首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Traffic noise likely reaches a wide range of species and populations throughout the world, but we still know relatively little about how it affects anti-predator behavior of populations. We tested for possible effects of traffic noise on responses to predator acoustic cues in Carolina chickadees (Poecile carolinensis), tufted titmice (Baeolophus bicolor), and white-breasted nuthatches (Sitta carolinensis) near 14 independent feeding stations in eastern Tennessee. We compared anti-predator calling and seed-taking behavior in response to playbacks of predator stimuli (screech owl calls) at sites naturally exposed to traffic noise and at sites that faced relatively little traffic noise. The screech owl call playback was designed to simulate the approach of this dangerous predator to a feeder being used by these small songbirds. We found that chickadees responded consistently to the owl stimuli across different levels of traffic noise. However, titmice, and nuthatches exhibited different behavioral responses to the predator stimulus, suggesting that traffic noise masked these low-frequency predator calls. Overall, chickadees and nuthatches showed the broadest anti-predator behavioral responses in comparison to titmice, corroborating earlier published work with an Indiana population. Finally, populations exposed to traffic noise overall seemed less able to detect predator cues potentially masked by that noise, and future work will need to assess likely seasonal variation in these responses as well as species-level variation in anti-predator responses in mixed-species groups.  相似文献   

2.
Anthropogenic noise associated with highway construction and operation can have individual‐ and population‐level consequences for wildlife (e.g., reduced densities, decreased reproductive success, behavioral changes). We used a before–after control–impact study design to examine the potential impacts of highway construction and traffic noise on endangered golden‐cheeked warblers (Setophaga chrysoparia; hereafter warbler) in urban Texas. We mapped and monitored warbler territories before (2009–2011), during (2012–2013), and after (2014) highway construction at three study sites: a treatment site exposed to highway construction and traffic noise, a control site exposed only to traffic noise, and a second control site exposed to neither highway construction or traffic noise. We measured noise levels at varying distances from the highway at sites exposed to construction and traffic noise. We examined how highway construction and traffic noise influenced warbler territory density, territory placement, productivity, and song characteristics. In addition, we conducted a playback experiment within study sites to evaluate acute behavioral responses to highway construction noises. Noise decreased with increasing distance from the highways. However, noise did not differ between the construction and traffic noise sites or across time. Warbler territory density increased over time at all study sites, and we found no differences in warbler territory placement, productivity, behavior, or song characteristics that we can attribute to highway construction or traffic noise. As such, we found no evidence to suggest that highway construction or traffic noise had a negative effect on warblers during our study. Because human population growth will require recurring improvements to transportation infrastructure, understanding wildlife responses to anthropogenic noise associated with the construction and operation of roads is essential for effective management and recovery of prioritized species.  相似文献   

3.
Acoustic noise from automobile traffic impedes communication between signaling animals. To overcome the acoustic interference imposed by anthropogenic noise, species across taxa adjust their signaling behavior to increase signal saliency. As most of the spectral energy of anthropogenic noise is concentrated at low acoustic frequencies, species with lower frequency signals are expected to be more affected. Thus, species with low-frequency signals are under stronger pressure to adjust their signaling behaviors to avoid auditory masking than species with higher frequency signals. Similarly, for a species with multiple types of signals that differ in spectral characteristics, different signal types are expected to be differentially masked. We investigate how the different call types of a Japanese stream breeding treefrog (Buergeria japonica) are affected by automobile traffic noise. Male B. japonica produce two call types that differ in their spectral elements, a Type I call with lower dominant frequency and a Type II call with higher dominant frequency. In response to acoustic playbacks of traffic noise, B. japonica reduced the duration of their Type I calls, but not Type II calls. In addition, B. japonica increased the call effort of their Type I calls and decreased the call effort of their Type II calls. This result contrasts with prior studies in other taxa, which suggest that signalers may switch to higher frequency signal types in response to traffic noise. Furthermore, the increase in Type I call effort was only a short-term response to noise, while reduced Type II call effort persisted after the playbacks had ended. Overall, such differential effects on signal types suggest that some social functions will be disrupted more than others. By considering the effects of anthropogenic noise across multiple signal types, these results provide a more in-depth understanding of the behavioral impacts of anthropogenic noise within a species.  相似文献   

4.
Interest in the impact of human presence on the behavior and well-being of zoo and aquarium animals is increasing. Previous work has conceptualized the presence of zoo visitors as having one of three impacts on the behavior of animals in zoos: positive, negative, or neutral. Research suggests the same species may exhibit all three responses under different conditions, calling into question whether the positive/negative/neutral framework is the most useful way of considering visitor impact on animal behavior. Here we present a model of visitor effects that unifies these three predictions. Our model suggests that zoo-goers may provide a “dither effect” for some animals living in zoos. We posit animals may show nonlinear behavioral responses over a range of visitor densities, effectively exhibiting changes in both comfortable and anxiety-like behaviors under different levels of human presence. We tested this model during two COVID-19 related closures at the San Francisco Zoo, studying seven species for evidence of nonlinear relationships between visitor numbers and animal behavior. Our results support the dither effect acting in several species observed.  相似文献   

5.
Anthropogenic noise may impact captive breeding programs for endangered species. We recorded ambient noise and monitored potential behavioral and hormonal indices of stress in two captive giant pandas for 4 years. Statistical analyses were conducted for each individual separately, which allowed us to generalize only to these two animals. These preliminary findings indicate that ambient noise can have long‐lasting effects on stress indices. Days characterized by louder levels of noise were associated with increased locomotion, restless manipulation of the exit door of the enclosure, increased scratching and vocalizations indicative of agitation, and/or increased glucocorticoids excreted in urine. These general effects were modulated by several factors: 1) Brief loud noise evoked behavioral distress, but not pituitary‐adrenal activation. More chronic, moderate‐amplitude noise was associated with higher levels of glucocorticoids. 2) Some responses were frequency‐dependent, with loud low‐frequency noise having the greatest impact. 3) Female reproductive condition interacted significantly with noise amplitude for all behavioral measures, with stronger effects for the loudest acute noises. The female appeared especially sensitive to noise during estrus and lactation, and less so during pregnancy/pseudopregnancy and nonreproductive periods. Despite these statistical effects, we found no compelling evidence that these adjustments indicate substantive detrimental effects on well‐being or reproduction. Nonetheless, careful monitoring of giant pandas and other captive‐held species is advisable, especially during reproductively sensitive periods such as implantation and birth. Zoo Biol 23:147‐164, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

6.
Belugas (Delphinapterus leucas) depend on sounds for communication and echolocation. To address the concerns that noise from oil platforms may have adverse effects, we examined behavioral responses of four captive belugas to playbacks of noise from SEDCO 708, a semi-submersible drilling platform. Swim patterns, social groups, and respiration/dive rates were not statistically different before and during playbacks. We assayed levels of blood catecholamines before and after playbacks as a measure of stress. Blood epinephrine and norepinephrine levels measured immediately after playbacks were not elevated. Using the parameters we selected, we could not detect any short-term behavioral or physiological effects of drilling noise playbacks on these captive belugas. However, care should be taken in extrapolating these results to the behavior of wild belugas around oil platforms.  相似文献   

7.
Studies in our laboratory have focused on endocrine, neuroendocrine, and behavioral components of reproduction in the Japanese quail. These studies considered various stages in the life cycle, including embryonic development, sexual maturation, adult reproductive function, and aging. A major focus of our research has been the role of neuroendocrine systems that appear to synchronize both endocrine and behavioral responses. These studies provide the basis for our more recent research on the impact of endocrine disrupting chemicals (EDCs) on reproductive function in the Japanese quail. These endocrine active chemicals include pesticides, herbicides, industrial products, and plant phytoestrogens. Many of these chemicals appear to mimic vertebrate steroids, often by interacting with steroid receptors. However, most EDCs have relatively weak biological activity compared to native steroid hormones. Therefore, it becomes important to understand the mode and mechanism of action of classes of these chemicals and sensitive stages in the life history of various species. Precocial birds, such as the Japanese quail, are likely to be sensitive to EDC effects during embryonic development, because sexual differentiation occurs during this period. Accordingly, adult quail may be less impacted by EDC exposure. Because there are a great many data available on normal development and reproductive function in this species, the Japanese quail provides an excellent model for examining the effects of EDCs. Thus, we have begun studies using a Japanese quail model system to study the effects of EDCs on reproductive endocrine and behavioral responses. In this review, we have two goals: first, to provide a summary of reproductive development and sexual differentiation in intact Japanese quail embryos, including ontogenetic patterns in steroid hormones in the embryonic and maturing quail. Second, we discuss some recent data from experiments in our laboratory in which EDCs have been tested in Japanese quail. The Japanese quail provides an excellent avian model for testing EDCs because this species has well-characterized reproductive endocrine and behavioral responses. Considerable research has been conducted in quail in which the effects of embryonic steroid exposure have been studied relative to reproductive behavior. Moreover, developmental processes have been studied extensively and include investigations of the reproductive axis, thyroid system, and stress and immune responses. We have conducted a number of studies, which have considered long-term neuroendocrine consequences as well as behavioral responses to steroids. Some of these studies have specifically tested the effects of embryonic steroid exposure on later reproductive function in a multigenerational context. A multigenerational exposure provides a basis for understanding potential exposure scenarios in the field. In addition, potential routes of exposure to EDCs for avian species are being considered, as well as differential effects due to stage of the life cycle at exposure to an EDC. The studies in our laboratory have used both diet and egg injection as modes of exposure for Japanese quail. In this way, birds were exposed to a specific dose of an EDC at a selected stage in development by injection. Alternatively, dietary exposure appears to be a primary route of exposure; therefore experimental exposure through the diet mimics potential field situations. Thus, experiments should consider a number of aspects of exposure when attempting to replicate field exposures to EDCs.  相似文献   

8.
When environments change rapidly, adaptive phenotypic plasticity can ameliorate negative effects of environmental change on survival and reproduction. Recent evidence suggests, however, that plastic responses to human‐induced environmental change are often maladaptive or insufficient to overcome novel selection pressures. Anthropogenic noise is a ubiquitous and expanding disturbance with demonstrated effects on fitness‐related traits of animals like stress responses, foraging, vigilance, and pairing success. Elucidating the lifetime fitness effects of noise has been challenging because longer‐lived vertebrate systems are typically studied in this context. Here, we follow noise‐stressed invertebrates throughout their lives, assessing a comprehensive suite of life history traits, and ultimately, lifetime number of surviving offspring. We reared field crickets, Teleogryllus oceanicus, in masking traffic noise, traffic noise from which we removed frequencies that spectrally overlap with the crickets’ mate location song and peak hearing (nonmasking), or silence. We found that exposure to masking noise delayed maturity and reduced adult lifespan; crickets exposed to masking noise spent 23% more time in juvenile stages and 13% less time as reproductive adults than those exposed to no traffic noise. Chronic lifetime exposure to noise, however, did not affect lifetime reproductive output (number of eggs or surviving offspring), perhaps because mating provided females a substantial longevity benefit. Nevertheless, these results are concerning as they highlight multiple ways in which traffic noise may reduce invertebrate fitness. We encourage researchers to consider effects of anthropogenic disturbance on growth, survival, and reproductive traits simultaneously because changes in these traits may amplify or nullify one another.  相似文献   

9.
The construction of roads near protected forest areas alters ecosystem function by creating habitat fragmentation and through several direct and indirect negative effects such as increased pollution, animal mortality through collisions, disturbance caused by excessive noise and wind turbulence. Noise in particular may have strong negative effects on animal groups such as frogs and birds, that rely on sound for communication as it can negatively interfere with vocalizations used for territorial defense or courtship. Thus, birds are expected to be less abundant close to the road where noise levels are high. In this study, we examined the effects of road traffic noise levels on forest bird species in a protected tropical forest in Costa Rica. Data collection was conducted in a forest segment of the Carara National Park adjacent to the Coastal Highway. We carried out 120 ten minute bird surveys and measured road noise levels 192 times from the 19th to the 23rd of April and from the 21st to the 28th of November, 2008. To maximize bird detection for the species richness estimates we operated six 12 m standard mist nets simultaneously with the surveys. The overall mist-netting effort was 240 net/h. In addition, we estimated traffic volumes by tallying the number of vehicles passing by the edge of the park using 24 one hour counts throughout the study. We found that the relative abundance of birds and bird species richness decreased significantly with the increasing traffic noise in the dry and wet season. Noise decreased significantly and in a logarithmic way with distance from the road in both seasons. However, noise levels at any given distance were significantly higher in the dry compared to the wet season. Our results suggest that noise might be an important factor influencing road bird avoidance as measured by species richness and relative abundance. Since the protected forest in question is located in a national park subjected to tourist visitation, these results have conservation as well as management implications. A decrease in bird species richness and bird abundance due to intrusive road noise could negatively affect the use of trails by visitors. Alternatives for noise attenuation in the affected forest area include the enforcement of speed limits and the planting of live barriers.  相似文献   

10.

Background

The effect of anthropogenic noise on terrestrial wildlife is a relatively new area of study with broad ranging management implications. Noise has been identified as a disturbance that has the potential to induce behavioral responses in animals similar to those associated with predation risk. This study investigated potential impacts of a variety of human activities and their associated noise on the behavior of elk (Cervus elaphus) and pronghorn (Antilocapra americana) along a transportation corridor in Grand Teton National Park.

Methodology/Principal Findings

We conducted roadside scan surveys and focal observations of ungulate behavior while concurrently recording human activity and anthropogenic noise. Although we expected ungulates to be more responsive with greater human activity and noise, as predicted by the risk disturbance hypothesis, they were actually less responsive (less likely to perform vigilant, flight, traveling and defensive behaviors) with increasing levels of vehicle traffic, the human activity most closely associated with noise. Noise levels themselves had relatively little effect on ungulate behavior, although there was a weak negative relationship between noise and responsiveness in our scan samples. In contrast, ungulates did increase their responsiveness with other forms of anthropogenic disturbance; they reacted to the presence of pedestrians (in our scan samples) and to passing motorcycles (in our focal observations).

Conclusions

These findings suggest that ungulates did not consistently associate noise and human activity with an increase in predation risk or that they could not afford to maintain responsiveness to the most frequent human stimuli. Although reduced responsiveness to certain disturbances may allow for greater investment in fitness-enhancing activities, it may also decrease detections of predators and other environmental cues and increase conflict with humans.  相似文献   

11.
《Global Change Biology》2018,24(7):3105-3116
The aquatic environment is increasingly bombarded by a wide variety of noise pollutants whose range and intensity are increasing with each passing decade. Yet, little is known about how aquatic noise affects marine communities. To determine the implications that changes to the soundscape may have on fishes, a meta‐analysis was conducted focusing on the ramifications of noise on fish behavior and physiology. Our meta‐analysis identified 42 studies that produced 2,354 data points, which in turn indicated that anthropogenic noise negatively affects fish behavior and physiology. The most predominate responses occurred within foraging ability, predation risk, and reproductive success. Additionally, anthropogenic noise was shown to increase the hearing thresholds and cortisol levels of numerous species while tones, biological, and environmental noise were most likely to affect complex movements and swimming abilities. These findings suggest that the majority of fish species are sensitive to changes in the aquatic soundscape, and depending on the noise source, species responses may have extreme and negative fitness consequences. As such, this global synthesis should serve as a warning of the potentially dire consequences facing marine ecosystems if alterations to aquatic soundscapes continue on their current trajectory.  相似文献   

12.
Animals respond to alarm calls by increasing their antipredator behavior; however, responses may consistently differ by age or sex. Although several adaptive explanations have been proposed to account for age‐dependent antipredator behavior, similar explanations are rarely extended to sex‐specific responses. Furthermore, no attempts have been made to quantitatively estimate the direction or magnitude of these differences across studies. Here, we use meta‐analysis to discover overall trends in the literature, as well as differences owing to experimental or population parameters. Across our sample of available studies (unfortunately biased toward rodents and primates), males respond more than females, and young respond more than adults. Furthermore, young of quickly maturing species display more adult‐like antipredator behavior than young of slowly maturing species, suggesting that young must develop antipredator behavior at a pace consistent with the length of their ontogenetic period (a.k.a. juvenile/sub‐adult period, defined as the time between birth and attainment of sexual maturity). We review previously proposed explanations for such age differences, namely, that longer ontogenetic periods may provide juveniles with time to develop behavior through learning and experience, or, maturation rates may influence age‐specific selection pressures and the consequent evolution of age‐specific behavioral strategies. We evaluate our results in light of these hypotheses, although our conclusions are limited by the number and taxonomic bias of available studies. We therefore suggest ways in which future studies may tease apart the relative importance of learning and experience vs. age‐specific adaptive behavior, and draw attention to opportunities for research on age‐ and sex‐specific alarm call responses.  相似文献   

13.
Anthropogenic noise is of increasing concern to biologists and medical scientists. Its detrimental effects on human health have been well studied, with the high noise levels from air traffic being of particular concern. However, less is known about the effects of airport noise pollution on signal masking in wild animals. Here, we report a relationship between aircraft noise and two major features of the singing behavior of birds. We found that five of ten songbird species began singing significantly earlier in the morning in the vicinity of a major European airport than their conspecifics at a quieter control site. As birds at both sites started singing before the onset of air traffic in the morning, this suggests that the birds in the vicinity of the airport advanced their activity to gain more time for unimpaired singing before the massive plane noise set in. In addition, we found that during the day, chaffinches avoided singing during airplane takeoffs, but only when the noise exceeded a certain threshold, further suggesting that the massive noise caused by the airport can impair acoustic communication in birds. Overall, our study indicates that birds may be adjusting their mating signals and time budgets in response to aircraft noise.  相似文献   

14.
Males of many vertebrate species are typically more prone to disease and infection than female conspecifics, and this sexual difference is partially influenced by the immunosuppressive properties of testosterone (T) in males. T-induced immunosuppression has traditionally been viewed as a pleiotropic handicap, rather than an adaptation. Recently, it has been hypothesized that suppression of sickness behavior, or the symptoms of infection, may have adaptive value if sickness interferes with the expression of T-mediated behaviors important for male reproductive success. We conduct a classic hormone replacement experiment to examine if T suppresses sickness behavior in a seasonally-breeding songbird, Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii). Triggered experimentally by bacterial lipopolysaccharide (LPS), sickness behavior includes decreased activity, anorexia, and weight loss. Gonadectomized (GDX) males that were treated with silastic implants filled with T exhibited suppression of behavioral and physiological responses to LPS compared to GDX and sham-GDX controls given empty implants. Sickness responses of control groups were statistically indistinguishable. T-implanted birds had significantly higher plasma T than control groups and levels were within the range associated with aggressive interactions during male-to-male contests. These findings imply that suppression of sickness behavior could occur when T is elevated to socially-modulated levels. Alternatively, it is possible that this suppressive effect is mediated through a stress-induced mechanism, as corticosterone levels were elevated in T-implanted subjects compared to controls. We propose that males wounded and infected during contests may gain a brief selective advantage by suppressing sickness responses that would otherwise impair competitive performance. The cost of immunosuppression would be manifested in males through an increased susceptibility to disease, which is presumably offset by capitalizing upon limited reproductive opportunities.  相似文献   

15.
Fishing has clear direct effects on harvested species, but its cascading, indirect effects are less well understood. Fishing disproportionately removes larger, predatory fishes from marine food webs. Most studies of the consequent indirect effects focus on density-mediated interactions where predator removal alternately drives increases and decreases in abundances of successively lower trophic-level species. While prey may increase in number with fewer predators, they may also alter their behavior. When such behavioral responses impact the food resources of prey species, behaviorally mediated trophic cascades can dramatically shape landscapes. It remains unclear whether this pathway of change is typically triggered by ocean fishing. By coupling a simple foraging model with empirical observations from coral reefs, we provide a mechanistic basis for understanding and predicting how predator harvest can alter the landscape of risk for herbivores and consequently drive dramatic changes in primary producer distributions. These results broaden trophic cascade predictions for fisheries to include behavioral changes. They also provide a framework for detecting the presence and magnitude of behaviorally mediated cascades. This knowledge will help to reconcile the disparity between expected and observed patterns of fishing-induced cascades in the sea.  相似文献   

16.
Worldwide urbanization and the ongoing rise of urban noise levels form a major threat to living conditions in and around cities. Urban environments typically homogenize animal communities, and this results, for example, in the same few bird species' being found everywhere. Insight into the behavioral strategies of the urban survivors may explain the sensitivity of other species to urban selection pressures. Here, we show that songs that are important to mate attraction and territory defense have significantly diverged in great tits (Parus major), a very successful urban species. Urban songs were shorter and sung faster than songs in forests, and often concerned atypical song types. Furthermore, we found consistently higher minimum frequencies in ten out of ten city-forest comparisons from London to Prague and from Amsterdam to Paris. Anthropogenic noise is most likely a dominant factor driving these dramatic changes. These data provide the most consistent evidence supporting the acoustic-adaptation hypothesis since it was postulated in the early seventies. At the same time, they reveal a behavioral plasticity that may be key to urban success and the lack of which may explain detrimental effects on bird communities that live in noisy urbanized areas or along highways.  相似文献   

17.
Species communicating acoustically may develop behavioral responses that aid them to transmit information and overcome signal masking in habitats disturbed by anthropogenic noise. Although many studies have concentrated on road traffic noise, very few studies mentioned effects of low flying airplane flyby noise on the vocal behavior of frogs. We studied the Critically Endangered Pickersgill’s Reed frog (Hyperolius pickersgilli) native to the eastern coastal regions of South Africa as a case study. In order to evaluate the call of H. pickersgilli, we compared a site with high levels of airplane flyby noise to a reference site without any airplane activity. Our results show that H. pickersgilli males made changes in both temporal and spectral properties of their call. Males call significantly more during and after an airplane flyby in relation to the call rate before the noise stimulus, but resumed normal call rhythms when measurements were taken 15 min after overflight. We found that males call at higher mean dominant frequencies (df difference = 161.4 Hz, P < 0.05) when exposed to high-intensity airplane flyby noise. In comparison with call rate 5 min before the airplane flyby, males called 12 % more during and 18 % more after the airplane flyby. Although changes in the spectral and temporal properties of the call of H. pickersgilli were observed, this species was actively calling for much longer than any other local species. This is the first study from Africa to report effects of anthropogenic noise on anuran communication.  相似文献   

18.
Anthropogenic habitat modification is a major driver of global biodiversity loss. In North America, one of the primary sources of habitat modification over the last 2 decades has been exploration for and production of oil and natural gas (hydrocarbon development), which has led to demographic and behavioral impacts to numerous wildlife species. Developing effective measures to mitigate these impacts has become a critical task for wildlife managers and conservation practitioners. However, this task has been hindered by the difficulties involved in identifying and isolating factors driving population responses. Current research on responses of wildlife to development predominantly quantifies behavior, but it is not always clear how these responses scale to demography and population dynamics. Concomitant assessments of behavior and population-level processes are needed to gain the mechanistic understanding required to develop effective mitigation approaches. We simultaneously assessed the demographic and behavioral responses of a mule deer population to natural gas development on winter range in the Piceance Basin of Colorado, USA, from 2008 to 2015. Notably, this was the period when development declined from high levels of active drilling to only production phase activity (i.e., no drilling). We focused our data collection on 2 contiguous mule deer winter range study areas that experienced starkly different levels of hydrocarbon development within the Piceance Basin. We assessed mule deer behavioral responses to a range of development features with varying levels of associated human activity by examining habitat selection patterns of nearly 400 individual adult female mule deer. Concurrently, we assessed the demographic and physiological effects of natural gas development by comparing annual adult female and overwinter fawn (6-month-old animals) survival, December fawn mass, adult female late and early winter body fat, age, pregnancy rates, fetal counts, and lactation rates in December between the 2 study areas. Strong differences in habitat selection between the 2 study areas were apparent. Deer in the less-developed study area avoided development during the day and night, and selected habitat presumed to be used for foraging. Deer in the heavily developed study area selected habitat presumed to be used for thermal and security cover to a greater degree. Deer faced with higher densities of development avoided areas with more well pads during the day and responded neutrally or selected for these areas at night. Deer in both study areas showed a strong reduction in use of areas around well pads that were being drilled, which is the phase of energy development associated with the greatest amount of human presence, vehicle traffic, noise, and artificial light. Despite divergent habitat selection patterns, we found no effects of development on individual condition or reproduction and found no differences in any of the physiological or vital rate parameters measured at the population level. However, deer density and annual increases in density were higher in the low-development area. Thus, the recorded behavioral alterations did not appear to be associated with demographic or physiological costs measured at the individual level, possibly because populations are below winter range carrying capacity. Differences in population density between the 2 areas may be a result of a population decline prior to our study (when development was initiated) or area-specific differences in habitat quality, juvenile dispersal, or neonatal or juvenile survival; however, we lack the required data to contrast evidence for these mechanisms. Given our results, it appears that deer can adjust to relatively high densities of well pads in the production phase (the period with markedly lower human activity on the landscape), provided there is sufficient vegetative and topographic cover afforded to them and populations are below carrying capacity. The strong reaction to wells in the drilling phase of development suggests mitigation efforts should focus on this activity and stage of development. Many of the wells in this area were directionally drilled from multiple-well pads, leading to a reduced footprint of disturbance, but were still related to strong behavioral responses. Our results also indicate the likely value of mitigation efforts focusing on reducing human activity (i.e., vehicle traffic, light, and noise). In combination, these findings indicate that attention should be paid to the spatial configuration of the final development footprint to ensure adequate cover. In our study system, minimizing the road network through landscape-level development planning would be valuable (i.e., exploring a maximum road density criteria). Lastly, our study highlights the importance of concomitant assessments of behavior and demography to provide a comprehensive understanding of how wildlife respond to habitat modification. © 2021 The Wildlife Society.  相似文献   

19.
人类活动产生的噪声污染对动物和人类的影响正受到日益增多的关注。本文以雄性成年金色中仓鼠为实验动物模型,探讨了北京市主干道交通噪声对其焦虑行为及血象、应激生理的影响。分别以北京主干道噪声(80±10 dB SPL)暴露为实验组,实验室环境噪声(50±4 dB SPL)暴露为对照组,噪声处理动物1小时后进行旷场行为学测试,然后取血对比观测两组鼠血液学指标和应激响应、抗氧化酶活性等生理指标的变化。结果显示道路交通噪声没有导致仓鼠出现明显的焦虑行为;不过,实验组血小板数显著低于对照组(P = 0.044),其他血象指标两组间差异不显著;噪声对血清皮质醇,谷丙、谷草转氨酶影响不显著;实验组的血清谷胱甘肽过氧化物酶(GSH-Px)活性极显著低于对照组(P < 0.001),但超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、总抗氧化能力 (TAOC) 和丙二醛(MDA)水平两组间差异不显著;血清溶菌酶活性实验组降低较明显,接近显著水平(P = 0.0507)。我们的结果显示道路交通噪声胁迫导致了金色中仓鼠血象指标发生了变化,这提示北京市主干道交通噪声刺激对金色中仓鼠生理功能产生了一定的副作用。  相似文献   

20.
Trait consistency over time is one of the cornerstones of animal personality. Behavioral syndromes are the result of correlations between behaviors. While repeatability in behavior is not a requirement for behavioral syndromes, the two concepts studied together provide a more comprehensive understanding of how behavior can change over ontogeny. The roles of ontogenetic processes in the emergence of personality and behavioral syndromes have received much individual attention. However, the characterization of both individual trait consistency and behavioral syndromes across both sexes, as in our study, has been relatively rare. Ontogeny refers to changes that occur from conception to maturation, and juveniles might be expected to undergo different selection pressures than sexually mature individuals and also will experience profound changes in hormones, morphology, and environment during this period. In this study, we test for behavioral trait consistency and behavioral syndromes across six time points during ontogenetic development in the desert funnel‐web spider (Agelenopsis lisa). Our results indicate behavioral traits generally lack consistency (repeatability) within life stages and across ontogeny. However, penultimate males and mature females do exhibit noticeable mean‐level changes, with greater aggressive responses toward prey, shorter latencies to explore their environment and in the exhibition of risk‐averse responses to predatory cues. These traits also show high repeatability. Some trait correlations do exist as well. In particular, a strong correlation between aggressiveness toward prey and exploration factors is observed in mature males. However, because correlations among these factors are unstable across ontogeny and vary in strength over time, we conclude that behavioral syndromes do not exist in this species. Nevertheless, our results indicate that increased consistency, increasing average trait values, and varying correlations between traits may coincide with developmentally important changes associated with sexual maturation, albeit at different time points in males and females. This period of the life cycle merits systematic examination across taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号