首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The antifreeze polypeptide (AFP) from the sea raven, Hemitripterus americanus, is a member of the cystine-rich class of blood antifreeze proteins which enable survival of certain fishes at sub-zero temperatures. Sea raven AFP contains 129 residues with 10 half-cystine residues. We have analyzed these half-cystine residues and established that all 10 of the half-cystine residues appeared to be involved in disulfide bond formation and that disulfide bonds linked Cys7 to Cys18, Cys35 to Cys125, and Cys89 to Cys117. These assignments were established by extensive proteolytic digestions of native AFP using pepsin and thermolysin and purification of the peptides by Sephadex G-15 gel filtration chromatography, anion exchange chromatography, and C18 reverse-phase high performance liquid chromatography. Cystine-containing peptides were detected by a colorimetric assay using nitrothiosulfobenzoate. Disulfide-containing peptides were reduced and alkylated, purified, and analyzed by amino acid analysis. The unreduced disulfide-linked peptides were sequenced directly by automated Edman degradations to confirm the disulfide assignments. Possible arrangements of the two remaining disulfide bonds include linkages Cys69/111 to Cys100/101. The sea raven AFP shares structural similarity with pancreatic stone protein and several lectin-binding proteins, especially with respect to half-cystines, glycines, and bulky aromatic residues. Two of the disulfide linkages we determined for sea raven AFP: Cys7-Cys18 and Cys35-Cys125, are conserved in these proteins. These similarities in covalent structure suggest that the sea raven AFP, pancreatic stone protein, and several lectin-binding proteins comprise a family of proteins which may possess a common fold.  相似文献   

2.
3.
A cDNA for a type II antifreeze protein was isolated from liver of smelt (Osmerus mordax). The predicted protein sequence is homologous to that from sea raven (Hemitripterus americanus) and both show homology to a family of calcium-dependent lectins. Smelt and sea raven belong to taxonomic orders believed to have diverged prior to Cenozoic glaciation. Thus, type II antifreeze proteins appear to have evolved independently in these fish species from pre-existing calcium-dependent lectins. Sequence alignment of the antifreezes and the lectins suggest that these proteins adopt a similar fold, that the sea raven antifreeze has lost its Ca2+ binding sites, and the smelt antifreeze has retained one site. Experiments show that smelt antifreeze protein activity is responsive to Ca2+ but that of sea raven antifreeze protein is not. These results suggest that the type II fish antifreeze proteins and calcium-dependent lectins share a common ancestry, related folding structures, and functional similarity.  相似文献   

4.
Summary Eight major antifreeze polypeptides (AFP) were purified from the sera of Newfoundland ocean pout. Except for their approximately identical size (6,000 Dalton), these components were shown to be separate entities by their behaviour on polyacrylamide gel electrophoresis, ion exchange chromatography, gel permeation and reverse phase high performance liquid chromatography. They could also be divided into two cross-reactive, yet distinct, immunological groups. Amino acid analysis demonstrated that ocean pout AFP are different from all of the other antifreezes studied to date. The ocean pout AFP do not contain the abundance of alanine (60 mol%) found in winter flounder and shorthorn sculpin AFP nor the high half-cystine residues (8 mol%) observed in sea raven AFP. It is suggested that ocean pout AFP represent a new type of macromolecular antifreeze.Abbreviations AFGP antifreeze glycoprotein(s) - AFP antifreeze polypeptide(s) - HPLC high performance liquid chromatography - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis  相似文献   

5.
Type II antifreeze proteins (AFP), which inhibit the growth of seed ice crystals in the blood of certain fishes (sea raven, herring, and smelt), are the largest known fish AFPs and the only class for which detailed structural information is not yet available. However, a sequence homology has been recognized between these proteins and the carbohydrate recognition domain of C-type lectins. The structure of this domain from rat mannose-binding protein (MBP-A) has been solved by X-ray crystallography (Weis WI, Drickamer K, Hendrickson WA, 1992, Nature 360:127-134) and provided the coordinates for constructing the three-dimensional model of the 129-amino acid Type II AFP from sea raven, to which it shows 19% sequence identity. Multiple sequence alignments between Type II AFPs, pancreatic stone protein, MBP-A, and as many as 50 carbohydrate-recognition domain sequences from various lectins were performed to determine reliably aligned sequence regions. Successive molecular dynamics and energy minimization calculations were used to relax bond lengths and angles and to identify flexible regions. The derived structure contains two alpha-helices, two beta-sheets, and a high proportion of amino acids in loops and turns. The model is in good agreement with preliminary NMR spectroscopic analyses. It explains the observed differences in calcium binding between sea raven Type II AFP and MBP-A. Furthermore, the model proposes the formation of five disulfide bridges between Cys 7 and Cys 18, Cys 35 and Cys 125, Cys 69 and Cys 100, Cys 89 and Cys 111, and Cys 101 and Cys 117.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We present a system for the expression and purification of recombinant sea raven type II antifreeze protein, a cysteine-rich, C-type lectin-like globular protein that has proved to be a difficult target for recombinant expression and purification. The cDNAs encoding the pro- and mature forms of the sea raven protein were cloned into a modified pMT Drosophila expression vector. These constructs produced N-terminally His(6)-tagged pro- and mature forms of the type II antifreeze protein under the control of a metallothionein promoter when transfected into Drosophila melanogaster S2 cells. Upon induction of stable cell lines the two proteins were expressed at high levels and secreted into the medium. The proteins were then purified from the cell medium in a simple and rapid protocol using immobilized metal affinity chromatography and specific protease cleavage by tobacco etch virus protease. The proteins demonstrated antifreeze activity indistinguishable from that of wild-type sea raven antifreeze protein purified from serum as illustrated by ice affinity purification, ice crystal morphology, and their ability to inhibit ice crystal growth. This expression and purification system gave yields of 95 mg/L of fully active mature sea raven type II AFP and 9.6 mg/L of the proprotein. This surpasses all previous attempts to express this protein in Escherichia coli, baculovirus-infected fall armyworm cells and Pichia pastoris and will provide sufficient protein for structural analysis.  相似文献   

7.
Fishes living in icy seawater are usually protected from freezing by endogenous antifreeze proteins (AFPs) that bind to ice crystals and stop them from growing. The scattered distribution of five highly diverse AFP types across phylogenetically disparate fish species is puzzling. The appearance of radically different AFPs in closely related species has been attributed to the rapid, independent evolution of these proteins in response to natural selection caused by sea level glaciations within the last 20 million years. In at least one instance the same type of simple repetitive AFP has independently originated in two distant species by convergent evolution. But, the isolated occurrence of three very similar type II AFPs in three distantly related species (herring, smelt and sea raven) cannot be explained by this mechanism. These globular, lectin-like AFPs have a unique disulfide-bonding pattern, and share up to 85% identity in their amino acid sequences, with regions of even higher identity in their genes. A thorough search of current databases failed to find a homolog in any other species with greater than 40% amino acid sequence identity. Consistent with this result, genomic Southern blots showed the lectin-like AFP gene was absent from all other fish species tested. The remarkable conservation of both intron and exon sequences, the lack of correlation between evolutionary distance and mutation rate, and the pattern of silent vs non-silent codon changes make it unlikely that the gene for this AFP pre-existed but was lost from most branches of the teleost radiation. We propose instead that lateral gene transfer has resulted in the occurrence of the type II AFPs in herring, smelt and sea raven and allowed these species to survive in an otherwise lethal niche.  相似文献   

8.
Serum antifreeze polypeptides (AFP) from Newfoundland ocean pout have been resolved by ion exchange chromatography and reverse phase high performance liquid chromatography into at least 12 components. The protein sequences of three of the AFP were determined using a combination of protein Edman degradation and cDNA sequencing. The AFP precursor protein encodes for a preprotein of 87 amino acids with no obvious prosequences. Two of the AFP (SP1-A and SP1-C) were separate gene products with minor amino acid sequence differences. The protein structure of SP1-C precursor is MKSVILTGLLFVLLCVDHMTASQSVVAT QLIPINTALTPAMMEGKVTNPIGIPFAEMSQIVGKQVNTPVAKGQTLMPNMVKTYVAGK. The third AFP (SP1-B) is a post-translation modification product of SP1-C. These experiments indicate that the ocean pout AFP are a multigene family with protein structure different from any other known polypeptide antifreezes.  相似文献   

9.
The cDNA clone coding for the ocean pout antifreeze polypeptide (AFP) was modified to improve translation of its mRNA in Escherichia coli. A recombinant AFP (rAFP), MetLys-AFP-Lys, was expressed successfully using the lambda PL promoter, and constituted 1-2% of total bacterial proteins. The rAFP was purified to homogeneity from the soluble fractions of bacterial extracts. Its identity was confirmed by amino acid analysis, automated Edman degradation, immuno-blot and activity measurements. Although the rAFP is indistinguishable from the authentic AFP in its secondary structure, thermal hysteretic activity and the alteration of ice crystal structure, it is, however, thermally more stable (approximately 4.5 degrees C increase in Tm) and is more effective in inhibiting ice growth along the a-axis. These investigations indicate that the extra amino acids in rAFP significantly improve the thermal stability and ice-binding activity of the polypeptide.  相似文献   

10.
We have usedDrosophila melanogaster as a model system for the transgenic expression of cystine-rich Type II antifreeze protein (AFP) from sea raven. This protein was synthesized and secreted into fly haemolymph where it migrated as a larger species (16 kDa) than the mature form of the protein (14 kDa) as judged by immunoblotting.Drosophila-produced Type II AFP demonstrated antifreeze activity both in terms of thermal hysteresis (0.13 °C) and inhibition of ice recrystallization. Recombinant AFP was purified and N-terminal sequencing revealed a 17 aa extension that began at the predicted signal peptide cleavage point. The expression of all three AFP types in transgenicDrosophila has now been achieved. We conclude that the globular Type II and Type III AFPs are better choices for antifreeze transfer to other organisms than is the more widely used linear Type I AFP.  相似文献   

11.
Hypothermic protection--a fundamental property of "antifreeze" proteins   总被引:7,自引:0,他引:7  
For the last two decades fish antifreeze proteins have been considered to function exclusively in conferring freeze-resistance to fish by binding to ice crystals and thereby depressing blood plasma freezing points non-colligatively. We report here the discovery of a second fundamental property of antifreeze proteins, the ability to protect cells and their membranes from hypothermic damage. Experiments were carried out exposing immature bovine oocytes to 4 degrees C for 24 h in the presence of type I alanine rich alpha helical antifreeze polypeptides (AFP) from winter flounder, type II cysteine-rich AFP from sea raven or type III AFP from ocean pout. The presence of AFP in the incubation medium resulted in an approximate four fold increase in the number of oocytes retaining an intact oolemma and a three fold increase in the number of oocytes able to undergo in vitro maturation. None of the control oocytes could be fertilized, whereas, of those incubated in AFP, the percentage which developed normally following fertilization was comparable to that observed for fresh oocytes. These results indicate that cold-sensitive mammalian cells can be rendered cold-tolerant through the addition of "antifreeze" proteins.  相似文献   

12.
Sea raven type II antifreeze protein (SRAFP) is one of three different fish antifreeze proteins isolated to date. These proteins are known to bind to the surface of ice and inhibit its growth. To solve the three-dimensional structure of SRAFP, study its ice-binding mechanism, and as a basis for engineering these molecules, an efficient system for its biosynthetic production was developed. Several different expression systems have been tested including baculovirus, Escherichia coli and yeast. The latter, using the methylotrophic organism Pichia pastoris as the host, was the most productive. In shake-flask cultures the levels of SRAFP secreted from Pichia were up to 5 mg/l. The recombinant protein has an identical activity to SRAFP from sea raven serum. In order to increase yields further, four different strategies were tested in 10-l fermentation vessels, including: (1) optimization of pH and dissolved oxygen, (2) mixed feeding of methanol and glycerol with Muts clones, (3) supplementation of amino acid building blocks, and (4) methanol feeding with Mut+ clones. The mixed-feeding/Muts strategy proved to be the most efficient with SRAFP yields reaching 30 mg/l. Received: 19 November 1996 / Received revision: 29 January 1997 / Accepted: 7 March 1997  相似文献   

13.
A 4.3-kDa variant of Type I antifreeze protein (AFP9) was purified from winter flounder serum by size exclusion chromatography and reversed-phase HPLC. By the criteria of mass, amino acid composition, and N-terminal sequences of tryptic peptides, this variant is the posttranslationally modified product of the previously characterized AFP gene 21a. It has 52 amino acids and contains four 11-amino acid repeats, one more than the major serum AFP components. The larger protein is completely alpha-helical at 0 degree C, with a melting temperature of 18 degrees C. It is considerably more active as an antifreeze than the three-repeat winter flounder AFP and the four-repeat yellowtail flounder AFP, both on a molar and a mg/mL basis. Several structural features of the four-repeat winter flounder AFP, including its larger size, additional ice-binding residues, and differences in ice-binding motifs might contribute to its greater activity. Its abundance in flounder serum, together with its potency as an antifreeze, suggest that AFP9 makes a significant contribution to the overall freezing point depression of the host.  相似文献   

14.
A lot of reports of antifreeze protein (AFP) from fish have been published, but no report has mentioned of commercialized mid-latitude fresh water fish which producing AFP in its body fluid. We found that the AFP in the body fluid of Japanese smelt (Hypomesus nipponensis) from mid-latitude fresh water was purified and characterized. The N-terminal amino acid sequence of the Japanese smelt AFP was 75.0% identical to Type II AFP from herring. Results of EDTA treatment and ruthenium red staining suggested that the Japanese smelt AFP had at least one Ca2+-binding domain. Interestingly, the antifreeze activity of the Japanese smelt AFP did not completely disappear when Ca2+ ions were removed. The molecular mass of the Japanese smelt AFP was calculated to be 16,756.8 by the TOF-mass analysis. The Open reading flame of the gene coding for the Japanese smelt AFP was 444 bp long and was 85.0% identical with the entire herring AFP gene. The cDNA and amino acid sequence of the Japanese smelt AFP were the same length as those of herring AFP.  相似文献   

15.
The psychrophilic yeast Glaciozyma antarctica demonstrated high antifreeze activity in its culture filtrate. The culture filtrate exhibited both thermal hysteresis (TH) and ice recrystallization inhibition (RI) properties. The TH of 0.1 °C was comparable to that previously reported for bacteria and fungi. A genome sequence survey of the G. antarctica genome identified a novel antifreeze protein gene. The cDNA encoded a 177 amino acid protein with 30 % similarity to a fungal antifreeze protein from Typhula ishikariensis. The expression levels of AFP1 were quantified via real time-quantitative polymerase chain reaction (RT-qPCR), and the highest expression levels were detected within 6 h of growth at ?12 °C. The cDNA of the antifreeze protein was cloned into an Escherichia coli expression system. Expression of recombinant Afp1 in E. coli resulted in the formation of inclusion bodies that were subsequently denatured by treatment with urea and allowed to refold in vitro. Activity assays of the recombinant Afp1 confirmed the antifreeze protein properties with a high TH value of 0.08 °C.  相似文献   

16.
The sequences of two Drosophila and one rabbit protein phosphatase (PP) 1 catalytic subunits were determined from their cDNA. The sequence of Drosophila PP1 alpha 1 was deduced from a 2.2-kb cDNA purified from an embryonic cDNA library, while that for Drosophila PP1 beta was obtained from overlapping clones isolated from both a head cDNA library and an eye imaginal disc cDNA library. The gene for Drosophila PP1 alpha 1 is at 96A2-5 on chromosome 3 and encodes a protein of 327 amino acids with a calculated molecular mass of 37.3 kDa. The gene for Drosophila PP1 beta is localized at 9C1-2 on the X chromosome and encodes a protein of 330 amino acids with a predicted molecular mass of 37.8 kDa. PP1 alpha 1 shows 96% amino acid sequence identity to PP1 alpha 2 (302 amino acids), an isoform whose gene is located in the 87B6-12 region of chromosome 3 [Dombrádi, V., Axton, J. M., Glover, D.M. Cohen, P.T.W. (1989) Eur. J. Biochem. 183, 603-610]. PP1 beta shows 85% identity to PP1 alpha 1 and PP1 alpha 2 over the 302 homologous amino acids. These results demonstrate that at least three genes are present in Drosophila that encode different isoforms of PP1. Drosophila PP1 alpha 1 and PP1 beta show 89% amino acid sequence identity to rabbit PP1 alpha (330 amino acids) [Cohen, P.T.W. (1988) FEBS Lett. 232, 17-23] and PP1 beta (327 amino acids), respectively, demonstrating that the structures of both isoforms are among the most conserved proteins known throughout the evolution of the animal kingdom. The presence of characteristic structural differences between PP1 alpha and PP1 beta, which have been preserved from insects to mammals, implies that the alpha and beta isoforms may have distinct biological functions.  相似文献   

17.
We have previously identified a Thr- and Cys-rich thermal hysteresis (antifreeze) protein (THP) in the beetle Tenebrio molitor that has 10-100 times the freezing point depression activity of fish antifreeze proteins. Because this 8.4 kDa protein is significantly different in its properties from THP preparations previously reported from this insect, a thorough search was undertaken for other antifreeze types. Many active proteins were observed, but all appeared to be isoforms of the THP that differed in their number of 12-amino acid repeats (consensus sequence CTxSxxCxxAxT), amino acid substitutions, and N-linked glycosylation. Mass spectral analysis has matched most of these isoforms with cDNA sequences of 17 different clones from a larval fat body library that encode eight different mature THPs containing 84, 96, or 120 amino acids. Genomic Southern blots suggest there may be 30-50 tightly linked copies of the gene, which is a signature consistently seen with unrelated fish antifreeze protein genes, and one that has been associated with the need to rapidly increase gene product in response to climate change. A three-dimensional model is proposed for the fully disulfide-bonded structure of T. molitor THP, which can accommodate addition or deletion of 12-amino acid repeats. The structure is a beta-helix that places most of the Thr in a regular array on one side of the protein to form a putative ice-binding surface.  相似文献   

18.
cDNA clones encoding NADP(+)-glyceraldehyde-3-phosphate dehydrogenase (NADP(+)-GAPDH) and sedoheptulose-1,7-bisphosphatase (SBPase) were isolated and characterized from halotolerant Chlamydomonas sp. W80 (C. W80) cells. The cDNA clone for NADP(+)-GAPDH encoded 369 amino acid residues, preceded by the chloroplast transit peptide (37 amino acid residues). The cDNA clone for SBPase encoded 351 amino acids with the chloroplast transit peptide. The activities of NADP(+)-GAPDH and SBPase from C. W80 cells were resistant to H(2)O(2) up to 1 mM, as distinct from spinach chloroplastic thiol-modulated enzymes. The illumination to the dark-adapted cells and dithiothreitol treatment to the crude homogenate had little effect on the activities of NADP(+)-GAPDH and SBPase in C. W80. Modeling of the tertiary structures of NADP(+)-GAPDH and SBPase suggests that resistance of the enzymes to H(2)O(2) in C. W80 is due to the different conformational structures in the vicinity of the Cys residues of the chloroplastic enzymes between higher plant and C. W80 cells.  相似文献   

19.
Winter flounder antifreeze proteins: a multigene family   总被引:3,自引:0,他引:3  
The nucleotide sequence of a cDNA clone of winter flounder antifreeze protein was determined by the dideoxynucleotide method. The sequence would predict a protein of 91 amino acids composed of a prepropeptide of 38 amino acids and a mature protein of 53 amino acids, which includes four complete 11-amino acid repeats. This predicted sequence corresponds to an antifreeze protein of intermediate size which is one 11-amino acid repeat longer than the smallest antifreeze proteins found in the serum of winter flounder during the cold season. Southern blot hybridization analysis of winter flounder genomic DNA with radioactive cDNA probes reveals a multigene family of potential antifreeze protein genes. This conclusion is supported by amino acid sequence analysis of several serum antifreeze proteins.  相似文献   

20.
Rainbow smelt (Osmerus mordax) inhabit inshore waters along the North American Atlantic coast. During the winter, these waters are frequently ice covered and can reach temperatures as low as -1.9 degrees C. To prevent freezing, smelt accumulate high levels of glycerol, which lower the freezing point via colligative means, and antifreeze proteins (AFP). The up-regulation of the antifreeze response (both glycerol and AFP) occurs in early fall, when water temperatures are 5 degrees -6 degrees C. The accumulation of glycerol appears to be the main mechanism of freeze resistance in smelt because it contributes more to the lowering of the body's freezing point than the activity of the AFP (0.5 degrees C vs. 0.25 degrees C for glycerol and AFP, respectively) at a water temperature of -1.5 degrees C. Moreover, AFP in smelt appears to be a safeguard mechanism to prevent freezing when glycerol levels are low. Significant increases in activities of the liver enzymes glycerol 3-phosphate dehydrogenase (GPDH), alanine aminotransferase (AlaAT), and phosphoenolpyruvate carboxykinase (PEPCK) during the initiation of glycerol production and significant correlations between enzyme activities and plasma glycerol levels suggest that these enzymes are closely associated with the synthesis and maintenance of elevated glycerol levels for use as an antifreeze. These findings add further support to the concept that carbon for glycerol is derived from amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号