首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Engineering herbicide resistance in plants   总被引:1,自引:0,他引:1  
  相似文献   

2.
In order to create a novel mechanism for herbicide resistance in plants, we expressed a single-chain antibody fragment (scFv) in tobacco with specific affinity to the auxinic herbicide picloram. Transgenic tobacco plants and seedlings expressing this scFv against picloram were protected from its effect in a dose-dependent manner. This is the first successful use of an antibody to confer in vivo resistance to a low molecular weight xenobiotic (i.e. < 1000 Da). Our results suggest the possibility for a generic antibody-based approach to create crops resistant to low molecular weight xenobiotics for subsequent use in the bioremediation of contaminated soils, crop protection and as novel selectable markers.  相似文献   

3.
Forced evolution of a herbicide detoxifying glutathione transferase   总被引:3,自引:0,他引:3  
Plant Tau class glutathione transferases (GSTUs) detoxify diphenylether herbicides such as fluorodifen, determining their selectivity in crops and weeds. Using reconstructive PCR, a series of mutant GSTUs were generated from in vitro recombination and mutagenesis of the maize sequences ZmGSTU1 and ZmGSTU2 (with the prefix Zm designating Zea mays L.). A screen of 5000 mutant GSTUs identified seven enzymes with enhanced fluorodifen detoxifying activity. The best performing enhanced fluorodifen detoxifying mutant (EFD) had activity 19-fold higher than the parent enzymes, with a single point mutation conferring this enhancement. Further mutagenesis of this residue generated an EFD with a 29-fold higher catalytic efficiency toward fluorodifen as compared with the parents but with unaltered catalysis toward other substrates. When expressed in Arabidopsis thaliana, the optimized EFD, but not the parent enzymes, conferred enhanced tolerance to fluorodifen. Molecular modeling predicts that the serendipitous mutation giving the improvement in detoxification is due to the removal of an unfavorable interaction together with the introduction of a favorable change in conformation of residues 107-119, which contribute to herbicide binding.  相似文献   

4.
Karstification is a rapid process during which calcidic stones/limestones undergo dissolution with the consequence of a desertification of karst regions. A slow-down of those dissolution processes of Ca-carbonate can be approached by a reforestation program using karst-resistant plants that can resist alkaline pH and higher bicarbonate (HCO3 ?) concentrations in the soil. Carbonic anhydrases (CA) are enzymes that mediate a rapid and reversible interconversion of CO2 and HCO3 ?. In the present study, the steady-state expression of a CA gene, encoding for the plant carbonic anhydrase from the parsley Petroselinum crispum, is monitored. The studies were primarily been performed during germination of the seeds up to the 12/14-day-old embryos. The CA cDNA was cloned. Quantitative polymerase chain reaction (qPCR) analysis revealed that the gene expression level of the P. crispum CA is strongly and significantly affected at more alkaline pH in the growth medium (pH 8.3). This abolishing effect is counteracted both by addition of HCO3 ? and by addition of polyphosphate (polyP) to the culture medium. In response to polyP, the increased pH in the vacuoles of the growing plants is normalized. The effect of polyP let us to propose that this polymer acts as a buffer system that facilitates the adjustment of the pH in the cytoplasm. In addition, it is proposed that polyP has the potential to act, especially in the karst, as a fertilizer that allows the karstic plants to cope with the adverse pH and HCO3 ? condition in the soil.  相似文献   

5.
6.
Developments in plant genetic engineering technology will shortly permit the commercial introduction of transgenic crop varieties resistant to a number of non-selective herbicides. High levels of tolerance have been achieved both by overexpression of a target protein and by modification of that target to an insensitive form. However the results of preliminary trials suggest that in some instances the yield penalty for such genetic alterations will be prohibitive. An alternative strategy, based on the transfer and expression of a gene encoding a herbicide-detoxifying enzyme, appears to offer high resistance levels at low metabolic cost and is expected to assume increasing importance, although it may not prove suitable for all herbicides.  相似文献   

7.
Tobacco plants were genetically engineered to express a detoxifying pathway for the herbicide phenmedipham. A gene fromArthrobacter oxidans strain P52 that encodes an enzyme catalysing the hydrolytic cleavage of the carbamate compound phenmedipham has recently been cloned and sequenced. The coding sequence was fused with a cauliflower mosaic virus 35S promoter and introduced into tobacco plants byAgrobacterium-mediated gene transfer. Transgenic plants expressing high levels of phenmedipham hydrolase exhibited resistance when sprayed with the herbicide at up to ten times the usual field application rate.  相似文献   

8.
Protoplasts from phosphinotricin resistant M. sativa and M. varia cell lines carrying an amplified glutamine synthethase gene were fused with leaf protoplasts of kanamycin resistant M. varia transformants. The dominant nature of both PPT and kanamycin resistant traits was shown by the double resistant phenotype of the intra- and interspecific cell hybrids obtained. The presence of amplified GS gene in the hybrid genomes and the expression of chimeric neomycin phosphotransferase II gene was detected. The highly embryogenic character of the M. varia parent was not expressed after cell fusion. All hybrid cell lines with the double resistant phenotype showed non-morphogenic growth similarly to the PPT resistant parent. The possible role of GS gene amplification and other factors in the dominant behaviour of unorganized cell growth in alfalfa somatic hybrids is discussed.  相似文献   

9.
 Embryogenic calli of the Brazilian sugarcane (Saccharum officinarum L.) genotype SP80–180 were transformed with two plasmids containing genes coding for neomycin phosphotransferase (neo) and phosphinotrycin acetyltransferase (bar), by particle bombardment using an apparatus developed at Copersucar Technology Center. Transformed plants were initially selected on culture medium containing Geneticin, and resistance was confirmed by localized application of a kanamycin solution to leaves of hardened plants at the nursery. A commercial formulation of ammonium gluphosinate was sprayed twice on these antibiotic-resistant plants. The resistant plants were considered co-transformed, and Southern analysis confirmed stable integration of both bar and neo genes. In addition, phosphinotrycin acetyltransferase expression was supported by RT-PCR analysis and neomycin phosphotransferase presence was demonstrated by western blotting. Similar analyses were also performed with micropropagated transformants after three cycles of subculture. Received: 15 December 1999 / Revision received: 15 April 2000 / Accepted: 1 June 2000  相似文献   

10.
Eto J  Suzuki Y  Ohkawa H  Yamaguchi I 《FEBS letters》2003,550(1-3):179-184
An anti-chlorpropham single-chain variable-fragment (scFv) gene was introduced into Arabidopsis in a manner to express the antibody fragment in each of four different subcellular compartments. The accumulation of scFv in transgenic plants was detected by targeting the fragment in the endoplasmic reticulum or apoplastic space, or by expressing the fragment as a glycosylphosphatidylinositol-anchored protein, while no accumulation could be detected by targeting the fragment in the cytosol. Transgenic plants accumulating the scFv gene at a high level in the endoplasmic reticulum had enhanced tolerance to chlorpropham in comparison with the non-transformants.  相似文献   

11.
Synthesis of the phytohormone ethylene is believed to be essential for many plant developmental processes. The control of ripening in climacteric fruits and vegetables is among the best characterized of these processes. One approach to reduce ethylene synthesis in plants is metabolism of its immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). Soil bacteria containing an enzyme, ACC deaminase, were identified by their ability to grow on ACC as a sole nitrogen source. The gene encoding ACC deaminase was cloned and introduced into tomato plants. Reduction in ethylene synthesis in transgenic plants did not cause any apparent vegetative phenotypic abnormalities. However, fruits from these plants exhibited significant delays in ripening, and the mature fruits remained firm for at least 6 weeks longer than the nontransgenic control fruit. These results indicated that ACC deaminase is useful for examining the role of ethylene in many developmental and stress-related processes in plants as well as for extending the shelf life of fruits and vegetables whose ripening is mediated by ethylene.  相似文献   

12.
Despite long-standing plant breeding investments and early successes in genetic engineering, plant viral pathogens still cause major losses in agriculture worldwide. Early transgenic approaches involved the expression of pathogen-derived sequences that provided limited protection against relatively narrow ranges of viral pathotypes. In contrast, this study demonstrates that the ectopic expression of pvr1 , a recessive gene from Capsicum chinense , results in dominant broad-spectrum potyvirus resistance in transgenic tomato plants ( Solanum lycopersicum ). The pvr1 locus in pepper encodes the eukaryotic translation initiation factor eIF4E. Naturally occurring point mutations at this locus result in monogenic recessive broad-spectrum potyvirus resistance that has been globally deployed via plant breeding programmes for more than 50 years. Transgenic tomato progenies that over-expressed the Capsicum pvr1 allele showed dominant resistance to several tobacco etch virus strains and other potyviruses, including pepper mottle virus, a range of protection similar to that observed in pepper homozygous for the pvr1 allele.  相似文献   

13.
The cost of herbicide resistance measured by a competition experiment   总被引:6,自引:0,他引:6  
Summary The cost of resistance has been measured by a competition experiment over a range of densities, in the absence of herbicide treatment, on two nearly isogenic lines of Foxtail millet, differing in a chloroplastic resistance to herbicide. Three characters have been measured: shoot height, shoot weight, and seed production. Sensitive individuals were better competitors despite a larger decrease in production under within-biotype competition. The cost of resistance was density dependent and increased with density. The cost was higher when measured on seed production and reached 65% at the higher density for resistant individuals. This is compatible with the low frequency or the absence of that gene in natural populations. This work illustrates that the cost is easiest to observe when high levels of constraints are used.  相似文献   

14.
Plants resistant to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) were produced through the genetic engineering of a novel detoxification pathway into the cells of a species normally sensitive to 2,4-D. We cloned the gene for 2,4-D monooxygenase, the first enzyme in the plasmid-encoded 2,4-D degradative pathway of the bacterium Alcaligenes eutrophus, into a cauliflower mosaic virus 35S promoter expression vector and introduced it into tobacco plants by Agrobacterium-mediated transformation. Transgenic tobacco plants expressing the highest levels of the monooxygenase enzyme exhibited increased tolerance to 2,4-D in leaf disc and seed germination assays, and young plants survived spraying with levels of herbicide up to eight times the usual field application rate. The introduction of the gene for 2,4-D monooxygenase into broad-leaved crop plants, such as cotton, should eventually allow 2,4-D to be used as an inexpensive post-emergence herbicide on economically important dicot crops.  相似文献   

15.
Tocochromanols (tocopherols and tocotrienols), collectively known as vitamin E, are essential antioxidant components of both human and animal diets. Because of their potential health benefits, there is a considerable interest in plants with increased or customized vitamin E content. Here, we have explored a new strategy to reach this goal. In plants, phenylalanine is the precursor of a myriad of secondary compounds termed phenylpropanoids. In contrast, much less carbon is incorporated into tyrosine that provides p-hydroxyphenylpyruvate and homogentisate, the aromatic precursors of vitamin E. Therefore, we intended to increase the flux of these two compounds by deriving their synthesis directly at the level of prephenate. This was achieved by the expression of the yeast (Saccharomyces cerevisiae) prephenate dehydrogenase gene in tobacco (Nicotiana tabacum) plants that already overexpress the Arabidopsis p-hydroxyphenylpyruvate dioxygenase coding sequence. A massive accumulation of tocotrienols was observed in leaves. These molecules, which were undetectable in wild-type leaves, became the major forms of vitamin E in the leaves of the transgenic lines. An increased resistance of the transgenic plants toward the herbicidal p-hydroxyphenylpyruvate dioxygenase inhibitor diketonitril was also observed. This work demonstrates that the synthesis of p-hydroxyphenylpyruvate is a limiting step for the accumulation of vitamin E in plants.  相似文献   

16.
The activities of three enzymes cytosolic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSHP), and malonyldialdehyde (MDA), a by-product of lipid peroxidation, were determined in whole lungs of normal and bleomycin-treated rats. Two days after bleomycin treatment total lung SOD, CAT, and GSHP activities were significantly (p less than .025) depressed between 15 and 25%. The activities of all three enzymes increased 4 days after bleomycin treatment with only SOD significantly increased at days 4 and 7. Total lung CAT activity remained near normal levels while GSHP activity increased only at day 28 (160.5%, p less than .01) indicating a specificity of the response of lung SOD and GSHP levels. Total lung MDA levels were increased by 17% at 2 and 4 days (p less than .05) after bleomycin treatment, and returned to normal levels at 7 and 28 days. These data suggest that impairment of the lung's ability to detoxify O2 metabolites may play an important role in the development of bleomycin-induced pulmonary fibrosis.  相似文献   

17.
In recent years, concerns about the use of glyphosate‐resistant crops have increased because of glyphosate residual levels in plants and development of herbicide‐resistant weeds. In spite of identifying glyphosate‐detoxifying genes from microorganisms, the plant mechanism to detoxify glyphosate has not been studied. We characterized an aldo‐keto reductase gene from Pseudomonas (PsAKR1) and rice (OsAKR1) and showed, by docking studies, both PsAKR1 and OsAKR1 can efficiently bind to glyphosate. Silencing AKR1 homologues in rice and Nicotiana benthamiana or mutation of AKR1 in yeast and Arabidopsis showed increased sensitivity to glyphosate. External application of AKR proteins rescued glyphosate‐mediated cucumber seedling growth inhibition. Regeneration of tobacco transgenic lines expressing PsAKR1 or OsAKRI on glyphosate suggests that AKR can be used as selectable marker to develop transgenic crops. PsAKR1‐ or OsAKRI‐expressing tobacco and rice transgenic plants showed improved tolerance to glyphosate with reduced accumulation of shikimic acid without affecting the normal photosynthetic rates. These results suggested that AKR1 when overexpressed detoxifies glyphosate in planta.  相似文献   

18.
谢苗  尤民生 《昆虫知识》2011,48(6):1728-1733
本文从解毒酶系的角度研究了小菜蛾Plutella xylostella(L.)对氟虫腈的短期生理生化响应。用氟虫腈LC50剂量处理小菜蛾3龄幼虫一定时间后,测定小菜蛾幼虫体内多功能氧化酶(MFO)、酯酶(EST)和谷胱甘肽S-转移酶(GST)活性的动态变化。研究结果表明:经氟虫腈处理后小菜蛾体内解毒酶的活性均显著高于未经处理的对照,并且随着处理时间的延长,解毒酶活性逐渐提高。这说明氟虫腈对小菜蛾敏感品系的解毒酶具有一定的诱导作用,反之,解毒酶加快了小菜蛾体内对氟虫腈的代谢,降低了小菜蛾对氟虫腈的敏感性。  相似文献   

19.
Protocatechuic acid (PCA) is a main metabolite of anthocyanins, whose daily intake is much higher than that of other polyphenols. PCA has biological effects, e.g., it induces the antioxidant/detoxifying enzyme gene expression. This study was aimed at defining the molecular mechanism responsible for PCA-induced over-expression of glutathione (GSH) peroxidase (GPx) and GSH reductase (GR) in J774 A.1 macrophages. New evidence is provided that PCA increases GPx and GR expression by inducing C-JUN NH2-terminal kinase (JNK)-mediated phosphorylation of Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2). RNA and proteins were extracted from cells treated with PCA (25 μM) for different time points. Quantitative real-time polymerase chain reaction and immunoblotting analyses showed a rapid increase in mRNA (>60%) and protein (>50%) for both the enzymes. This was preceded by the up-regulation of Nrf2, in terms of mRNA and protein, and by its significant activation as assessed by increased Nrf2 phosphorylation and nuclear translocation (+60%). By using specific kinase inhibitors and detecting the activated form, we showed that JNK was the main upstream kinase responsible for Nrf2 activation. Convincing evidence is provided of a causal link between PCA-induced Nrf2 activation and increased enzyme expression. By silencing Nrf2 and using a JNK inhibitor, enzyme enhancement was counteracted. Finally, with the ChIP assay, we demonstrated that PCA-activated Nrf2 specifically bound ARE sequences in enzyme gene promoters. Our study demonstrates for the first time that PCA improves the macrophage endogenous antioxidant potential by a mechanism in which JNK-mediated Nrf2 activation plays an essential role. This knowledge could contribute to novel diet-based approaches aimed at counteracting oxidative injury by reinforcing endogenous defences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号