首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of 50 Hz electromagnetic fields on phagocytosis and free radical production were examined in mouse bone marrow-derived macrophages. Macrophages were in vitro exposed to electromagnetic fields using different magnetic field densities (0.5-1.5 mT). Short-time exposure (45 min) to electromagnetic fields resulted in significantly increased phagocytic uptake (36.3% +/- 15.1%) as quantified by measuring the internalization rate of latex beads. Stimulation with 1 nM 12-0-tetradecanoylphorbol-13-acetate (TPA) showed the same increased phagocytic activity as 1 mT electromagnetic fields. However, co-exposure to electromagnetic fields and TPA showed no further increase of bead uptake, and therefore we concluded that because of the absence of additive effects, the electromagnetic fields-induced stimulation of mouse bone marrow-derived macrophages does not involve the protein kinase C signal transduction pathway. Furthermore, a significant increased superoxide production after exposure to electromagnetic fields was detected.  相似文献   

2.
We designed and manufactured equipment for exposure of cultured cells to extremely low frequency magnetic fields (ELFMF) at 5, 50, and 400 mT and examined the effect of ELFMF on cellular transformation in mouse C3H10T1/2 cells (clone 8). Transformed foci, Type II and Type III, were independently counted as transformants. The cells were exposed to ELFMF alone at 5, 50, and 400 mT for 24 h or X-irradiated with 3 Gy followed by the ELFMF exposure. No significant difference in the transformation was observed between sham-exposed control and the ELFMF exposure from 5 to 400 mT. The transformation frequency for X-rays plus ELFMF was decreasing compared with X-rays alone. When 12-O-tetra-decanoylphorbol-13-acetate (TPA) was contained in the medium throughout the experiment, the transformation frequency by X-rays alone was elevated more. In the combined treatment with X-rays followed by ELFMF, the transformation frequency was slightly decreased at 50 and 400 mT even in the medium containing TPA. The long-term exposure at 5 mT suppressed both spontaneous and X-ray-induced transformations significantly. It is well known that overexpressing protein kinase C (PKC) failed to yield identifiable transformation of foci induced by ionizing radiation. We demonstrated previously that exposure to high-density ELFMF induced expression of several genes through an increase in PKC activity. From these results, it is suggested that ELFMF might suppress X-ray-induced transformation through activation of PKC by ELFMF.  相似文献   

3.
Electromagnetic fields (EMFs) have been associated with increased incidence of cancer suggested by epidemiological studies. To test the carcinogenic potency of EMF, the in vitro micronucleus assay with SHE cells has been used as a screening method for genotoxicity. A 50Hz magnetic field (MF) of 1mT field strength was applied either alone or with the tumour initiator benzo(a)pyrene (BP) or the tumour promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). All three treatments were applied in single, double or triple treatment regimes. MF or TPA (1nM) alone did not affect the number of micronuclei (MN) in initiated and non-initiated SHE cells. Changing the schedule of the typical initiation protocol, namely applying the initiator (BP) during exposure to MF, results in an 1.8-fold increased MN formation compared to BP treatment alone. Combined experiment with BP, TPA and MF did not cause further MN formation. Since initiation during MF exposure caused a significant increased MN formation, our findings suggest that MFs enhance the initiation process of BP. We think that this MF-enhanced co-carcinogenic effect is caused by an indirect "cell activation" process. The resulting genomic instability is proposed to be due to free radicals and/or to the unscheduled "switching-on" of signal transduction pathways.  相似文献   

4.
We evaluated the effects of 50 Hz pulsed electromagnetic fields (EMFs) with a peak magnetic field of 3 mT on human astrocytoma cells. Our results clearly demonstrate that, after the cells were exposed to EMFs for 24 h, the basal [Ca(2+)](i) levels increased significantly from 124+/-51 nM to 200+/-79 nM. Pretreatment of the cells with 1.2 microM substance P increased the [Ca(2+)](i) to 555+/-278 nM, while EMF exposure caused a significant drop in [Ca(2+)](i) to 327+/-146 nM. The overall effect of EMFs probably depends on the prevailing Ca(2+) conditions of the cells. After exposure, the proliferative responses of both normal and substance P-pretreated cells increased slightly from 1.03 to 1.07 and 1.04 to 1.06, respectively. U-373 MG cells spontaneously released about 10 pg/ml of interleukin-6 which was significantly increased after the addition of substance P. Moreover, immediately after EMF exposure and 24 h thereafter, the interleukin-6 levels were more elevated (about 40%) than in controls. On the whole, our data suggest that, by changing the properties of cell membranes, EMFs can influence Ca(2+) transport processes and hence Ca(2+) homeostasis. The increased levels of interleukin-6 after 24 h of EMF exposure may confirm the complex connection between Ca(2+) levels, substance P and the cytokine network.  相似文献   

5.
In our environment, we have numerous chances to be exposed to not only electromagnetic fields (EMFs) but also many chemicals containing mutagens. Therefore, the aim of this study was to estimate whether rat’s exposure to cadmium and/or EMFs could cause oxidative damage to molecular structure of proteins and whether and to what extent the effects of co-exposure differ from those observed under the treatment with each exposure alone. Thirty-two rats were divided into four groups. Group 1 was termed as control, group 2 was treated with cadmium (3.0?mg/Kg), group 3 was exposed to EMF (10?mT/h/day) and group 4 was treated with cadmium and exposed to EMF. Protein carbonyls (PCO) in the plasma as a marker of oxidative protein damage and total oxidant status (TOS), as well as electrical conductivity and SDS electrophoresis to estimate changes in molecular structure of protein, were determined. The exposure to Cd and/or EMF led to oxidative protein damage (increased PCO and TOS) accomplished by increased stress of electrical charges on the surface of the protein molecule (increased electrical conductivity) and changes in the molecular structure of protein. The effects were more pronounced after treatment with both Cd and EMF than at the treatment with each exposure alone. The serious damage to proteins at the co-exposure to Cd and EMF seems to be due to the interference of the EMF with the toxic activity of cadmium. This work concluded that combined exposure to Cd and EMFs might increase the risk of plasma damage via enhancing free radical generation and protein oxidation.  相似文献   

6.
To explore whether the extremely low frequency (ELF) electromagnetic fields (EMFs) may act as cancer promoters or be synergistic with 12-O-tetradecanoylphorbol-13-acetate (TPA) in cancer promotion, an experiment was conducted on the effects of 50 Hz magnetic fields (MFs) on gap junctional intercellular communication (GJIC) of Chinese hamster lung (CHL) cells. Lucifer dye was loaded into CHL cells by iontophoretic injection, and the number of dye-coupled cells (DCC) 5 min after the injection was adopted as the index of GJIC. The effects of TPA at different concentrations and magnetic fields at different intensities, combined with 5 ng/ml TPA, were studied. The results showed that the suppression of TPA on GJIC was dependent on TPA concentration; the threshold concentration of TPA for CHL cells was between 1 and 5 ng/ml. After exposure to 0.8 mT magnetic field for 24 h, the number of DCC decreased to 6.08 +/- 1.59, whereas the number of DCC in the control group was 9.84 +/- 2.27 (P < .05). When the cells were exposed at 0.2, 0.4, and 0.8 mT for 24 h, combined with 5 ng/ml TPA treatment during the last 1 h, the number of DCC decreased to 5.52 +/- 1.53, 5.00 +/- 1.22, and 4.00 +/- 1.29, respectively, which were significantly lower than the values for the group treated with 5 ng/ml TPA alone (6.38 +/- 1.39). It is suggested that certain intensities of 50 Hz magnetic field might act as cancer promoters, be additive with other promoters in cancer promotion, or both.  相似文献   

7.
We have investigated the role of protracted phosphatase inhibition and the consecutive protracted protein phosphorylation on neuronal viability. We found that in primary cultures of cerebellar granule neurons, the protracted (24-h) inhibition of the serine/threonine protein phosphatases 1 and 2A (EC 3.1.3.16) by treatment of the cultures with okadaic acid (OKA; 5-20 nM) caused neurotoxicity that could be inhibited by the protein kinase inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) or by the previous down-regulation of the neuronal protein kinase C (PKC; ATP:protein phosphotransferase; EC 2.7.1.37). PKC was down-regulated by exposure of the cultures for 24 h to 100 nM phorbol 12-myristate 13-acetate (TPA). The effect of the drugs used in the viability studies on the pattern of protein phosphorylation was measured by quantitative autoradiography. In particular, the 50- and 80-kDa protein bands showed dramatic changes in the degree of phosphorylation: increase by OKA and brief TPA treatment; decrease by H7 or 24 h of TPA treatment; and inhibition of the OKA-induced increase by H7 or 24 h of TPA treatment. The results suggest that the protracted phosphorylation, in particular that mediated by PKC, may lead to neuronal death and are in line with our previous suggestion that prolonged PKC translocation is operative in glutamate neurotoxicity.  相似文献   

8.
The role of protein kinase C (PKC) on vasopressin (VP) action was investigated by inhibition of endogenous PKC using prolonged incubation of the cells with phorbol ester, and by direct measurement of PKC activity in pituitary cells. Preincubation of the cells for 6 h with 100 nM TPA at 37 C resulted in a 90% decrease in total PKC activity. In the PKC-depleted cells, cAMP responses to stimulation with 100 nM CRF for 30 min were normal, but the potentiating effects of VP and PMA on CRF-stimulated cAMP production were abolished. The stimulation of ACTH secretion by VP and PMA alone was also abolished in PKC- depleted cells. PKC activity in cytosolic and detergent-solubilized membrane fractions from enriched pituitary corticotrophs obtained by centrifugal elutriation, was directly measured by enzymatic assays and by immunoblotting techniques. Basal PKC activity was higher in the cytosol than in the membranes (8.43 +/- 0.47 and 1.93 +/- 0.11 pmol 32P incorporated/10 min, respectively). After incubation of the cells with VP for 15 min or [3H] phorbol-12-myristate-13-acetate (PMA) for 30 min, PKC activity in cytosol was decreased by 40% and 89%, respectively, while the activity in the membrane was increased by 138% and 405%, respectively. Such VP- and PMA-induced translocation of PKC was also observed when the enzyme content in the cytosol and the membranes was measured by immunoblotting using a specific anti-PKC antibody and [125I]protein A. Autoradiographic analysis of immunoblots revealed an 80 kilodalton band characteristic of PKC, with OD higher in the cytosolic than in the membrane fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
This investigation provides evidence that a 60-Hz electromagnetic field (EMF) at 1 gauss (G) can drive differentiation of cultured hematopoietic progenitor cells. HL-60 cells are known to differentiate from a nonphagocytic suspension culture to an attached fibroblast-like culture with high phagocytic activity in the presence of the tumor-promoting phorbol ester 12-O-tetradecanoylphorbal-13-acetate (TPA). The effect of 60-Hz EMF at 1 G on differentiation is approximately equivalent to treatment of the cells with 250-500 pg/ml TPA. Furthermore, the effect of both EMF and TPA treatment on differentiation is additive at low TPA concentrations. The results strongly suggest similarities between the effects of TPA treatment and EMF exposure and thus provide an approach for tracing the origins of the molecular effects of EMF exposure, as many transduction pathways in the differentiative process are defined.  相似文献   

10.
Effects of applying extremely low-frequency electromagnetic fields (ELF-EMF) for different durations (24, 48, and 72 h) and different field intensities (0.1–1.0 mT) on micronucleus (MN) formation and induction of apoptosis were examined in a human squamous cell carcinoma cell line (SCL II) and in a human amniotic fluid cell line (AFC). A statistically significant increase of MN frequency and of induction of apoptosis in SCL II cells after 48-h and 72-h continuous exposure to 50 Hz magnetic field (MF) (0.8 and 1.0 mT) was found. However, exposure of AFC cells to EMF of different intensities and for different exposure times showed no statistically significant differences when compared with controls. These results demonstrate that different human cell types respond differently to EMF. Dose-dependent induction of apoptosis and genotoxic effects, resulting in increased micronucleus formation, could be demonstrated in the transformed cell line, whereas the nontransformed cell line did not show statistically significant effects. These findings suggest that EMF could be a promotor but not an initiator of carcinogenic effects. Bioelectromagnetics 19:85–91, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
MAP kinase activation in cells exposed to a 60 Hz electromagnetic field   总被引:3,自引:0,他引:3  
This research provides evidence that mitogen-activated protein kinase or extracellular signal-regulated kinase (MAPK/ERK) is activated in HL-60 human leukemia cells, MCF-7 human breast cancer cells, and rat fibroblast 3Y1 cells exposed to a 60 Hertz (Hz), 1 Gauss (G) electromagnetic field (EMF). The effects of EMF exposure were compared to those observed using 12-O-tetradecanoylphorbal-13-acetate (TPA) treatment. The level of MAPK activation in cells exposed to EMF was approximately equivalent to that in cells treated with 0.1-0.5 ng/ml of TPA. A role for protein kinase C (PKC) in the process leading to MAPK activation in EMF exposed cells is also suggested by the results. MAPK activation is negated by an inhibitor to PKCalpha, but not PKCdelta inhibitors, in cells subjected to EMF exposure or TPA treatment. Thus, similarities between the effects of EMF exposure and TPA treatment are supported by this investigation. This provides a possible method for revealing other participants in EMF-cell interaction, since the TPA induction pathway is well documented.  相似文献   

12.
1. The role of protein kinase C (PKC) in B-naphthoflavone (BNF) induction of CYP1A1 in rainbow trout hepatocytes was investigated.2. Primary cultures of rainbow trout hepatocytes treated with BNF for 24 hr showed an increase in microsomal 7-ethyoxyresorufm-O-deethylase (EROD) activity compared to cells treated with vehicle (DMSO) only.3. Increases in EROD activities were proportional to increased concentrations of BNF from 1 to 10 nM reaching a plateau at higher concentrations (20–100 nM) of BNF.4. Western blot analysis using specific antibody (LM4b) against CYP1A1 showed that changes in microsomal CYP1A1 protein paralleled that of EROD activity.5. The induction of EROD activity by BNF required both protein and RNA synthesis since the process was blocked by both cycloheximide and actinomycin D.6. Pretreatment of hepatocytes with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) led to a dose dependent suppression of BNF-induced EROD activity and CYP1A1 content. TPA alone had no effect on hepatic EROD activity and CYP1A1 protein level.7. Pretreatment with sn-1,2 didecanoylglycerol, a PKC activator, had no effect on BNF-induced EROD activity in these cells.8. Pretreatment of cells with staurosporine, a PKC inhibitor, effectively blocked BNF-induced EROD activity.9. PKC may play a role in the induction of CYP1A1 gene expression in fish liver by BNF.  相似文献   

13.
This study describes the modulation of the ouabain-insensitive Na(+)-ATPase activity from renal proximal tubule basolateral membranes (BLM) by protein kinase C (PKC). Two PKC isoforms were identified in BLM, one of 75 kDa and the other of 135 kDa. The former correlates with the PKC isoforms described in the literature but the latter seems to be a novel isoform, not yet identified. Both PKC isoforms of BLM are functional since a protein kinase C activator, TPA, increased the total hydroxylamine-resistant 32P(i) incorporation from [gamma-32P]ATP into the BLM. In parallel, TPA stimulated the Na(+)-ATPase activity from BLM in a dose-dependent manner, the effect being reversed by the PKC inhibitor sphingosine. The stimulatory effect of TPA on Na(+)-ATPase involved an increase in the V(max) (from 13.4+/-0.6 nmol P(i) mg(-1) min(-1) to 25.2+/-1.4 nmol P(i) mg(-1) min(-1), in the presence of TPA, P<0.05) but did not change the apparent affinity for Na(+) (K(0.5)=14.5+/-2.1 mM in control and 10.0+/-2.1 mM in the presence of TPA, P>0.07). PKC involvement was further confirmed by stimulation of the Na(+)-ATPase activity by the catalytic subunit of PKC (PKC-M). Finally, the phosphorylation of an approx. 100 kDa protein in the BLM (the suggested molecular mass of Na(+)-ATPase [1]) was induced by TPA. Taken together, these findings indicate that PKCs resident in BLM stimulate Na(+)-ATPase activity which could represent an important mechanism of regulation of proximal tubule Na(+) reabsorption.  相似文献   

14.
The intracellular signal transduction mechanism leading to desmosome formation in low-calcium-grown keratinocytes after addition of calcium to the medium was studied by immunofluorescence using antibodies to desmoplakins I and II (cytoplasmic desmosomal proteins) and by electron microscopy before and after addition of calcium; protein kinase C (PKC) activators 12-O-tetradecanoylphorbol-13-acetate (TPA), phorbol-12,13-dibutyrate (PDBu), and 1,2-dioctanoylglycerol (DOG); calcium ionophore A23187; selective PKC inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) and staurosporine; and a Ca2+/calmodulin-dependent kinase inhibitor, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). In previous studies using a low-calcium-grown human epidermal squamous cell carcinoma, we have shown that an increase in extracellular Ca2+ caused a four-fold increase in PKC activity and addition of TPA (10 ng/ml) induced a transient increase in membrane-bound PKC activity in association with cell-cell contact formation. The present study showed that TPA (10 ng/ml). PDBu (10 ng/ml), and DOG (1 mg/ml) induced a rapid cell-cell contact and redistribution of desmoplakins from cytoplasm to the plasma membrane with desmosome formation within 60-120 min, which was similar, although less marked, to the effect of increased Ca2+. The TPA-induced desmosome formation was inhibited by selective PKC inhibitors, H-7 (20 microM) or staurosporine (100 nM). On the other hand, calcium ionophore A23187 induced only a temporary increase in the number of desmoplakin-containing fluorescent spots in the cytoplasm and a temporary cell-cell attachment without desmosome formation. The calcium-induced desmosome formation was partially inhibited by 20-100 microM H-7 or 100 nM staurosporine; however, it was not inhibited by W-7 at a concentration of 25 microM, at which this agent selectively inhibits calmodulin-dependent protein kinase. These results suggest that PKC activation plays an important role in desmoplakin translocation from the cytoplasm to the plasma membrane as one of the processes of calcium-induced desmosome formation.  相似文献   

15.
T lymphocyte activation is initiated as a result of the interaction between the TCR complex and Ag as seen in the framework of a membrane-bound MHC molecule. Receptor stimulation results in a rise in free intracellular Ca2+ and the activation of protein kinase C (PKC). Bryostatin (Bryo) and phorbol esters (e.g., 12-O-tetradecanoylphorbol 13-acetate (TPA] are PKC activators with somewhat different immunologic effects. We compared the effect of Bryo and TPA on the T cell tumor line Jurkat and derivatives of Jurkat cells grown in media supplemented with 100 nM Bryo ("BR100" cells) or 100 nM TPA ("TP100" cells). In untreated Jurkat cells, there is a dose- and time-dependent decrease in proliferation, compared to media controls, after the administration of as little as 10 nM TPA. This can be reversed in a dose- and time-dependent manner by Bryo. Interestingly, the expression of the transferrin receptor parallelled this effect on proliferation. Furthermore, Jurkat cells grown continuously in 100 nM TPA regained full proliferative capacity after several weeks in culture and transferrin receptor expression returned to near the level seen in untreated Jurkat cells. The chromatographic separation of PKC activity in these three cell lines showed that total PKC activity was dramatically decreased in both the TP100 and BR100 cells when compared to untreated Jurkat cells. However, in the TP100 cells there exists a peak of activity that is activated by Bryo, but not TPA. Western blots of whole cell lysates of the three cell lines showed that PKC-alpha and PKC-beta II were both down-regulated in BR100 and TP100 cells compared to untreated Jurkat cells. PKC-gamma was not detected in any of the cell lines. Therefore, the Bryo-specific peak seen in TP100 cells may be PKC-delta, -epsilon, -zeta, -eta, or a novel PKC isoform. This could provide the basis for a molecular characterization of the differences in PKC activation between phorbol esters and Bryo.  相似文献   

16.
PKC modulators were used to investigate the role of the PKC pathway either on the maintenance of meiotic arrest or on FSH-induced maturation of mouse cumulus cell enclosed oocytes (CEOs). (1) Whereas PKC activation (PMA 8 microM) overcomed clearly the HX-maintained meiotic arrest (83.7 +/- 3.6% vs. 16.1 +/- 10.6% GVBD oocytes), PKC inhibition (Calphostin C 100 nM) did not. On the contrary, it better maintained the meiotic arrest than HX alone. (2) No significant effect of PKC activation or inhibition was observed. (3) HX alone maintained PKCbeta1 in the cytoplasm, whereas FSH and PKC activation induced partly its translocation into the nucleus. The results show that whereas the PKC pathway is clearly involved in maintenance of the meiotic arrest through PKCbeta1, it is not involved in FSH-induced meiosis of CEOs.  相似文献   

17.
18.
We have used a digitonin-permeabilized cell system to study the signal transduction pathways responsible for stimulus-secretion coupling in the rat peritoneal mast cell. Conditions were established for permeabilizing the mast cell plasma membrane without disrupting secretory vesicles. Exocytotic release of histamine from digitonin-permeabilized cells required a combination of micromolar concentrations of Ca2+ and the stable guanine nucleotide analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]), but was independent of exogenous ATP. In the presence of 40 microM-GTP[S], exocytosis was half-maximal at 1.3 microM-Ca2+ and maximal at 10 microM-Ca2+; GTP[S] alone (100 microM) had no effect on histamine release in the absence of added Ca2+. In the presence of 10 microM free Ca2+, 5 microM-GTP[S] was required for half-maximal exocytosis. To examine the possible role of protein kinase C (PKC) in exocytosis, we utilized 12-O-tetradecanoylphorbol 13-acetate (TPA) to activate PKC and studied its effect on histamine release from permeabilized mast cells. Cells that had been incubated with TPA (25 nM for 5 min) exhibited increased sensitivity to both GTP[S] and Ca2+. The PKC inhibitor staurosporine blocked the effect of TPA without inhibiting normal exocytosis in response to the combination of GTP[S] and Ca2+. In addition, down-regulation of mast-cell PKC by long-term TPA treatment (25 nM for 20 h) blocked the ability of the cells to respond to TPA and inhibited exocytosis in response to Ca2+ and GTP[S] by 40-50%. These results suggest that the sensitivity of the exocytotic machinery of the mast cell can be altered by PKC-catalysed phosphorylation events, but that activation of PKC is not required for exocytosis to occur.  相似文献   

19.
The protein kinase C (PKC) activator 12-O-tetradecanoylphorbol 13-acetate (TPA) has been shown to potentiate the stimulatory effect of ethanol on the hydrolysis of phosphatidylethanolamine (PtdEtn) in NIH 3T3 fibroblasts. Following an initial 20-min period, the main product of PtdEtn degradation in cells treated with TPA plus ethanol was ethanolamine phosphate. Here, we have examined the regulatory role of PKC and the possible catalytic role of phospholipase C in the formation of ethanolamine phosphate. TPA, bryostatin, and bombesin, direct or indirect activators of PKC, had similar potentiating effects on ethanol-induced formation of [14C]ethanolamine phosphate from [14C]PtdEtn in [14C]ethanolamine-prelabelled NIH 3T3 fibroblasts. At lower concentrations of ethanol (40-80 mM), significant stimulation of ethanolamine phosphate formation required longer treatments (2 h or longer). The combined effects of TPA (100 nM) and ethanol (50-200 mM) on ethanolamine phosphate formation were not inhibited by the PKC inhibitors staurosporine or 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7). In contrast, these inhibitors significantly inhibited TPA-induced formation of ethanolamine, catalyzed by a phospholipase-D-type enzyme. In membranes isolated from TPA+ethanol-treated cells, enhanced formation of ethanolamine phosphate was maintained for at least 20 min. Down-regulation of PKC by prolonged (24-h) treatment of NIH 3T3 fibroblasts by 300 nM TPA enhanced, while overexpression of alpha-PKC in Balb/c fibroblasts diminished, the stimulatory effect of ethanol on the formation of ethanolamine phosphate. Finally, addition of the protein phosphatase inhibitor okadaic acid (2 microM) to fibroblasts inhibited TPA+ethanol-induced formation of ethanolamine phosphate. These results suggest that alpha-PKC-mediated protein phosphorylation may negatively regulate PtdEtn hydrolysis and that the potentiating effect of TPA may result, at least partly, from increased degradation of this PKC isoform.  相似文献   

20.
The hypertriglyceridemia of diabetes is accompanied by decreased lipoprotein lipase (LPL) activity in adipocytes. Although the mechanism for decreased LPL is not known, elevated glucose is known to increase diacylglycerol, which activates protein kinase C (PKC). To determine whether PKC is involved in the regulation of LPL, we studied the effect of 12-O-tetradecanoyl phorbol 13-acetate (TPA) on adipocytes. LPL activity was inhibited when TPA was added to cultures of 3T3-F442A and rat primary adipocytes. The inhibitory effect of TPA on LPL activity was observed after 6 h of treatment, and was observed at a concentration of 6 nM. 100 nM TPA yielded maximal (80%) inhibition of LPL. No stimulation of LPL occurred after short term addition of TPA to cultures. To determine whether TPA treatment of adipocytes decreased LPL synthesis, cells were labeled with [35S]methionine and LPL protein was immunoprecipitated. LPL synthetic rate decreased after 6 h of TPA treatment. Western blot analysis of cell lysates indicated a decrease in LPL mass after TPA treatment. Despite this decrease in LPL synthesis, there was no change in LPL mRNA in the TPA-treated cells. Long term treatment of cells with TPA is known to down-regulate PKC. To assess the involvement of the different PKC isoforms, Western blotting was performed. TPA treatment of 3T3-F442A adipocytes decreased PKC alpha, beta, delta, and epsilon isoforms, whereas PKC lambda, theta, zeta, micro, iota, and gamma remained unchanged or decreased minimally. To directly assess the effect of PKC inhibition, PKC inhibitors (calphostin C and staurosporine) were added to cultures. The PKC inhibitors inhibited LPL activity rapidly (within 60 min). Thus, activation of PKC did not increase LPL, but inhibition of PKC resulted in decreased LPL synthesis by inhibition of translation, indicating a constitutive role of PKC in LPL gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号