首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate eight frequently encountered mitochondrial DNA (mtDNA) point mutations (A3243G, T8993G/C, A8344G, A1555G, G11778A, G3460A and T14484C) in Chinese, we recruited 1559 sporadic patients suspected of mitochondrial diseases and 206 family members. In suspected patients, 158 cases were detected with one of these eight mtDNA mutations (10.1%). A3243G was the most common mtDNA mutation both in suspected patients (9.4%) and in the relatives (34.2%). In addition, the ratios of A3243G (mutant/wild-type) and A8344G were significantly correlated with the patients’ age of examination. Moreover, in 76 unrelated probands, the ratio of A3243G was correlated well with their seizures and myopathies.  相似文献   

2.
3.
The purpose of this study was to identify novel mitochondrial deoxyribonucleic acid (mtDNA) mutations in a series of patients with clinical and/or morphological features of mitochondrial dysfunction, but still no genetic diagnosis. A heterogeneous group of clinical disorders is caused by mutations in mtDNA that damage respiratory chain function of cell energy production. We developed a method to systematically screen the entire mitochondrial genome. The sequence-data were obtained with a rapid automated system. In the six mitochondrial genomes analysed we found 20 variants of the revised Cambridge reference sequence [Nat. Genet. 23 (1999) 147]. In skeletal muscle nineteen novel mtDNA variants were homoplasmic, suggesting secondary pathogenicity or co-responsibility in determination of the disease. In one patient we identified a novel heteroplasmic mtDNA mutation which presumably has a pathogenic role. This screening is therefore useful to extend the mtDNA polymorphism database and should facilitate definition of disease-related mutations in human mtDNA.  相似文献   

4.
We studied 42 individuals, including 8 patients with either complete or partial syndrome of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), 8 patients with either complete or partial syndrome of myoclonic epilepsy with ragged-red fibers (MERRF) and 26 maternal family members who carried either the A3243G or A8344G mutation of mitochondrial DNA (mtDNA). Clinical manifestations and prognosis were followed up in the patients harboring the A3243G or A8344G mutation. The relationship between clinical features and proportions of mutant mtDNAs in muscle biopsies, blood cells and/or hair follicles was studied. In the 8 regularly followed patients with the A3243G mutation, 4 died within 1 month to 7 years due to status epilepticus and/or recurrent stroke-like episodes. Two patients developed marked mental deterioration and 2 remained stationary. All of the patients harboring the A8344G mutation were stable or deteriorated slightly, except for 1 patient who died due to brain herniation after putaminal hemorrhage. The A3243G and A8344G mtDNA mutations were heteroplasmic in the muscle biopsies, blood cells and hair follicles of both the probands and their maternal family members. The mean proportion of A3243G mutant mtDNA in the muscle biopsies of the patients with MELAS syndrome (68.5 ± 21.3%, range 33–92%) was significantly higher than that of the asymptomatic family members (37.1 ± 12.6%, range 0–51%). The average proportions of A8344G mutant mtDNA in the muscle biopsies (90.1 ± 3.9%, range 89–95%) and hair follicles (93.9 ± 6.4%, range 84–99%) of the patients with MERRF syndrome were also significantly higher than those of the asymptomatic family members (muscle: 40.3 ± 39.5%, range 1–80%; hair follicles: 51.0 ± 44.5%, range 0.1–82%). We concluded that measurement of the proportion of mutant mtDNA in muscle biopsies may provide useful information in the identification of symptomatic patients with mitochondrial encephalomyopathies. For patients with the A3243G mutation, the prognosis was related to status epilepticus and the number of recurrent stroke-like episodes and was much worse than for patients with the A8344G mutation of mtDNA, who had stable or slowly deteriorating clinical courses.  相似文献   

5.
6.
7.
Pathogenic mitochondrial DNA mutations are common in the general population   总被引:4,自引:2,他引:2  
Mitochondrial DNA (mtDNA) mutations are a major cause of genetic disease, but their prevalence in the general population is not known. We determined the frequency of ten mitochondrial point mutations in 3168 neonatal-cord-blood samples from sequential live births, analyzing matched maternal-blood samples to estimate the de novo mutation rate. mtDNA mutations were detected in 15 offspring (0.54%, 95% CI = 0.30–0.89%). Of these live births, 0.00107% (95% CI = 0.00087–0.0127) harbored a mutation not detected in the mother's blood, providing an estimate of the de novo mutation rate. The most common mutation was m.3243A→G. m.14484T→C was only found on sub-branches of mtDNA haplogroup J. In conclusion, at least one in 200 healthy humans harbors a pathogenic mtDNA mutation that potentially causes disease in the offspring of female carriers. The exclusive detection of m.14484T→C on haplogroup J implicates the background mtDNA haplotype in mutagenesis. These findings emphasize the importance of developing new approaches to prevent transmission.  相似文献   

8.
Niu YF  Xiong HL  Wu JJ  Chen Y  Qiao K  Wu ZY 《遗传》2011,33(7):720-724
应用PCR技术结合DNA直接测序方法对8例临床确诊为家族性肌萎缩侧索硬化(Familiar amyotrophic lateral sclerosis,FALS)家系的先证者进行铜锌超氧化物歧化酶基因(SOD1)的突变筛查,在3例先证者中检出2种SOD1基因突变,其中,2例携带了位于4号外显子的错义突变Cys111Tyr(c.332G>A),另1例携带了位于5号外显子的错义突变Gly147Asp(c.440G>A),这2种突变在中国ALS患者中属首次报道。该结果扩大了中国FALS患者的SOD1基因突变谱,对研究中国FALS患者SOD1基因突变特点和分布规律有一定帮助。分析携带这2个突变患者的临床特点,提示Cys111Tyr突变导致的临床表型相对温和,而Gly147Asp突变可导致病情进展较快。该结果有待在更多的病例中进行证实。  相似文献   

9.
10.
Leber's hereditary optic neuropathy (LHON) is a maternally inherited disorder characterized by central vision loss in young adults. The majority of LHON cases around the world are associated with mutations in the mitochondrial genome at nucleotide positions (np) 3460, 11,778, and 14,484. Usually, these three mutations are screened in suspected LHON patients. The result is important not only in respect to the diagnosis but also as different LHON mutations lead to variations in expression, severity, and recovery of the disease. There are, however, a significant number of patients without any of these primary mutations. In these situations, genetic counselling of a patient and his family can be difficult. We sequenced the complete mitochondrial DNA (mtDNA) in 14 LHON patients with the typical clinical features but without a primary mtDNA mutation to evaluate the potential of extensive mutation screening for clinical purposes. Our results suggest to include the mutation at np 15,257 in a routine screening as well as the ND6 gene, a hot spot for LHON mutations. Screening for the secondary LHON mutations at np 4216 and np 13,708 may also help in making the diagnosis of LHON as these seem to modify the expression of LHON mutations. Although they do not allow to prove the clinical diagnosis, their presence increases the probability of LHON. Sequencing the complete mitochondrial genome can reveal novel and known rare disease causing mutations. However, considering the effort it adds little value for routine screening.  相似文献   

11.
Lactic acidosis has been associated with a variety of clinical conditions and can be due to mutation in nuclear or mitochondrial genes. We performed mutations screening of all mitochondrial tRNA genes in 44 patients who referred as hyperlactic acidosis. Patients showed heterogeneous phenotypes including Leigh disease in four, MELAS in six, unclassified mitochondrial myopathy in 10, cardiomyopathy in five, MERRF in one, pure lactic acidosis in six, and others in 12 including facio-scaplo-femoral muscular dystrophy (FSFD), familial cerebellar ataxia, recurrent Reye syndrome, cerebral palsy with mental retardation. We measured enzymatic activities of pyruvate dehydrogenase complex, and respiratory chain enzymes. All mitochondrial tRNA genes and known mutation of ATPase 6 were studied by single strand conformation polymorphism (SSCP), automated DNA sequence and PCR-RFLP methods. We have found one patient with PDHC deficiency and six patients with Complex I+IV deficiency, though the most of the patients showed subnormal to deficient state of respiratory chain enzyme activities. We have identified one of the nucleotide changes in 29 patients. Single nucleotide changes in mitochondrial tRNA genes are found in 27 patients and one in ATPase 6 gene in two patients. One of four pathogenic point mutations (A3243G, C3303T, A8348G, and T8993G) was identified in 12 patients who showed the phenotype of Leigh syndrome, MELAS, cardimyopathy and cerebral palsy with epilepsy. Seventeen patients have one of the normal polymorphisms in the mitochondrial tRNA gene reported before. SSCP and PCR-RFLP could detect the heteroplasmic condition when the percentage of mutant up to 5, however, it cannot be observed by direct sequencing method. It is important to screen the mtDNA mutation not only by direct sequence but also by PCR-RFLP and the other sensitive methods to detect the heroplasmy when lactic acidosis has been documented in the patients who are not fulfilled the criteria of mitochondrial disorders.  相似文献   

12.
IntroductionAmong metabolic disorders, gestational diabetes mellitus (GDM) is specified as hyperglycemia caused by glucose or carbohydrate intolerance defects. GDM is distinguished by oxidative stress, and has been connected to mitochondrial dysfunction. Previous studies have documented the relation between A12026G, A8344G and A3243G mutations in ND4, tRNALeu(UUR), and tRNALys genes in different modes of diabetes.AimThe purpose of this study was to investigate into the relationship between GDM women and common mitochondrial mutations including A12026, A8344G, and A3243G in Saudi women.MethodsIn this case-control study, we have opted 96 GDM and 102 non-GDM pregnant women and DNA was extracted using EDTA blood and based on specific primers, Polymerase Chain Reaction was followed and then Restriction Fragment Length Polymorphism (RFLP) analysis was performed. Restriction enzymes was cross-checked with Lambda DNA and 10% of the purified PCR products were performed the Sanger sequencing analysis to reconfirm the RFLP analysis of the studied results.ResultsNone of the heterozygous and homozygous mutations were not observed in our study. All the subjects were turned to be homozygous normal genotypes.ConclusionThis study confirms that A12026, A8344G, and A3243G mutations have no role in the Saudi women with GDM.  相似文献   

13.
Nineteen patients (9 females, 10 males) with mitochondrial encephalomyopathies (ME) were studied. The diagnosis was established according to clinical and histopathological criteria. Leading clinical features were chronic progressive external ophthalmoplegia (CPEO) and muscle weakness in 95% of the patients. Pigmentary retinopathy was seen in 63%, and was always associated with CPEO. Hypacusis was present in 47% and cerebellar ataxia in 63% of patients. Clinical or electrophysiological signs of involvement of the central nervous system (CNS) were found in 21% of the patients. In muscle biopsy ragged red fibers were the predominant histopathological findings (100% of the patients), while COX-negative fibers were seen in 74%, deletions of the mitochondrial DNA in 42%, and defects of the respiratory chain in 32% of the patients. Increased blood lactate levels were found in 79% of the patients. Needle electromyography revealed myopathic features in 74%, features of denervation in 16%, and w as normal in the remainder. Imaging studies showed cerebral atrophy in 58%, cerebellar atrophy in 16%, and hyperintense lesions of the white matter, pyramidal tract or extrapyramidal system in 16% of the cases. It is concluded that the clinical manifestations of ME can be very variable. Diagnosis of ME should be always considered in young patients presenting with CPEO and muscle weakness. In most cases, diagnosis can be made by a few selected investigations, while detection of genetic abnormalities may lead to the diagnosis in the remaining cases. (Mol Cell Biochem 174: 297–303, 1997)  相似文献   

14.
A series of mitochondrially inherited chloramphenicol-resistant (CAP-R) mutants were isolated in Chinese hamster cells. To determine whether the Chinese hamster CAP-R mutations were homologous to those isolated in mouse and human cell culture systems, we determined the nucleotide sequence of the region of the mitochondrial 16S rRNA gene spanning the peptidyl transferase-encoding region for eight CAP-R mutant lines in addition to the parental wildtype line. Three main conclusions are drawn from these studies. (1) Although the region of the gene encoding the peptidyl transferase domain is highly conserved relative to that of mice and rats, the contiguous sequences show less conservation. This sequence divergence not only includes the accumulation of single base pair replacements, but also the presence of small insertions or deletions. (2) For six of the CAP-R mutants, heteroplasmic single base pair changes were detected. These mapped to the same sites within the peptidyl transferase domain as the mutations found previously in mouse and human CAP-R mutants. (3) Two Chinese hamster CAP-R mutants, both with an unusual drug resistance phenotype, did not carry any mutations within the CAP-R peptidyl transferase domain. However, both carried a heteroplasmic mutation at the position corresponding to nucleotide 2505 of the mouse 16S rRNA gene, a site predicted to map within a stem/loop structure attached to this key domain of the ribosome. This is the first evidence for mitochondrial CAP-R mutations that map outside the peptidyl transferase region.  相似文献   

15.
Familial mediterranean fever (FMF) is an autosomal recessive autoinflammatory disorder (MIM# 249100), particularly common in populations of Mediterranean extraction. MEFV gene, responsible for FMF, encoding pyrin has recently been mapped to chromosome 16p13.3. In the present study, 3,341 unrelated patients with the suspicion of FMF in south-east part of Turkey between the years 2009 and 2013 were enrolled and genomic sequences of exon 2 and exon 10 of the MEFV gene were scanned for mutations by direct sequencing. We identified 43 different type of mutations and 9 of them were novel. DNA was amplified by PCR and subjected to direct sequencing for the detection of MEFV gene mutations. Among the 3,341 patients, 1,598 (47.8 %) were males and 1,743 (52.1 %) were females. The mutations were heterozygous in 806 (62.3 %), compound heterozygous in 188 (14.5 %), homozygous in 281 (21.8 %) and mutations had complex genotype in 17 (1.32 %) patients. No mutation was detected in 2,051 (61.4 %) patients. The most frequent mutations were M694V, E148Q, M680I(G/C) and V726A. We could not find any significant differences between the two common mutations according to the gender. Molecular diagnosis of MEFV is a useful tool in clinical practice, thus a future study relating to genotype/phenotype correlation of FMF in more and larger group in Turkish population involving the whole MEFV gene mutations is necessary.  相似文献   

16.
AIMS: To study the frequency of mutations in the Pax8 gene in a cohort of patients with congenital hypothyroidism (CH) in South West Germany. METHODS: A cohort of 95 patients with CH (60 females, 35 males), identified in our newborn screening program, was analyzed for mutations in Pax8 by single-stranded conformational polymorphism (SSCP) and DNA sequencing. RESULTS: SSCP analysis and direct sequencing of exon 3 of a female patient with a hypoplastic thyroid gland revealed two heterozygous mutations in Pax8 resulting in a transition of T to C (codon 34) and G to A (codon 35), replacing isoleucine by threonine and valine by isoleucine. Using allele-specific PCR we could demonstrate that both mutations are located on the same allele. Furthermore, a polymorphism was documented in 24 patients with thyroid hypoplasia in intron 6 at nucleotide +51 (CC, GG, CG). Comparison of the polymorphisms between hypothyroid patients and controls revealed no significant differences suggesting that this polymorphism does not play a role in the pathogenesis of hypothyroidism. No further mutations or polymorphisms were found in the cohort. CONCLUSIONS: These findings confirm the contribution of mutations in the Pax8 gene to the etiology of thyroid dysgenesis with a variable penetrance, but also demonstrate the rare overall incidence in CH.  相似文献   

17.
Our aim is to examine the impact of DICER1 mutations on the pathogenesis of pleuropulmonary blastoma(PPB) by evaluating the mutation frequency and investigating the family history of Chinese patients with PPB. The family histories of 12 children with PPB recruited consecutively were surveyed. Blood samples from patients and their first-degree relatives were tested for DICER1 mutations. Whole-genome sequencing of blood samples and formalin-fixed and paraffin-embedded(FFPE) tumor tissue was performed in one family with twins. Twelve patients with PPB included six type II and six type III cases. Seven of the12 patients harbored DICER1 mutations, six of which were frameshift or nonsense mutations. Another case carried a germline DICER1 mutation affecting the splice site. FFPE sample had a nonsense mutation in TDG and missense mutations in DICER1.In addition, two cases with DICER1 mutations were found to have lung cysts preceding the diagnosis of PPB. Furthermore, one patient had a family history remarkable for thyroid diseases. Our results indicate that the germline mutation frequency in Chinese patients with PPB is similar to the ones reported for patients from USA, UK, and Japan. Moreover, our study strongly suggests that investigating the family history and detecting germline DICER1 mutations might be of benefit to increasing awareness and improving the accuracy of the differential diagnosis of PPB from non-malignant lung cysts.  相似文献   

18.
Mitochondrial protein translation is a complex process performed within mitochondria by an apparatus composed of mitochondrial DNA (mtDNA)-encoded RNAs and nuclear DNA-encoded proteins. Although the latter by far outnumber the former, the vast majority of mitochondrial translation defects in humans have been associated with mutations in RNA-encoding mtDNA genes, whereas mutations in protein-encoding nuclear genes have been identified in a handful of cases. Genetic investigation involving patients with defective mitochondrial translation led us to the discovery of novel mutations in the mitochondrial elongation factor G1 (EFG1) in one affected baby and, for the first time, in the mitochondrial elongation factor Tu (EFTu) in another one. Both patients were affected by severe lactic acidosis and rapidly progressive, fatal encephalopathy. The EFG1-mutant patient had early-onset Leigh syndrome, whereas the EFTu-mutant patient had severe infantile macrocystic leukodystrophy with micropolygyria. Structural modeling enabled us to make predictions about the effects of the mutations at the molecular level. Yeast and mammalian cell systems proved the pathogenic role of the mutant alleles by functional complementation in vivo. Nuclear-gene abnormalities causing mitochondrial translation defects represent a new, potentially broad field of mitochondrial medicine. Investigation of these defects is important to expand the molecular characterization of mitochondrial disorders and also may contribute to the elucidation of the complex control mechanisms, which regulate this fundamental pathway of mtDNA homeostasis.  相似文献   

19.
Dilated cardiomyopathy (DCM) is widely accepted as a pluricausal or multifactorial disease. Because of the linkage between energy metabolism in the mitochondria and cardiac muscle contraction, it is reasonable to assume that mitochondrial abnormalities may be responsible for some forms of DCM. We analysed the whole mitochondrial genome in a series of 45 patients with DCM for alterations and compared the findings with those of 62 control subjects. A total of 458 sequence changes could be identified. These sequence changes were distributed among the whole mitochondrial DNA (mtDNA). An increased number of novel missense mutations could be detected nearly in all genes encoding for protein subunits in DCM patients. In genes coding for NADH dehydrogenase subunits the number of mtDNA mutations detected in patients with DCM was significantly increased (p < 0.05) compared with control subjects. Eight mutations were found to occur in conserved amino acids in the above species. The c.5973G > A (Ala-Trp) and the c.7042T > G (Val-Asp) mutations were located in highly conserved domains of the gene coding for cytochrome c oxidase subunit. Two tRNA mutations could be detected in the mtDNA of DCM patients alone. The T-C transition at nt 15,924 is connected with respiratory enzyme deficiency, mitochondrial myopathy, and cardiomyopathy. The c.16189T > C mutation in the D-loop region that is associated with susceptibility to DCM could be detected in 15.6% of patients as well as in 9.7% of controls. Thus, mutations altering the function of the enzyme subunits of the respiratory chain can be relevant for the pathogenesis of dilated cardiomyopathy.  相似文献   

20.
Deafness is a complex disorder that is affected by a high number of genes and environmental factors. Recently, enormous progress has been made in nonsyndromic deafness research, with the identification of 90 loci and 33 nuclear and 2 mitochondrial genes involved (http://dnalab-www.uia.ac.be/dnalab/hhh/). Mutations in the GJB3 gene, encoding the gap junction protein connexin 31 (Cx31), have been pathogenically linked to erythrokeratodermia variabilis and nonsyndromic autosomal recessive or dominant hereditary hearing impairment. To determine the contribution of the GJB3 gene to sporadic deafness, we analysed the GJB3 gene in 67 families with nonsyndromic hearing impairment. A single coding exon of the GJB3 gene was amplified from genomic DNA and then sequenced. Here we report on three amino acid changes: Y177D (c.529T > G), 49delK (c.1227C > T), and R32W (c.144-146delGAA). The latter substitution has been previously described, but its involvement in hearing impairment remains uncertain. We hypothesize that mutations in the GJB3 gene are an infrequent cause of nonsyndromic deafness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号