedlings the following year. The high diversity and huge variation detected across time points, sites and hosts, implies that the AM fungal types are ecologically distinct and thus may have the potential to influence recruitment and host composition in tropical forests.  相似文献   

16.
In the southern Appalachian mountains a subcanopy species, Rhododendron maximum, inhibits the establishment and survival of canopy tree seedlings. One of the mechanisms by which seedlings could be inhibited is an allelopathic effect of decomposing litter or leachate from the canopy of R. maximum (R.m.) on seed germination, root elongation, or mycorrhizal colonization. The potential for allelopathy by R.m. was tested with two bioassay species (lettuce and cress), with seeds from four native tree species, and with three ectomycorrhizal fungi. Inhibitory influences of throughfall, fresh litter, and decomposed litter (organic layer) from forest with R.m. (+R.m. sites) were compared to similar extractions made from forest without R.m. (-R.m. sites). Throughfall and leachates of the organic layer from both +R.m. and -R.m. sites stimulated germination of the bioassay species above that of the distilled water control, to a similar extent. There was an inhibitory effect of leachates of litter from +R.m. sites on seed germination and root elongation rate of both bioassay species compared with that of litter from -R.m. sites. Native tree seed stratified in forest floor material from both forest types had a slightly higher seed germination rate compared with the control. A 2-yr study of seed germination and seedling mortality of two tree species, Quercus rubra and Prunus serotina, in field plots showed no significant influence of litter or organic layer from either forest type. Incorporating R.m. leaf material into the growth medium in vitro depressed growth of one ectomycorrhizal species but did not affect two other species. Leaf material from other deciduous tree species depressed ectomycorrhizal growth to a similar or greater extent as leaf material from R.m. In conclusion, R.m. litter can have an allelopathic effect on seed germination and root elongation of bioassay species as well as some ectomycorrhizal species. However, this allelopathic affect is not manifest in field sites and is not likely to be an important cause for the inhibition of seedling survival within thickets of R.m.  相似文献   

17.
Mycorrhizal fungi have substantial potential to influence plant distribution, especially in specialized orchids and mycoheterotrophic plants. However, little is known about environmental factors that influence the distribution of mycorrhizal fungi. Previous studies using seed packets have been unable to distinguish whether germination patterns resulted from the distribution of appropriate edaphic conditions or the distribution of host fungi, as these cannot be separated using seed packets alone. We used a combination of organic amendments, seed packets and molecular assessment of soil fungi required by three terrestrial orchid species to separate direct and indirect effects of fungi and environmental conditions on both seed germination and subsequent protocorm development. We found that locations with abundant mycorrhizal fungi were most likely to support seed germination and greater growth for all three orchids. Organic amendments affected germination primarily by affecting the abundance of appropriate mycorrhizal fungi. However, fungi associated with the three orchid species were affected differently by the organic amendments and by forest successional stage. The results of this study help contextualize the importance of fungal distribution and abundance to the population dynamics of plants with specific mycorrhizal requirements. Such phenomena may also be important for plants with more general mycorrhizal associations.  相似文献   

18.
Plants producing dust seeds often meet their carbon demands by exploiting fungi at the seedling stage. This germination strategy (i.e. mycoheterotrophic germination) has been investigated among orchidaceous and ericaceous plants exploiting Ascomycota or Basidiomycota. Although several other angiosperm lineages have evolved fully mycoheterotrophic relationships with Glomeromycota, the fungal identities involved in mycoheterotrophic germination remain largely unknown. Here, we conducted in situ seed baiting and high-throughput DNA barcoding to identify mycobionts associated with seedlings of Burmannia championii (Burmanniaceae: Dioscoreales) and Sciaphila megastyla (Triuridaceae: Pandanales), which have independently evolved full mycoheterotrophy. Subsequently, we revealed that both seedlings and adults in B. championii and S. megastyla predominantly associate with Glomeraceae. However, mycorrhizal communities are somewhat distinct between seedling and adult stages, particularly in S. megastyla. Notably, the dissimilarity of mycorrhizal communities between S. megastyla adult samples and S. megastyla seedling samples is significantly higher than that between B. championi adult samples and S. megastyla adult samples, based on some indices. This pattern is possibly due to both mycorrhizal shifts during ontogenetic development and convergent recruitment of cheating-susceptible fungi. The extensive fungal overlap in two unrelated mycoheterotrophic plants indicates that both species convergently exploit specific AM fungal phylotypes.  相似文献   

19.
美花石斛菌根真菌接菌方式与接种效应初步研究   总被引:2,自引:0,他引:2  
自然条件下,兰科菌根真菌的共生对于兰科植物种子萌芽和植株生长是必不可少的。为探讨有益共生真菌对兰科植物生长的促进作用,特别是在实验室环境下接菌方式的改变与接种效应直接的联系,本研究从野生美花石斛(Dendrobium loddigesii Rolfe.)新鲜营养根中分离、筛选出3种菌根真菌(M1、M2和M3),采用单一接菌和混合接菌的接种方式,分析3个菌株及其不同接种方式对美花石斛生长的影响。研究得到优势菌株M1和M3,并证实混合接菌对美花石斛的生物量增长具有较好的正效应,两两混合接种方式M1-M2、M2-M3及3个混合接种方式M1-M2-M3均能较好的促进美花石斛生物量的积累。充分发挥混合接菌对兰科植物生长发育所产生的效能,提高生产效率,具有较强的现实意义。  相似文献   

20.
Epiphytes constitute over 70% of orchid diversity, but little is known about the functioning of their mycorrhizal associations. Terrestrial orchid seeds germinate symbiotically in soil and leaf litter, whereas epiphytic orchids may be exposed to relatively high light levels from an early stage of development and often produce green seeds. This suggests that seedlings of the two groups of orchids may differ in their responses to light and requirements for mycorrhiza-supplied carbon. The interactive effects of light, exogenous carbon and mycorrhizal status on germination and growth were investigated in vitro using axenic agar microcosms for one tropical epiphyte and three geophytic orchid species. The geophytic species strongly depended on their mycorrhiza for growth and this could not be substituted by exogenous sucrose, whereas the epiphytic species achieved 95% of the mycorrhizal seedling volume when supplied with exogenous sucrose in the dark. Mycorrhiza status strongly interacted with light exposure, enabling germination. Light inhibited or severely reduced growth, especially for the terrestrial orchids in the absence of mycorrhiza. For the first time, this study showed the parallel ecological importance of mycorrhizal fungi in overcoming light inhibition of seed germination and growth in both terrestrial and epiphytic orchids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号