首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Developmental biology》1987,122(1):113-119
Hydra transplantation phenomena were examined using lateral grafting (Browne, 1909; Wolpert et al., 1974) and axial grafting (Shostak, 1972, Shostak, 1973, Shostak, 1974; Hicklin et al., 1973) procedures. When a small piece of tissue excised from one hydra is transplanted to another by the former procedure, the transplanted tissue forms a small protrusion on the body column of the host animal, whereas such a protrusion is not produced by the latter procedure. It was found that transplantation experiments carried out by the two procedures gave significantly different results. The frequency of head formation by the transplanted tissue on the host was significantly higher by the lateral than by the axial grafting procedure. This suggests that the small protrusion introduced onto the smooth cylindrical structure of the host body column by the former, but not by the latter, procedure plays an important role in determining the fate of the transplant. It is suggested that the cooperation of two factors determines the transplantation result. One is the positional factor described and discussed by previous workers (e.g., Wolpert et al., 1974; Sugiyama, 1982; MacWilliams, 1983, MacWilliams, 1983; Takano and Sugiyama, 1983) and the other is the structural factor revealed in this study. The underlying mechanisms responsible for the latter factor are discussed.  相似文献   

2.
Nematocyte differentiation from the interstitial stem cells in hydra occurs non-uniformly along the body column. The relative ratios of the 4 nematocyte types produced vary gradually from head to foot along the body axis (Bode and Smith, 1977). To find out whether this regional variation in nematocyte differentiation along the body column is related to the gradients of the head-activation and head-inhibition potentials, nematocyte differentiation patterns were examined in strains which have significantly different developmental gradients along their body columns. Five strains of hydra, including a wild-type, two mutant strains and two chimeric (mutnt/wild-type) strains, were investigated. It was found that the regional variations in the nematocyte differentiation were similar in all the strains examined, and that no significant differences of the variation existed that could be attributed to the differences of the developmental gradients in these strains. This suggests that nematocyte differentiation is strongly affected by the axial position along the body column, but that the gradients of the morphogenetic potentials involved in head formation are not involved in this effect. Instead, some other parameter(s) of axial position not directly associated with these gradients must be responsible for the positional effect on nematocyte differentiation.  相似文献   

3.
Morphogenetic potentials of hydra tissue involved in head or foot formation were examined in a standard wild-type strain (105) and a mutant strain (reg-16) which has a very low head regenerative but a nearly normal foot regenerative capacity (T. Sugiyama and T. Fujisawa, 1977, J. Embryol. Exp. Morphol. 42, 65-77). Hydra tissue has two types of morphogenetic potentials to control head formation: the potential to form head structure (head-activation potential) and the potential to inhibit head formation (head-inhibition potential). It also has two types of morphogenetic potentials to control foot formation: foot-activation and foot-inhibition potentials. A lateral tissue grafting procedure (G. Webster and L. Wolpert, 1966, J. Embryol. Exp. Morphol. 16, 91-104), was used to examine and compare the relative levels of these potentials in the normal and the mutant strains. The potential levels were examined along the body axis of the intact animals and also in the regenerating animals after head removal. The results obtained show that the potentials involved in head formation are highly abnormal, whereas the potentials involved in foot formation are apparently normal in the mutant strain (reg-16). This suggests that the abnormal potentials are related in some way to, and may be responsible for, the reduced head regenerative capacity in the mutant strain reg-16.  相似文献   

4.
5.
Developmental processes in multicellular animals depend on an array of signal transduction pathways. Studies of model organisms have identified a number of such pathways and dissected them in detail. However, these model organisms are all bilaterians. Investigations of the roles of signal transduction pathways in the early-diverging metazoan Hydra have revealed that a number of the well-known developmental signaling pathways were already in place in the last common ancestor of Hydra and bilaterians. In addition to these shared pathways, it appears that developmental processes in Hydra make use of pathways involving a variety of peptides. Such pathways have not yet been identified as developmental regulators in more recently diverged animals. In this review I will summarize work to date on developmental signaling pathways in Hydra and discuss the future directions in which such work will need to proceed to realize the potential that lies in this simple animal.  相似文献   

6.
Transplantation experiments have led to the idea that developmental gradients are involved in the patterning processes of hydra. Head activation and head inhibition gradients appear to be involved in head formation. More could be learned about pattern formation if these gradients could be altered in the animal. One approach to this end is to study mutants suspected of having altered gradients. Such mutants may be identified by their altered morphology. In this investigation the aberrant, a morphological mutant of Hydra attenuata, was examined for alterations in its gradients. The aberrant was found to have changes in its inhibition and polarity properties. The inhibition gradient was steeper than normal and the level of inhibition was higher than normal near the head. In addition, the amount of inhibition transmitted from the head was greater than normal, while the amount of inhibition transmitted through the gastric region was less than normal. The polarity of the aberrant gastric region was more difficult than normal to reverse, and the aberrant extremities caused faster polarity reversal than normal extremities. The significance of these changes is discussed in relation to pattern formation.  相似文献   

7.
Interstitial stem cells in Hydra constitute a population of multipotent cells, which continuously give rise to differentiated products during the growth and budding of Hydra polyps. They also give rise to germ cells in animals undergoing sexual differentiation. Cloning experiments have shown that interstitial stem cells are multipotent. In vivo tracing of stem cell lineages has revealed that stem cells divide symmetrically to yield two stem cells or asymmetrically to yield one stem cell daughter and one daughter cell which initiates nerve or nematocyte differentiation. Following commitment, some nerve cell precursors migrate from the body column into the head or foot region, thus giving rise to the high density of nerve cells observed in these regions. Stem cell proliferation is regulated by changes in the self-renewal probability and is controlled by stem cell density. Nerve cell commitment is controlled by several peptides including the Head Activator. Factors affecting nematocyte commitment are not known, but wnt and notch signaling are both required for differentiation of committed precursors.  相似文献   

8.
Guidance of cells and tissue sheets is an essential function in developing and differentiating animal tissues. In Hydra, where cells and tissue move dynamically due to constant cell proliferation towards the termini or into lateral, vegetative buds, factors essential for guidance are still unknown. Good candidates to take over this function are fibroblast growth factors (FGFs). We present the phylogeny of several Hydra FGFs and analysis of their expression patterns. One of the FGFs is expressed in all terminal regions targeted by tissue movement and at boundaries crossed by moving tissue and cells with an expression pattern slightly differing in two Hydra strains. A model addressing an involvement of this FGF in cell movement and morphogenesis is proposed: Hydra FGFf-expressing cells might serve as sources to attract tissue and cells towards the termini of the body column and across morphological boundaries. Moreover, a function in morphogenesis and/or differentiation of cells and tissue is suggested.  相似文献   

9.
In the column of hydra, tissues continually move away from a region located just underthe whorl of tentacles. Above this subtentacular region, tissues proceed into the hypostome and tentacles; below it tissues pass into the buds or continue down the stalk. These movements represent a steady state pattern of tissue renewal in which column growth is balanced by tissue loss at the body extremities. But the existence of a subtentacular zone in which tissue appears stationary does not necessarily indicate that growth is restrictedto this region, as is commonly stated. The body column of hydra can be viewed as an expanding cylinder whose elongation is balanced by tissue loss at the two ends. In such a body there must be one region from whichtissue appears to emanate, regardless of how growth is distributed along the cylinder. Only the rates at which tissues move will be characteristic of the underlying growthpattern. In Hydra littoralis, the measured rates of tissue movement down the gastric column are consistent with the distributions of mitotic figures, which indicate that growth is spread out along the column.  相似文献   

10.
Organizers and organizing centers play critical roles in axis formation and patterning during the early stages of embryogenesis in many bilaterians. The presence and activity of an organizer was first described in adult Hydra about 100 years ago, and in the following decades organizer regions were identified in a number of bilaterian embryos. In an adult Hydra, the cells of the body column are constantly in the mitotic cycle resulting in continuous displacement of the tissue to the extremities where it is sloughed. In this context, the head organizer located in the hypostome is continuously active sending out signals to maintain the structure and morphology of the head, body column and foot of the animal. The molecular basis of the head organizer involves the canonical Wnt pathway, which acts in a self-renewing manner to maintain itself in the context of the tissue dynamics of Hydra. During bud formation, Hydra's mode of asexual reproduction, a head organizer based on the canonical Wnt pathway is set up to initiate and control the development of a new Hydra. As this pathway plays a central role in vertebrate embryonic organizers, its presence and activity in Hydra indicate that the molecular basis of the organizer arose early in metazoan evolution.  相似文献   

11.
The discovery of Hydra regeneration by Abraham Trembley in 1744 promoted much scientific curiosity thanks to his clever design of experimental strategies away from the natural environment. Since then, this little freshwater cnidarian polyp flourished as a potent and fruitful model system. Here, we review some general biological questions that benefitted from Hydra research, such as the nature of embryogenesis, neurogenesis, induction by organizers, sex reversal, symbiosis, aging, feeding behavior, light regulation, multipotency of somatic stem cells, temperature-induced cell death, neuronal transdifferentiation, to cite only a few. To understand how phenotypes arise, theoricists also chose Hydra to model patterning and morphogenetic events, providing helpful concepts such as reaction-diffusion, positional information, and autocatalysis combined with lateral inhibition. Indeed, throughout these past 270 years, scientists used transplantation and grafting experiments, together with tissue, cell and molecular labelings, as well as biochemical procedures, in order to establish the solid foundations of cell and developmental biology. Nowadays, thanks to transgenic, genomic and proteomic tools, Hydra remains a promising model for these fields, but also for addressing novel questions such as evolutionary mechanisms, maintenance of dynamic homeostasis, regulation of stemness, functions of autophagy, cell death, stress response, innate immunity, bioactive compounds in ecosystems, ecotoxicant sensing and science communication.  相似文献   

12.
David L. West   《Tissue & cell》1978,10(4):629-646
Ectodermal epitheliomuscular cells of Hydra attenuata were studied by transmission and scanning electron microscopy, and a three-dimensional model was constructed. These cells are cuboidal to columnar, and each cell has one muscle process arising from the basal portion of the oral-facing surface and one from the aboralsurface. Adjacent epitheliomuscular cells are joined apicolaterally by septate junctions. Numerous gap junctions occur between adjacent epitheliomuscular cells and are irregularly distributed along the lateral and basal aspects. Finger-like interdigitations and specialized folds (couplers) also occur along the basal and lateral aspects and interlock adjacent epitheliomuscular cells. In the basal portion of these cells, myofilaments are aggregated into myonemes which are oriented in the oral-aboral axis of the polyp. Myonemes dominate the cytoplasm of muscle processes. Myofilaments are also aggregated in the basal cytoplasm of the cell body when the cell body is in contact with the mesoglea but are sparse or absent when the cell body rests upon other muscle processes. Epitheliomuscular cells and associated muscle processes rest upon other processes and the mesoglea and show variations in these relations. A muscle process and associated cell may rest upon another process; the process may then extend under the preceding process and cell body. This configuration, and variations, present a woven or braided network of muscle processes which collectively form a sheet of muscle on the mesoglea. The interdigitations, couplers and gap junctions between epitheliomuscular cells and the woven network of muscle processes present a cytological basis for the observations that the ectoderm in hydra behaves as a coherent sheet along the body column.  相似文献   

13.
Hydra's remarkable capacity to regenerate, to proliferate asexually by budding, and to form a pattern de novo from aggregates allows studying complex cellular and molecular processes typical for embryonic development. The underlying assumption is that patterning in adult hydra tissue relies on factors and genes which are active also during early embryogenesis. Previously, we reported that in Hydra the timing of expression of conserved regulatory genes, known to be involved in adult patterning, differs greatly in adults and embryos (Fr?bius, A.C., Genikhovich, G., Kürn, U., Anton-Erxleben, F. and Bosch, T.C.G., 2003. Expression of developmental genes during early embryogenesis of Hydra. Dev. Genes Evol. 213, 445-455). Here, we describe an unbiased screening strategy to identify genes that are relevant to Hydra vulgaris embryogenesis. The approach yielded two sets of differentially expressed genes: one set was expressed exclusively or nearly exclusively in the embryos, while the second set was upregulated in embryos in comparison to adult polyps. Many of the genes identified in hydra embryos had no matches in the database. Among the conserved genes upregulated in embryos is the Hydra orthologue of Embryonic Ectoderm Development (HyEED). The expression pattern of HyEED in developing embryos suggests that interstitial stem cells in Hydra originate in the endoderm. Importantly, the observations uncover previously unknown differences in genes expressed by embryos and polyps and indicate that not only the timing of expression of developmental genes but also the genetic context is different in Hydra embryos compared to adults.  相似文献   

14.
Published evidence suggests that tissue injury is important for head regeneration in hydra [MacWilliams, 1982, 1983a,b; Kobatake and Sugiyama, 1989]. To investigate this problem in more detail, two experimental manipulations, decapitation and mirror-image grafting, were carried out. In the latter, two decapitated polyps were axially grafted to each other to make the wound openings of the two polyps juxtaposed on each other. In normal regenerates, the wound opening closed and healed in 4 to 5 hr, while in mirror-image grafts it healed in about 1 hr. The percentage of head regeneration was lower in mirror-image grafts than that after decapitation. The effect of mirror-image grafting on morphogenetic potential levels was examined using a lateral transplantation technique. Head inhibition levels dropped in both types of regenerates to a similar extent. Head activation levels rose more in normal regenerates than in mirror-image grafts. These results show clearly that the drop in head inhibition level is due to removal of the head and is not affected by grafting. They also show that the increase in head activation levels and in the percentage of head regeneration is affected substantially by the grafting. These observations are consistent with the view that decapitation produced a greater injury effect than mirror-image grafting, and this injury effect raised the head activation level whereas it did not alter the head inhibition level. The fact that the wound remained open for a longer time in normal regenerates than in the grafts suggests that the injury effect depends not on tissue injury itself but on the length of time the wound is open.  相似文献   

15.
The sequencing of a Hydra genome marked the beginning of a new era in the use of Hydra as a developmental model. Analysis of the genome sequence has led to a number of interesting findings, has required revisiting of previous work, and most importantly presents new opportunities for understanding the developmental biology of Hydra. This review will de-scribe the history of the Hydra genome project, a selection of results from it that are relevant to developmental biologists, and some future research opportunities provided by Hydra genomics.  相似文献   

16.
Silencing of developmental genes in Hydra.   总被引:32,自引:0,他引:32  
  相似文献   

17.
In wild type Hydra magnipapillata, daily application of the protein kinase C activator diacylglycerol (DAG) evokes sprouting of periodically spaced ectopic heads along the body column and leads to loss of the ability to regenerate proximal structures including the foot. The present transplantation studies show that the appearance of ectopic heads is preceded by an early increase in the 'positional value' (P-value) or 'head activation potential' of the gastric column. Long before ectopic head structures emerge, pieces of DAG-treated tissue transplanted into the corresponding positional level of untreated hosts induce head formation instead of being integrated, whereas pieces implanted from untreated donors into DAG-treated hosts form feet. Foot formation implies a decrease in the P-value. This down-regulation is promoted through long-range assistance by the head. Thus, after termination of the DAG treatment ectopic feet are intercalated midway between the periodically spaced heads; moreover, untreated polyps onto which additional distal heads have been grafted regenerate feet faster than do one-headed polyps and may form supernumerary feet. Multiheaded animals can also be produced using two substances (K-252a and xanthate D609) that interfere with signal transduction, but the mode by which secondary heads arise is different from DAG-induced ectopic head formation. Presumably because the assistance by the parental head is impaired, buds fail to form a foot and detach and instead give rise to stable secondary body axes. It is assumed that the P-value along the body varies according to the number of cellular receptors for factors serving as intercellular signals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The introductory personal remarks refer to my motivations for choosing research projects, and for moving from physics to molecular biology and then to development, with Hydra as a model system. Historically, Trembley's discovery of Hydra regeneration in 1744 was the beginning of developmental biology as we understand it, with passionate debates about preformation versus de novo generation, mechanisms versus organisms. In fact, seemingly conflicting bottom-up and top-down concepts are both required in combination to understand development. In modern terms, this means analysing the molecules involved, as well as searching for physical principles underlying development within systems of molecules, cells and tissues. During the last decade, molecular biology has provided surprising and impressive evidence that the same types of molecules and molecular systems are involved in pattern formation in a wide range of organisms, including coelenterates like Hydra, and thus appear to have been "invented" early in evolution. Likewise, the features of certain systems, especially those of developmental regulation, are found in many different organisms. This includes the generation of spatial structures by the interplay of self-enhancing activation and "lateral" inhibitory effects of wider range, which is a main topic of my essay. Hydra regeneration is a particularly clear model for the formation of defined patterns within initially near-uniform tissues. In conclusion, this essay emphasizes the analysis of development in terms of physical laws, including the application of mathematics, and insists that Hydra was, and will continue to be, a rewarding model for understanding general features of embryogenesis and regeneration.  相似文献   

19.
The aberrant, a morphological mutant of Hydra attenuata, has altered patterns of the development and distribution of nematocytes. The number of nematoblasts and nematocytes is higher in the aberrant than in the normal. Stenotele differentiation is incomplete and the numbers of desmonemes and holotrichous isohrizas mounted on the body column are much higher than normal. Because nematocytes arise by differentiation from the interstitial cells, epithelial cell/interstitial cell chimeras between the aberrant and normal strains were made to determine whether the lesion giving rise to the alterations in the mutant was due to the epithelial cells or a cell type in the nematocyte lineage. Only the chimera in which both cell types were derived from the aberrant exhibited the altered nematocyte development. If the chimera contained a normal cell type, either epithelial cell or interstitial cell, nematocyte development was normal. Thus, both epithelial cells and cells of the nematocyte lineage are involved in the control of nematocyte development. A defect in one of the lineages can be compensated for by the other cell type.  相似文献   

20.
The body plan of the turtle represents an example of evolutionary novelty for acquisition of the shell. Unlike similar armors in other vertebrate groups, the turtle shell involves the developmental repatterning of the axial skeleton and exhibits an unusual topography of musculoskeletal elements. Thus, the turtle provides an ideal case study for understanding changes in the developmental program associated with the morphological evolution of vertebrates. In this article, the evolution of the turtle-specific body plan is reviewed and discussed. The key to understanding shell patterning lies in the modification of the ribs, for which the carapacial ridge (CR), a turtle-specific embryonic anlage, is assumed to be responsible. The growth of the ribs is arrested in the axial part of the body, allowing dorsal and lateral oriented growth to encapsulate the scapula. Although the CR does not appear to induce this axial arrest per se, it has been shown to support the fan-shaped patterning of the ribs, which occurs concomitant with marginal growth of the carapace along the line of the turtle-specific folding that takes place in the lateral body wall. During the process of the folding, some trunk muscles maintain their ancestral connectivities, whereas the limb muscles establish new attachments specific to the turtle. The turtle body plan can thus be explained with our knowledge of vertebrate anatomy and developmental biology, consistent with the evolutionary origin of the turtle suggested by the recently discovered fossil species, Odontochelys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号