首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paired helical filaments (PHFs) isolated from patients with Alzheimer's disease (AD) mainly consist of the microtubule-associated protein tau in a hyperphosphorylated form. It has been found that PHFs are the first example of pathological protein aggregation associated with formation of alpha-helices [Biochemistry (2002) 41, 7150-5]. In an effort to investigate the interplay between phosphorylation and the putative role of short regions of alpha-helix in the polymerization of tau, we have focused on the region of tau encompassing residues 317 to 335. This region is able to form protein fibrils in vitro and has two serines that are often found phosphorylated in PHFs. Using trifluoroethanol as an indicator of the alpha-helix, we find that the stability of the alpha-helix conformation is enhanced by phosphorylation. Circular dichroism data show that the phosphorylated peptide in water presents a content in alpha-helix similar to the unphosphorylated peptide at 40% of trifluoroethanol. Phosphorylation also stimulates the effect of juglone in promoting the in vitro polymerization. Furthermore, Fourier transformed infrared spectroscopy of samples of phosphorylated peptide polymerized with juglone renders a spectrum with maxima at approximately 1665 and approximately 1675 cm(-1), which are suggestive of a mixture of turns and alpha-helix conformations. Our results provide a direct mechanistic connection between phosphorylation and polymerization in tau. The connection between phosphorylation and polymerization appears to involve formation of alpha-helix structure.  相似文献   

2.
Unraveling the mechanism of self-assembly of the protein tau into paired helical filaments (PHFs) is a crucial step toward the understanding of Alzheimer's and other neuropathological diseases at the molecular level. In an effort to map the role of different regions of tau in the mechanism of self-assembly, we have studied the polymerization ability of different tau fragments using an in vitro assay. Our results indicate that the N-terminal domain interferes with tau's ability to polymerize in vitro. The effect seems to be size dependent. Particularly, an isoform of tau from the peripheral nervous system, which has a much larger N-terminal domain, was found unable to form filaments in our in vitro assay. This finding can explain why in Alzheimer's patients PHFs only accumulate in the neurons from the central nervous system. We also report that a short segment of tau located in the third microtubule binding repeat (residues 317 to 335, peptide 1/2R) is probably the minimal segment of that region able to grow into filaments in vitro and in the presence of heparin. In contrast with whole peptide 1/2R, peptides corresponding to either the N-terminal or C-terminal halves of this segment were unable to form filaments. Finally, our polymerization studies of peptides from the C-terminal domain reveal a short sequence spanning residues 391 to 407 that grows into filaments in vitro. This tau segment forms filaments regardless of whether is incubated with heparin. Moreover, such filaments differ in diameter and morphology, suggesting a different mechanism of self-assembly.  相似文献   

3.
Smearing from high-molecular-mass regions to low-molecular-mass regions on western blot is the most striking observation of the tau making up paired helical filaments in brain tissues affected by Alzheimer's disease. Because our previous study showed site-specific deamidation/isomerization in the smeared tau in vivo, a feature of protein aging, recombinant tau was subjected to prolonged (up to 90 days) in vitro incubation. Carboxymethylated tau at approximately 50 kDa gradually disappeared and was converted to dimers and to high- and low-molecular-mass smearing. In addition, the same site-specific deamidation/isomerization as previously identified in the smeared tau in vivo emerged. Most importantly, tau was spontaneously degraded, generating fragments that start from bulky residues next to asparaginyl residues. This spontaneous degradation of tau probably represents non-enzymatic cleavage through the formation of succinimide intermediates. Similar degradation products starting from the bulky residues next to asparaginyl residues were found in the smeared tau in vivo partially purified from the homogenates from Alzheimer's disease brains.  相似文献   

4.
Multiple tau gene mutations are pathogenic for hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), with filamentous tau aggregates as the major lesions in the CNS of these patients. Recent studies have shown that bacterially expressed recombinant tau proteins with FTDP-17 missense mutations cause functional impairments, i.e., a reduced ability of mutant tau to bind to or promote the assembly of microtubules. To investigate the biological consequences of FTDP-17 tau mutants and assess their ability to form filamentous aggregates, we engineered Chinese hamster ovary cell lines to stably express tau harboring one or several different FTDP-17 mutations and showed that different tau mutants produced distinct pathological phenotypes. For example, delta K, but not several other single tau mutants (e.g., V337 M, P301L, R406W), developed insoluble amorphous and fibrillar aggregates, whereas a triple tau mutant (VPR) containing V337M, P301L, and R406W substitutions also formed similar aggregates. Furthermore, the aggregates increased in size over time in culture. Significantly, the formation of aggregated delta K and VPR tau protein correlated with reduced affinity of these mutants to bind microtubules. Reduced phosphorylation and altered proteolysis was also observed in R406W and delta K tau mutants. Thus, distinct pathological phenotypes, including the formation of insoluble filamentous tau aggregates, result from the expression of different FTDP-17 tau mutants in transfected Chinese hamster ovary cells and implies that these missense mutations cause diverse neurodegenerative FTDP-17 syndromes by multiple mechanisms.  相似文献   

5.
The abnormal aggregation of tau protein into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease. Aggregation takes place in the cytoplasm and could therefore be cytotoxic for neurons. To find inhibitors of PHF aggregation we screened a library of 200,000 compounds. The hits found in the PHF inhibition assay were also tested for their ability to dissolve preformed PHFs. The results were obtained using a thioflavin S fluorescence assay for the detection and quantification of tau aggregation in solution, a tryptophan fluorescence assay using tryptophan-containing mutants of tau, and confirmed by a pelleting assay and electron microscopy of the products. Here we demonstrate the feasibility of the approach with several compounds from the family of anthraquinones, including emodin, daunorubicin, adriamycin, and others. They were able to inhibit PHF formation with IC50 values of 1-5 microm and to disassemble preformed PHFs at DC50 values of 2-4 microm. The compounds had a similar activity for PHFs made from different tau isoforms and constructs. The compounds did not interfere with the stabilization of microtubules by tau. Tau-inducible neuroblastoma cells showed the formation of tau aggregates and concomitant cytotoxicity, which could be prevented by inhibitors. Thus, small molecule inhibitors could provide a basis for the development of tools for the treatment of tau pathology in AD and other tauopathies.  相似文献   

6.
M Novak  J Kabat    C M Wischik 《The EMBO journal》1993,12(1):365-370
The Alzheimer's disease paired helical filament (PHF), after digestion with Pronase, retains its characteristic morphological features. We term this the protease resistant core PHF. A 12 kDa tau fragment can be released from the core as an essentially pure preparation. Sequence analysis of this fragment revealed six distinct N-termini beginning in the repeat region of tau. The precise C-terminus is unknown, but the fragment is approximately 100 residues long. A monoclonal antibody, mAb 423, which recognizes the core PHF and the 12 kDa tau fragment, does not recognize normal full-length tau. We describe cDNA synthesis and expression of candidate 12 kDa tau analogues which permit the mapping of the mAb 423 epitope. mAb 423 recognizes all and only those analogues which terminate at Glu391, which lies beyond the homology repeat region. Addition or removal of a single residue at the C-terminus abolishes immunoreactivity. Therefore, mAb 423, together with knowledge of the N-terminus, can be used to measure the precise extent of 12 kDa PHF core tau fragment which we term the minimal protease resistant tau unit of the core PHF. This unit is 93-95 residues long, which is equivalent to three repeats, but is 14-16 residues out of phase with respect to the maximum homology organization of the repeat region. mAb 423 labels isolated PHFs prior to Pronase digestion and intracellular granular and neurofibrillary degeneration in Alzheimer's disease tissues. The constraints which determine endogenous truncation at Glu391 appear to be characteristic of an assembled configuration of tau, either within the PHF or its precursor.  相似文献   

7.
Hyperphosphorylated forms of tau protein are the main component of paired helical filaments (PHFs) of neurofibrillary tangles in the brain of Alzheimer's disease patients. To understand the effect of phosphorylation on the fibrillation of tau, we utilized tau-derived phosphorylated peptides. The V(306)QIVYK(311) sequence (PHF6) in the microtubule-binding domain is known to play a key role in the fibrillation of tau, and the short peptide corresponding to the PHF6 sequence forms amyloid-type fibrils similar to those generated by full-length tau. We focused on the amino acid residue located at the N-terminus of the PHF6 sequence, serine or lysine in the native isoform of tau, and synthesized the PHF6 derivative peptides with serine or lysine at the N-terminus of PHF6. Peptides phosphorylated at serine and/or tyrosine were synthesized to mimic the possible phosphorylation at these positions. The critical concentrations of the fibrillation of peptides were determined to quantitatively assess fibril stability. The peptide with the net charge of near zero tended to form stable fibrils. Interestingly, the peptide phosphorylated at the N-terminal serine residue exhibited remarkably low fibrillation propensity as compared to the peptide possessing the same net charge. Transmission electron microscopy measurements of the fibrils visualized the paired helical or straight fibers and segregated masses of the fibers or heterogeneous rodlike fibers depending on the phosphorylation status. Further analyses of the fibrils by the X-ray fiber diffraction method and Fourier transform infrared spectroscopic measurements indicated that all the peptides shared a common cross-β structure. In addition, the phosphoserine-containing peptides showed the characteristics of β-sandwiches that could interact with both faces of the β-sheet. On the basis of these observations, possible protofilament models with four β-sheets were constructed to consider the positional effects of the serine and/or tyrosine phosphorylations. The electrostatic intersheet interaction between phosphate groups and the amino group of lysine enhanced the lateral association between β-sheets to compensate for the excess charge. In addition to the previously postulated net charge of the peptide, the position of the charged residue plays a critical role in the amyloid fibrillation of tau.  相似文献   

8.
The abnormal aggregation of the microtubule-associated protein Tau into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer disease (AD). Tau in solution behaves as a natively unfolded or intrinsically disordered protein while its aggregation is based on the partial structural transition from random coil to beta-structure. Our aim is to understand in more detail the unfolded nature of Tau, to investigate the aggregation of Tau under different conditions and the molecular interactions of Tau in filaments. We show that soluble Tau remains natively unfolded even when its net charge is minimized, in contrast to other unfolded proteins. The CD signature of the random-coil character of Tau shows no major change over wide variations in charge (pH), ionic strength, solvent polarity, and denaturation. Thus there is no indication of a hydrophobicity-driven collapse, neither in the microtubule-binding repeat domain constructs nor in full-length Tau. This argues that the lack of hydrophobic residues but not the net charge accounts for unfolded nature of soluble Tau. The aggregation of the Tau repeat domain (that forms the core of PHFs) in the presence of nucleating polyanionic cofactors (heparin) is efficient in a range of buffers and pH values between approximately 5 and 10 but breaks down beyond that range, presumably because the pattern of charged interactions disappears. Similarly, elevated ionic strength attenuates aggregation, and the temperature dependence is bell-shaped with an optimum around 50 degrees C. Reporter dyes ThS and ANS record the aggregation process but sense different states (cross-beta-structure vs hydrophobic pockets) with different kinetics. Preformed PHFs are surprisingly labile and can be disrupted by denaturants at rather low concentration ( approximately 1.0 M GdnHCl), much less than required to denature globular proteins. Partial disaggregation of Tau filaments at extreme pH values monitored by CD and EM indicate the importance of salt bridges in filament formation. In contrast, Tau filaments are remarkably resistant to high temperature and high ionic strength. Overall, the stability of PHFs appears to depend mainly on directed salt bridges with contributions from hydrophobic interactions as well, consistent with a recent structural model of the PHF core derived from solid state NMR (Andronesi, O. C., von Bergen, M., Biernat, J., Seidel, K., Griesinger, C., Mandelkow, E., and Baldus, M. (2008) Characterization of Alzheimer's-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy.  相似文献   

9.
In Alzheimer's disease and frontotemporal dementias the microtubule-associated protein tau forms intracellular paired helical filaments (PHFs). The filaments formed in vivo consist mainly of full-length molecules of the six different isoforms present in adult brain. The substructure of the PHF core is still elusive. Here we applied scanning transmission electron microscopy (STEM) and limited proteolysis to probe the mass distribution of PHFs and their surface exposure. Tau filaments assembled from the three repeat domain have a mass per length (MPL) of approximately 60 kDa/nm and filaments from full-length tau (htau40DeltaK280 mutant) have approximately 160 kDa/nm, compared with approximately 130 kDa/nm for PHFs from Alzheimer's brain. Polyanionic cofactors such as heparin accelerate assembly but are not incorporated into PHFs. Limited proteolysis combined with N-terminal sequencing and mass spectrometry of fragments reveals a protease-sensitive N-terminal half and semiresistant PHF core starting in the first repeat and reaching to the C-terminus of tau. Continued proteolysis leads to a fragment starting at the end of the first repeat and ending in the fourth repeat. PHFs from tau isoforms with four repeats revealed an additional cleavage site within the middle of the second repeat. Probing the PHFs with antibodies detecting epitopes either over longer stretches in the C-terminal half of tau or in the fourth repeat revealed that they grow in a polar manner. These data describe the physical parameters of the PHFs and enabled us to build a model of the molecular arrangement within the filamentous structures.  相似文献   

10.
The microtubule-associated protein tau is a major component of the paired helical filaments (PHFs) observed in Alzheimer's disease brains. The pathological tau is distinguished from normal tau by its state of phosphorylation, higher apparent M(r) and reaction with certain antibodies. However, the protein kinase(s) have not been characterized so far. Here we describe a protein kinase from brain which specifically induces the Alzheimer-like state in tau protein. The 42 kDa protein belongs to the family of mitogen activated protein kinases (MAPKs) and is activated by tyrosine phosphorylation. It is capable of phosphorylating Ser-Pro and Thr-Pro motifs in tau protein (approximately 14-16 P1 per tau molecule). By contrast, other proline directed Ser/Thr kinases such as p34(cdc2) combined with cyclin A or B have only minor effects on tau phosphorylation. We propose that MAP kinase is abnormally active in Alzheimer brain tissue, or that the corresponding phosphatases are abnormally passive, due to a breakdown of the normal regulatory mechanisms.  相似文献   

11.
Neuronal Cdc2-like protein kinase (NCLK), a approximately 58-kDa heterodimer, was isolated from neuronal microtubules (Ishiguro, K., Takamatsu, M., Tomizawa, K., Omori, A., Takahashi, M., Arioka, M., Uchida, T. and Imahori, K. (1992) J. Biol. Chem. 267, 10897-10901). The biochemical nature of NCLK-microtubule association is not known. In this study we found that NCLK is released from microtubules upon microtubule disassembly as a 450-kDa species. The 450-kDa species is an NCLK.tau complex, and NCLK-bound tau is in a nonphosphorylated state. Tau phosphorylation causes NCLK.tau complex dissociation, and phosphorylated tau does not bind to NCLK. In vitro, the Cdk5 subunit of NCLK binds to the microtubule-binding region of tau and NCLK associates with microtubules only in the presence of tau. Our data indicate that in brain extract NCLK is complexed with tau in a tau phosphorylation-dependent manner and that tau anchors NCLK to microtubules. Recently NCLK has been suggested to be aberrantly activated and to hyperphosphorylate tau in Alzheimer's disease brain (Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P, and Tsai, L.-H. (1999) Nature 402, 615-622). Our findings may explain why in Alzheimer's disease NCLK specifically hyperphosphorylates tau, although this kinase has a number of protein substrates in the brain.  相似文献   

12.
Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), an autosomal, dominantly inherited neurodegenerative disorder caused by tau gene mutations, is neuropathologically characterized by intraneuronal filamentous inclusions of hyperphosphorylated tau protein. Biochemical and immunocytochemical analyses have shown that only mutant tau is deposited in patients harboring P301L missense mutation, whereas both wild-type and mutant tau are deposited in patients harboring R406W mutation (Miyasaka, T., Morishima-Kawashima, M., Ravid, R., Kamphorst, W., Nagashima, K., and Ihara, Y. (2001) J. Neuropathol. Exp. Neurol. 60, 872- 884 and Miyasaka, T., Morishima-Kawashima, M., Ravid, R., Heutink, P., van Swieten, J. C., Nagashima, K., and Ihara, Y. (2001) Am. J. Pathol. 158, 373-379). Here we have tested the nucleation ability of monomeric tau and the seeding ability of fibrillogenic nuclei obtained from bacterially expressed human tau. P301L mutant tau showed a higher nucleation ability than wild-type tau, whereas R406W mutant tau shows similar ability to wild-type tau. Surprisingly, fibrillogenic nuclei composed of P301L mutant tau enhanced the assembly of P301L mutant tau into filaments but did not promote filament formation from wild-type tau. In contrast, nuclei composed of R406W mutant tau supported filament formation from both wild-type tau and R406W mutant tau, as did nuclei composed of wild-type tau. Proteolytic analyses indicated that the substructure of nuclei composed of P301L mutant tau was different from that of nuclei composed of wild-type or R406W mutant tau. Thus, the interaction between fibrillogenic nuclei and monomeric protein appears to play an important role in the mechanism of tau filament assembly.  相似文献   

13.
We studied fibril formation in a family of peptides based on PHF6 (VQIVYK), a short peptide segment found in the microtubule binding region of tau protein. N-Acetylated peptides AcVYK-amide (AcVYK), AcIVYK-amide (AcPHF4), AcQIVYK-amide (AcPHF5), and AcV-QIVYK-amide (AcPHF6) rapidly formed straight filaments in the presence of 0.15 m NaCl, each composed of two laterally aligned protofilaments approximately 5 nm in width. X-ray fiber diffraction showed the omnipresent sharp 4.7-A reflection indicating that the scattering objects are likely elongated along the hydrogen-bonding direction in a cross-beta conformation, and Fourier transform IR suggested the peptide chains were in a parallel (AcVYK, AcPHF6) or antiparallel (AcPHF4, AcPHF5) beta-sheet configuration. The dipeptide N-acetyl-YK-amide (AcYK) formed globular structures approximately 200 nm to 1 microm in diameter. The polymerization rate, as measured by thioflavin S binding, increased with the length of the peptide going from AcYK --> AcPHF6, and peptides that aggregated most rapidly displayed CD spectra consistent with beta-sheet structure. There was a 3-fold decrease in rate when Val was substituted for Ile or Gln, nearly a 10-fold decrease when Ala was substituted for Tyr, and an increase in polymerization rate when Glu was substituted for Lys. Twisted filaments, composed of four laterally aligned protofilaments (9-19 nm width, approximately 90 nm half-periodicity), were formed by mixing AcPHF6 with AcVYK. Taken together these results suggest that the core of PHF6 is localized at VYK, and the interaction between small amphiphilic segments of tau may initiate nucleation and lead to filaments displaying paired helical filament morphology.  相似文献   

14.
The tau protein plays an important role in some neurodegenerative diseases including Alzheimer's disease (AD). Neurofibrillary tangles (NFTs), a biological marker for AD, are aggregates of bundles of paired helical filaments (PHFs). In general, the alpha-sheet structure favors aberrant protein aggregates. However, some reports have shown that the alpha-helix structure is capable of triggering the formation of aberrant tau protein aggregates and PHFs have a high alpha-helix content. In addition, the third repeat fragment in the four-repeat microtubule-binding domain of the tau protein (residues 306-336: VQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQ, according to the longest tau protein) adopts a helical structure in trifluoroethanol (TFE) and may be a self-assembly model in the tau protein. In the human brain, there is a very small quantity of copper, which performs an important function. In our study, by means of matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy, the binding properties of copper (II) ion to the R3 peptide derived from the third repeat fragment (residues 318-335: VTSKCGSLGNIHHKPGGG) have been investigated. The results show that copper ions bind to the R3 peptide. CD spectra, ultraviolet (UV)-visible absorption spectra, and MALDI-TOF MS show pH dependence and stoichiometry of Cu2+ binding. Furthermore, CD spectra and NMR spectroscopy elucidate the copper binding sites located in the R3 peptide. Finally, CD spectra reveal that the R3 peptide adopts a mixture structure of random structures, alpha-helices, and beta-turns in aqueous solutions at physiological pH. At pH 7.5, the addition of 0.25 mol eq of Cu2+ induces the conformational change from the mixture mentioned above to a monomeric helical structure, and a beta-sheet structure forms in the presence of 1 mol eq of Cu2+. As alpha-helix and beta-sheet structures are responsible for the formation of PHFs, it is hypothesized that Cu2+ is an inducer of self-assembly of the R3 peptide and makes the R3 peptide form a structure like PHF. Hence, it is postulated that Cu2+ plays an important role in the aggregation of the R3 peptide and tau protein and that copper (II) binding may be another possible involvement in AD.  相似文献   

15.
We have synthesized five amphiphilic anionic peptides derived from E5 peptide [Murata, M., Takahashi, S., Kagiwada, S., Suzuki, A., Ohnishi, S. 1992. Biochemistry 31:1986-1992. E5NN and E5CC are duplications of the N-terminal and the C-terminal halves of E5, respectively, and E5CN is an inversion of the N- and the C-terminal halves. E5P contains a Pro residue in the center of E5 and E8 has 8 Glu residues and 9 Leu residues. We studied fusion of dioleoylphosphatidylcholine (DOPC) large unilamellar vesicles assayed by fluorescent probes. The peptides formed alpha-helical structure with different degrees; E5NN, E5CN, and E8 with high helical content and E5CC and E5P with low helical content. These peptides bound to DOPC vesicles at acidic pH in proportion to the helical content of peptide. The peptides caused leakage of DOPC vesicles which increased with decreasing pH. The leakage was also proportional to the helicity of peptide. Highly helical peptides E5NN, E5CN, and E8 caused hemolysis at acidic pH but not at neutral pH. The fusion activity was also dependent on the helicity of peptides. In fusion induced by an equimolar mixture of E5 analogues and K5 at neutral pH, E8, E5NN, and E5CN were most active but E5CC did not cause fusion. In fusion induced by E5-analogue peptides alone, E5CN was active at acidic pH but not at neutral pH. Other peptides did not cause fusion. Amphiphilic peptides also appear to require other factors to cause fusion.  相似文献   

16.
In patients with Alzheimer's disease, the microtubule-associated protein tau is found aggregated into paired helical filaments (PHFs) in neurofibrillary deposits. In solution, tau is intrinsically unstructured. However, the tubulin binding domain consisting of three or four 31-32 amino acid repeat regions exhibits both helical and β-structure propensity and makes up the proteolysis resistant core of PHFs. Here, we studied the structure and dynamics of the three-repeat domain of tau (i.e. K19) when bound to membranes consisting of a phosphatidylcholine and phosphatidylserine mixture or phosphatidylserine alone. Tau K19 binds to phospholipid vesicles with submicromolar affinity as measured by fluorescence spectroscopy. The interaction is driven by electrostatic forces between the positively charged protein and the phospholipid head groups. The structure of the membrane-bound state of K19 was studied using CD spectroscopy and solid-state magic-angle spinning NMR spectroscopy. To this end, the protein was selectively (13)C-labeled at all valine and leucine residues. Isotropic chemical shift values of tau K19 were consistent with a β-structure. In addition, motionally averaged (1)H-(13)C dipolar couplings indicated a high rigidity of the protein backbone. The structure formation of K19 was also shown to depend on the charge density of the membrane. Phosphatidylserine membranes induced a gain in the α-helix structure along with an immersion of K19 into the phospholipid bilayer as indicated by a reduction of the lipid chain (2)H NMR order parameter. Our results provide structural insights into the membrane-bound state of tau K19 and support a potential role of phospholipid membranes in mediating the physiological and pathological functions of tau.  相似文献   

17.
By using tryptophan scanning mutagenesis, we observed the kinetics and structure of the polymerization of tau into paired helical filaments (PHFs) independently of exogenous reporter dyes. The fluorescence exhibits pronounced blue shifts due to burial of the residue inside PHFs, depending on Trp position. The effect is greatest near the center of the repeat domain, showing that the packing is tightest near the beta-structure inducing hexapeptide motifs. The tryptophan response allows measurement of PHF stability made by different tau isoforms and mutants. Unexpectedly, the stability of PHFs is quite low (denaturation half-points approximately 1.0 m GdnHCl), implying that incipient aggregation should be reversible and that the observed high stability of Alzheimer PHFs is due to other factors. The stability increases with the number of repeats and with tau mutants promoting beta-structure, arguing for a gain of toxic function in frontotemporal dementias. Fluorescence resonance energy transfer (FRET) was used to analyze the distances of Tyr(310) to tryptophans in different positions. The degree of FRET in the soluble protein was position-dependent, with highest signals within the second and third repeats but low or no signals further away. In PHFs most mutants showed FRET, indicating that tight packing results from assembly of tau into PHFs.  相似文献   

18.
Neurofibrillary tangles (NFTs) are pathological hallmarks of several neurodegenerative disorders, including Alzheimer's disease (AD). NFTs are composed of microtubule-binding protein tau, which assembles to form paired helical filaments (PHFs) and straight filaments. Here we show by atomic force microscopy that AD brain tissue and in vitro tau form granular and fibrillar tau aggregates. CD spectral analysis and immunostaining with conformation-dependent antibodies indicated that tau may undergo conformational changes during fibril formation. Enriched granules generated filaments, suggesting that granular tau aggregates may be an intermediate form of tau fibrils. The amount of granular tau aggregates was elevated in prefrontal cortex of Braak stage I cases compared to that of Braak stage 0 cases, suggesting that granular tau aggregation precedes PHF formation. Thus, granular tau aggregates may be a relevant marker for the early diagnosis of tauopathy. Reducing the level of these aggregates may be a promising therapy for tauopathies and for promoting healthy brain aging.  相似文献   

19.
In a recent study, we reported that in bovine brain extract, glycogen synthase kinase-3beta and tau are parts of an approximately 400-500 kDa microtubule-associated tau phosphorylation complex (Sun, W., Qureshi, H. Y., Cafferty, P. W., Sobue, K., Agarwal-Mawal, A., Neufield, K. D., and Paudel, H. K. (2002) J. Biol. Chem. 277, 11933-11940). In this study, we find that when purified brain microtubules are subjected to Superose 12 gel filtration column chromatography, the dimeric scaffold protein 14-3-3 zeta co-elutes with the tau phosphorylation complex components tau and GSK3 beta. From gel filtration fractions containing the tau phosphorylation complex, 14-3-3 zeta, GSK3 beta, and tau co-immunoprecipitate with each other. From extracts of bovine brain, COS-7 cells, and HEK-293 cells transfected with GSK3 beta, 14-3-3 zeta co-precipitates with GSK3 beta, indicating that GSK3 beta binds to 14-3-3 zeta. From HEK-293 cells transfected with tau, GSK3 beta, and 14-3-3 zeta in different combinations, tau co-immunoprecipitates with GSK3 beta only in the presence of 14-3-3 zeta. In vitro, approximately 10-fold more tau binds to GSK3 beta in the presence of than in the absence of 14-3-3 zeta. In transfected HEK-293 cells, 14-3-3 zeta stimulates GSK3 beta-catalyzed tau phosphorylation in a dose-dependent manner. These data indicate that in brain, the 14-3-3 zeta dimer simultaneously binds and bridges tau and GSK3 beta and stimulates GSK3 beta-catalyzed tau phosphorylation.  相似文献   

20.
In vitro phosphorylation of recombinant wild-type 2N4R tau and FTDP-17 exonic mutant forms P301L, V337M and R406W by glycogen synthase kinase 3beta (GSK3beta) was examined by two dimensional phosphopeptide mapping analysis on thin layer cellulose plates. Comparison of these peptide maps with those generated from wild-type 1N4R tau isoform from which the phosphopeptide constituents and sites of phosphorylation had been determined previously, enabled us to monitor directly changes in phosphorylation of the individual tau proteins. No differences were found in the phosphorylation of wild-type, P301L or V337M tau by GSK3beta but the R406W mutant showed at least two clear differences from the other three tau proteins. The peptides, identified by mass spectrometry corresponding to phosphorylation at both threonine 231 and serine 235 (spot 3), serines 396, 400 and 404 (spot 6a) and serines 195 and 199 (spot 6b) were absent from the R406W peptide map. The findings imply that the R406W mutation in tau exerts long-range conformational effects on the structure of tau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号