首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of light-induced changes in the activity of Na,K-ATPase from plasma membranes (PM) of photoreceptor cells was studied in vitro. Illumination resulted in inhibition of the ATPase activity and an increase of 18O exchange between water and Pi. The maximum light effect was revealed when the PM contained both the inner segments of the rods (RIS) and rod outer segments (ROS) of the photoreceptor cells. Lipid peroxidation stimulated by the FeSO4+ascorbate system induced a decrease of the ATPase activity. Antioxidants (ionol, Na2SeO3, vitamin E) prevented the effect of the lipid peroxidation products on NA,K-ATPase and the photoinduced changes of the enzyme activity. It is supposed that the photoinduced changes of the Na,K-ATPase activity in vitro are due to lipid peroxidation of photoreceptor PM.  相似文献   

2.
Disk membranes and plasma membrane vesicles were prepared from bovine retinal rod outer segments (ROS). The plasma membrane vesicles were labeled with the fluorescent probe octadecylrhodamine B chloride (R18) to a level at which the R18 fluorescence was self-quenched. At pH 7.4 and 37 degrees C and in the presence of micromolar calcium, an increase in R18 fluorescence with time was observed when R18-labeled plasma membrane vesicles were introduced to a suspension of disks. This result was interpreted as fusion between the disk membranes and the plasma membranes, the fluorescence dequenching resulting from dilution of the R18 into the unlabeled membranes as a result of lipid mixing during membrane fusion. While the disk membranes exposed exclusively their cytoplasmic surface, plasma membrane vesicles were found with both possible orientations. These vesicles were fractionated into subpopulations with homogeneous orientation. Plasma membrane vesicles that were oriented with the cytoplasmic surface exposed were able to fuse with the disk membranes in a Ca(2+)-dependent manner. Fusion was not detected between disk membranes and plasma membrane vesicles oriented such that the cytoplasmic surface was on the interior of the vesicles. ROS plasma membrane-disk membrane fusion was stimulated by calcium, inhibited by EGTA, and unaffected by magnesium. Rod photoreceptor cells of vertebrate retinas undergo diurnal shedding of disk membranes containing the photopigment rhodopsin. Membrane fusion is required for the shedding process.  相似文献   

3.
The susceptibility of small and large egg yolk phosphatidylcholine unilamellar vesicles to Fe(2+)/histidine-Fe(3+)- and Fenton reagent (Fe(2+)-H(2)O(2))-induced lipid peroxidation was evaluated by measuring the formation of thiobarbituric acid reactive substances (TBARS). It has been found that surface curvature or phospholipid packing exerts significant effect on the oxidative susceptibility of the unsaturated lipid bilayers and the highly curved and loosely packed small unilamellar vesicles (SUVs) exhibit much less resistance to the oxidative stress induced by the water-soluble free radical sources. The presence of lipid hydroperoxides in sonicated vesicles was excluded as the cause for higher level of lipid peroxidation in the phospholipid SUVs. Instead, the experimental results can be explained by the difference in ability of the water-soluble oxidants to penetrate the two types of lipid membranes. This hypothesis is supported by data obtained from fluorescence lifetime and quenching studies.  相似文献   

4.
The rate of thermal denaturation of bovine and rat opsin in the photoreceptor membranes was studied within a wide temperature range (between 37 and 70 degrees C). It was found that the rate of thermal denaturation of opsin at a physiological temperature (37 degrees C) might be commensurable or even exceed the known rate of rhodopsin renewal produced by photoreceptor disk formation and shedding. Lipid peroxidation caused an increase in the rate of opsin denaturation at a physiological temperature. It is assumed that accumulation of denatured opsin in the photoreceptor membranes during raised illumination together with lipid peroxidation induction may be one of the mechanisms leading to vision deterioration under raised illumination.  相似文献   

5.
Injuring light induced structural changes in rod outer segment (ROS) membranes are studied using "ST EST spectroscopy" for spin labelled rhodopsin, ESR of lipid spin label and SDS gel-electrophoresis. Free SH-group content of rhodopsin and lipid peroxidation level were simultaneously determined as well. A decrease of rotational mobility of rhodopsin in ROS induced by prolonged illumination is shown to result from irreversible protein aggregation caused by disulfide bond formation between "hydrophobic" SH-groups of rhodopsin. Some decrease of lipid microviscosity and degree of order are found, in contrast to considerable rise in microviscosity due to Fe2+-ascorbate induced lipid peroxidation of ROS membranes. Lipid oxidation is found to accelerate protein aggregation which in its turn influences the state of lipid bilayer.  相似文献   

6.
The effects of salt concentration gradient (inside to outside) on the lipid peroxidation of porcine intestinal brush-border membrane vesicles have been studied and several interesting features of the peroxidation have been elucidated. The addition of dithiothreitol and Fe2+ is far more effective in induction of the lipid peroxidation than any of the other metal ion species tested (Fe3+, Cu2+, Ni2+, Zn2+ and Cr3+). The peroxidation rate of the membrane vesicles induced by dithiothreitol plus Fe2+ was sensitive for the incubation temperature and was increased with increase of the temperature. Imposition of an inward salt concentration gradient on the membrane vesicles preloaded with 300 mM mannitol by addition of 100 mM chloride of K+, Na+, Li+, Rb+, NH4+ or choline to medium produces a very large reduction of the lipid peroxidation induced by dithiothreitol plus Fe2+. The membrane peroxidation is depressed more with the mannitol (300 mM)-preloaded vesicles than with the K2SO4 (100 mM)-preloaded vesicles when they are incubated in medium containing 20-100 mM of K2SO4. Addition of membrane-permeant anions such as SCN- and I-, but not addition of NO3-, to incubation medium has been found to decrease markedly the lipid peroxidation of the mannitol-preloaded vesicles. From these results it is suggested that the lipid peroxidation of the brush-border membranes by addition of dithiothreitol plus Fe2+ is sensitively changed with change in ionic strength.  相似文献   

7.
There is a dynamic interplay between pro- and anti-oxidant substances in human ejaculate. Excessive reactive oxygen species (ROS) generation can overwhelm protective mechanism and initiate changes in lipid and/or protein layers of sperm plasma membranes. Additionally, changes in DNA can be induced. The essential steps of lipid peroxidation have been listed as well as antioxidant substances of semen. A variety of detection techniques of lipid peroxidation have been summarized together with the lipid components of sperm membranes that can be subjected to stress. It is unsolved, a threshold for ROS levels that may induce functional sperm ability or may lead to male infertility.  相似文献   

8.
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) - a member of the superfamily that shares a similar structural architecture consisting of seven-transmembrane helices and propagates various signals across biological membranes. Rhodopsin is embedded in the lipid bilayer of specialized disk membranes in the outer segments of retinal rod photoreceptor cells where it transmits a light-stimulated signal. Photoactivated rhodopsin then activates a visual signaling cascade through its cognate G protein, transducin or Gt, that results in a neuronal response in the brain. Interestingly, the lipid composition of ROS membranes not only differs from that of the photoreceptor plasma membrane but is critical for visual transduction. Specifically, lipids can modulate structural changes in rhodopsin that occur after photoactivation and influence binding of transducin. Thus, altering the lipid organization of ROS membranes can result in visual dysfunction and blindness.  相似文献   

9.
Abstract Each pigment-cup eye of Mesostoma ehrenbergi consists of two photoreceptor cells, the anterior cell being bilobate. the posterior almost linear, and of a multicellular pigment cup. The nuclei of the photoreceptor cells are located inside the medial region of the brain. Thin cytoplasmic photoreceptor projections provided with neurosecretory-like granules are interposed between the inner surface of the eye cup and the distal extremity of the microvilli. The breakdown and renewal of microvillar membranes was analysed. Membrane turnover is a continuous process. At dusk and during the night abscission of photoreceptive membranes occurs. At dawn the membrane fragments are degraded to granular material, which is then endocytosed into the submicrovillar cytoplasm as coated vesicles. These vesicles form multivesicular bodies. The degradation of multivesicular body content occurs during the following light hours. The dark period is correlated with membrane synthesis for elongation of reticular membranes, which are converted into ellipsoid bodies. The formation of new microvillar membranes occurs at the base of the microvillar border, and involves the fusion with the old microvillar membranes of small vesicles detached from the tubular endoplasmic membranes and from the flattened concentric cisternae of ellipsoid bodies. The correlations with daily cycles of other invertebrates are discussed.  相似文献   

10.
Retinal rod photoreceptor cells absorb light at one end and establish synaptic contacts on the other. Light sensitivity is conferred by a set of membrane and cytosol proteins that are gathered at one end of the cell to form a specialized organelle, the rod outer segment (ROS). The ROS is composed of rhodopsin-laden, flattened disk-shaped membranes enveloped by the cell's plasma membrane. Rhodopsin is synthesized on elements of the rough endoplasmic reticulum and Golgi apparatus near the nucleus in the inner segment. From this synthetic site, the membrane-bound apoprotein, opsin, is released from the Golgi in the membranes of small vesicles. These vesicles are transported through the cytoplasm of the inner segment until they reach its apical plasma membrane. At that site, opsin-laden vesicles appear to fuse near the base of the connecting cilium that joins the inner and outer segments. This fusion inserts opsin into the plasma membrane of the photoreceptor. Opsin becomes incorporated into the disk membrane by a process of membrane expansion and fusion to form the flattened disks of the outer segment. Within the disks, opsin is highly mobile, and rapidly rotates and traverses the disk surface. Despite its mobility in the outer segment, quantitative electron microscopic, immunocytochemical, and autoradiographic studies of opsin distribution demonstrate that little opsin is detectable in the inner segment plasma membrane, although its bilayer is in continuity with the plasma membrane of the outer segment. The photoreceptor successfully establishes the polarized distribution of its membrane proteins by restricting the redistribution of opsin after vectorially transporting it to one end of the cell on post-Golgi vesicles.  相似文献   

11.
Detergent-resistant membrane microdomains in the plasma membrane, known as lipid rafts, have been implicated in various cellular processes. We report here that a low-density Triton X-100-insoluble membrane (detergent-resistant membrane; DRM) fraction is present in bovine rod photoreceptor outer segments (ROS). In dark-adapted ROS, transducin and most of cGMP-phosphodiesterase (PDE) were detergent-soluble. When ROS membranes were exposed to light, however, a large portion of transducin localized in the DRM fraction. Furthermore, on addition of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) to light-bleached ROS, transducin became detergent-soluble again. PDE was not recruited to the DRM fraction after light stimulus alone, but simultaneous stimulation by light and GTPgammaS induced a massive translocation of all PDE subunits to the DRM. A cholesterol-removing reagent, methyl-beta-cyclodextrin, selectively but partially solubilized PDE from the DRM, suggesting that cholesterol contributes, at least in part, to the association of PDE with the DRM. By contrast, transducin was not extracted by the depletion of cholesterol. These data suggest that transducin and PDE are likely to perform their functions in phototransduction by changing their localization between two distinct lipid phases, rafts and surrounding fluid membrane, on disc membranes in an activation-dependent manner.  相似文献   

12.
《Journal of Physiology》1998,92(3-4):157-161
A possible role of radical oxygen species (ROS) initiated lipid peroxidation in diisopropylphosphorofluoridate (DFP)-induced muscle necrosis was investigated by quantifying muscle changes in F2-isoprostanes, novel and extremely accurate markers of lipid peroxidation in vivo. A significant increase in F2-isoprostanes of 56% was found in the diaphragm of rats 60 min after DFP-induced fasciculations. As possible source of ROS initiating lipid peroxidation, the cytocrome-c oxidase (Cyt-ox) and xanthine dehydrogenasexanthine oxidase (XD-XO) systems were investigated. Within 30 min of onset of fasciculations Cyt-ox activity was reduced by 50% from 0.526 to 0.263 μmol/mg prot/min and XO activity increased from 0.242 to 0.541 μmol/mg prot/min. Total XD-XO activity was unchanged, indicating a conversion from XD into XO. In rats pretreatment with the neuromuscular blocking agent d-tubocurarine, prevented DFP-induced fasciculations, increases in F2-isoprostanes and changes in Cyt-ox or XD-XO. The decrease in Cyt-ox and increase in XO suggest that ROS are produced during DFP induced muscle fasciculations initiating lipid peroxidation and subsequent myopathy.  相似文献   

13.
Diethyl maleate (DEM) (5 mM) and ethyl methanesulfonate (EMS) (35 mM) treatments rapidly depleted cellular reduced glutathione (GSH) below detectable levels (1 nmol/10(6) cells), and induced lipid peroxidation and necrotic cell death in freshly isolated rat hepatocytes. In hepatocytes incubated with 2.5 mM DEM and 10 mM EMS, however, the complete depletion of cellular GSH observed was not sufficient to induce lipid peroxidation or cell death. Instead, DEM- and EMS-induced lipid peroxidation and cell death were dependent on increased reactive oxygen species (ROS) production as measured by increases in dichlorofluorescein fluorescence. The addition of antioxidants (vitamin E succinate and deferoxamine) prevented lipid peroxidation and cell death, suggesting that lipid peroxidation is involved in the sequence of events leading to necrotic cell death induced by DEM and EMS. To investigate the subcellular site of ROS generation, the cytochrome P450 inhibitor, SKF525A, was found to reduce EMS-induced lipid peroxidation but did not protect against the loss of cell viability, suggesting a mitochondrial origin for the toxic lipid peroxidation event. In agreement with this conclusion, mitochondrial electron transport inhibitors (rotenone, thenoyltrifluoroacetone and antimycin A) increased EMS-induced lipid peroxidation and cell death, while the mitochondrial uncoupler, carbonyl cyanide m-chlorophenylhydrazone, blocked EMS- and DEM-mediated ROS production and lipid peroxidation. Furthermore, EMS treatment resulted in the significant loss of mitochondrial alpha-tocopherol shortly after its addition, and this loss preceded losses in cellular alpha-tocopherol levels. Treatment of hepatocytes with cyclosporin A, a mitochondrial permeability transition inhibitor, oxypurinol, a xanthine oxidase inhibitor, or BAPTA-AM, a calcium chelator, provided no protection against EMS-induced cell death or lipid peroxidation. Our results indicate that DEM and EMS induce cell death by a similar mechanism, which is dependent on the induction of ROS production and lipid peroxidation, and mitochondria are the major source for this toxic ROS generation. Cellular GSH depletion in itself does not appear to be responsible for the large increases in ROS production and lipid peroxidation observed.  相似文献   

14.
Abstract: Presenilin 1 is an integral membrane protein specifically cleaved to yield an N-terminal and a C-terminal fragment, both membrane-associated. More than 40 presenilin 1 mutations have been linked to early-onset familial Alzheimer disease, although the mechanism by which these mutations induce the Alzheimer disease neuropathology is not clear. Presenilin 1 is expressed predominantly in neurons, suggesting that the familial Alzheimer disease mutants may compromise or change the neuronal function(s) of the wild-type protein. To elucidate the function of this protein, we studied its expression in neuronal vesicular systems using as models the chromaffin granules of the neuroendocrine chromaffin cells and the major categories of brain neuronal vesicles, including the small clear-core synaptic vesicles, the large dense-core vesicles, and the somatodendritic and nerve terminal clathrin-coated vesicles. Both the N- and C-terminal presenilin 1 proteolytic fragments were greatly enriched in chromaffin granule and neuronal large dense-core vesicle membranes, indicating that these fragments are targeted to these vesicles and may regulate the large dense-core vesicle-mediated secretion of neuropeptides and neurotransmitters at synaptic sites. The presenilin 1 fragments were also enriched in the somatodendritic clathrin-coated vesicle membranes, suggesting that they are targeted to the somatodendritic membrane, where they may regulate constitutive secretion and endocytosis. In contrast, these fragments were not enriched in the small clear-core synaptic vesicle or in the nerve terminal clathrin-coated vesicle membranes. Taken together, our data indicate that presenilin 1 proteolytic fragments are targeted to specific populations of neuronal vesicles where they may regulate vesicular function. Although full-length presenilin 1 was present in crude homogenates, it was not detected in any of the vesicles studied, indicating that, unlike the presenilin fragments, full-length protein may not have a vesicular function.  相似文献   

15.
It was shown that in membranes containing raft domains, the macular xanthophylls lutein and zeaxanthin are not distributed uniformly, but are excluded from saturated raft domains and about ten times more concentrated in unsaturated bulk lipids. The selective accumulation of lutein and zeaxanthin in direct proximity to unsaturated lipids, which are especially susceptible to lipid peroxidation, could be very important as far as their antioxidant activity is concerned. Therefore, the protective role of lutein against lipid peroxidation was investigated in membranes made of raft-forming mixtures and in models of photoreceptor outer segment membranes and compared with their antioxidant activity in homogeneous membranes composed of unsaturated lipids. Lipid peroxidation was induced by photosensitized reactions using rose Bengal and monitored by an MDA-TBA test, an iodometric assay, and oxygen consumption (using EPR spectroscopy and the mHCTPO spin label as an oxygen probe). The results show that lutein protects unsaturated lipids more effectively in membranes made of raft-forming mixtures than in homogeneous membranes. This suggests that the selective accumulation of macular xanthophylls in the most vulnerable regions of photoreceptor membranes may play an important role in enhancing their antioxidant properties and ability to prevent age-related macular diseases (such as age-related macular degeneration (AMD)).  相似文献   

16.
J A Malinski  T G Wensel 《Biochemistry》1992,31(39):9502-9512
To clarify the role of phospholipids in G protein-effector interactions of vertebrate phototransduction, transducin activation of cGMP phosphodiesterase (PDE) has been reconstituted on the surface of well-defined phosphatidylcholine (PC) vesicles, using purified proteins from bovine rod outer segments (ROS). PC vesicles enhanced PDE stimulation by the GTP-gamma S-bound transducin alpha subunit (T alpha-GTP gamma S) as much as 17-fold over activation in the absence of membranes. In the presence of 3.5 microM accessible PC in the form of large (100 nm) unilamellar vesicles, 500 nM T alpha-GTP gamma S stimulated PDE activity to more than 70% of the maximum activity induced by trypsin. Activation required PC, PDE, and T alpha-GTP gamma S, but did not require prior incubation of any of the components, and occurred within 4 s of mixing. The PC vesicles were somewhat more efficient than urea-washed ROS membranes in enhancing PDE activation. Half-maximal activation occurred at accessible phospholipid concentrations of 3.8 microM for PC vesicles, and 13 microM for ROS membranes. Titrations of PDE with T alpha-GTP gamma S in the presence of membranes indicated a high-affinity (Kact less than 250 pM) activation of PDE by a small fraction (0.5-5%) of active T alpha-GTP gamma S, as did titrations of ROS with GTP gamma S. When activation by PC vesicles was compared to PDE binding to membranes, the results were consistent with activation enhancement resulting from formation of a T alpha-GTP gamma S-dependent PDE-membrane complex with half-maximal binding at phospholipid concentrations in the micromolar range. The value of the apparent dissociation constant, KPL, associated with the activation enhancement was estimated to be in the range of 2.5 nM (assuming an upper limit value of 1600 phospholipids/site) to 80 nM (for a lower limit value of 50 phospholipids/site). Another component of membrane binding was more than 100-fold weaker and was not correlated with activation by T alpha-GTP gamma S. Low ionic strength disrupted the ability of ROS membranes, but not PC vesicles, to bind and activate PDE. Removal of PDE's membrane-binding domain by limited trypsin digestion eliminated both the binding of PDE to vesicles and the ability of PDE to be activated by T alpha-GTP gamma S and membranes. These results suggest that ROS membrane stimulation of PDE activation by T alpha-GTP gamma S is due almost exclusively to the phospholipids in the disk membrane.  相似文献   

17.
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37°C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20°C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20°C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freezethaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells.  相似文献   

18.
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37 degrees C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20 degrees C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20 degrees C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freeze-thaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells.  相似文献   

19.
Increased oxidative stress is the consequence of either enhanced reactive oxygen species (ROS) production or attenuated ROS scavenging capacity, resulting in tissue damage that in most instances is assessed by the measurement of lipid peroxides. In the current study, diabetes-induced lipid peroxidation in rat liver microsomal membranes was investigated by Fourier transform infrared (FT-IR) spectroscopy at different temperatures. The olefinic (CH) band at 3012 cm-1 was used to probe diabetes-induced lipid peroxidation. The intensity and area values of this band of diabetic samples were found to be increased significantly (P<0.05) compared with nondiabetic samples. The increase in olefinic band intensity is attributed mainly to the lipid peroxidation end products. The results of the FT-IR study were found to be in agreement with biochemical studies that revealed a significant increase in malondialdehyde levels of diabetic samples compared with control samples (P<0.05) using the thiobarbituric acid test.  相似文献   

20.
The interaction of pertussis toxin (PT) with cells and model membranes was investigated by examining PT-induced intoxication of Chinese hamster ovary cells and by studying the binding of PT and its subunits to phospholipid vesicles. Since certain bacterial toxins require an acidic environment for efficient interaction with membranes and subsequent entry into the cell, the requirement for an acidic environment for PT action was examined. PT, unlike bacterial toxins such as diphtheria toxin, did not require an acidic environment for efficient intoxication of Chinese hamster ovary cells. Potential modes by which PT might interact with biological membranes were studied by examining the binding of PT to a model membrane system. PT was found to be capable of interacting with phospholipid vesicles, however, efficient binding of the toxin to the vesicles occurred only in the presence of both ATP and reducing agent. The A subunit portion of the toxin bound preferentially to the vesicles while little binding of the B oligomer portion of PT to the model membranes was observed. Isolated A subunit, in the absence of the B oligomer, also bound to the vesicles with optimal binding occurring in the presence of reducing agent. After cleavage of the A subunit by trypsin, probably at Arg-181, Arg-182, and/or Arg-193, large fragments which lacked the C-terminal portion of the A subunit of PT no longer associated with the lipid vesicles. These results suggest that the A subunit of PT can interact directly with a lipid matrix and, if freed from the constraints imposed by the B oligomer, may be capable of interacting with cellular membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号