首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Naturally regenerated Scots pines (Pinus sylvestris L.), aged 28–30 years old, were grown in open-top chambers and subjected in situ to three ozone (O3) regimes, two concentrations of CO2, and a combination of O3 and CO2 treatments From 15 April to 15 September for two growing seasons (1994 and 1995). The gas exchanges of current-year and 1-year-old shoots were measured, along with the nitrogen content of needles. In order to investigate the factors underlying modifications in photosynthesis, five parameters linked to photosynthetic performance and three to stomatal conductance were determined. Elevated O3 concentrations led to a significant decline in the CO2 compensation point (Г*), maximum RuP2-saturated rate of carboxylation (Vcmax), maximum rate of electron transport (Jmax), maximum stomatal conductance (gsmax), and sensitivity of stomatal conductance to changes in leaf-to-air vapour pressure difference (?gs/?Dv) in both shoot-age classes. However, the effect of elevated O3 concentrations on the respiration rate in light (Rd) was dependent on shoot age. Elevated CO2(700 μmol mol?1) significantly decreased Jmax and gsmax but increased Rd in 1-year-old shoots and the ?gs/?Dv in both shoot-age classes. The interactive effects of O3 and CO2 on some key parameters (e.g. Vcmax and Jmax) were significant. This may be closely related to regulation of the maximum stomatal conductance and stomatal sensitivity induced by elevated CO2. As a consequence, the injury induced by O3 was reduced through decreased ozone uptake in 1-year-old shoots, but not in the current-year shoots. Compared to ambient O3 concentration, reduced O3 concentrations (charcoal-filtered air) did not lead to significant changes in any of the measured parameters. Compared to the control treatment, calculations showed that elevated O3 concentrations decreased the apparent quantum yield by 15% and by 18%, and the maximum rate of photosynthesis by 21% and by 29% in the current-year and 1-year-old shoots, respectively. Changes in the nitrogen content of needles resulting from the various treatments were associated with modifications in photosynthetic components.  相似文献   

3.
4.
Abstract: Growth in elevated CO2 led to an increase in biomass production per plant as a result of enhanced carbon uptake and lower rates of respiration, compared to ambient CO2-grown plants. No down-regulation of photosynthesis was found after six months of growth under elevated CO2. Photosynthetic rates at 15°C or 35 °C were also higher in elevated than in ambient CO2-grown plants, when measured at their respective CO2 growth condition. Stomata of elevated CO2-grown plants were less responsive to temperature as compared to ambient CO2 plants. The after effect of a heat-shock treatment (4 h at 45 °C in a chamber with 80% of relative humidity and 800–1000 tmol m-2 s-1 photon flux density) on Amax was less in elevated than in ambient CO2-grown plants. At the photochemical level, the negative effect of the heat-shock treatment was slightly more pronounced in ambient than in elevated CO2-grown plants. A greater tolerance to oxidative stress caused by high temperatures in elevated CO2-grown plants, in comparison to ambient CO2 plants, is suggested by the increase in superoxide dismutase activity, after 1 h at 45 °C, as well as its relatively high activity after 2 and 4 h of the heat shock in the elevated CO2-grown plants in contrast with the decrease to residual levels of superoxide dismutase activity in ambient CO2-grown plants immediately after 1 h at 45 °C. The observed increase in catalase after 1 h at 45 °C in both ambient and elevated CO2-grown plants, can be ascribed to the higher rates of photorespiration and respiration under this high temperature.  相似文献   

5.
In this study, we investigated the impact of elevated atmospheric CO2 (ambient + 350 μmol mol–1) on fine root production and respiration in Scots pine (Pinus sylvestris L.) seedlings. After six months exposure to elevated CO2, root production measured by root in-growth bags, showed significant increases in mean total root length and biomass, which were more than 100% greater compared to the ambient treatment. This increased root length may have lead to a more intensive soil exploration. Chemical analysis of the roots showed that the roots in the elevated treatment accumulated more starch and had a lower C/N-ratio. Specific root respiration rates were significantly higher in the elevated treatment and this was probably attributed to increased nitrogen concentrations in the roots. Rhizospheric respiration and soil CO2 efflux were also enhanced in the elevated treatment. These results clearly indicate that under elevated atmospheric CO2 root production and development in Scots pine seedlings is altered and respiratory carbon losses through the root system are increased.  相似文献   

6.
Scots pine ( Pinus sylvestris L.) trees were grown in open top chambers for three years under ambient and elevated CO2 concentrations. The trees were aged 3 y at the beginning of the CO2 exposure, and the effects of the treatment on total stem volume, stem wood biomass, wood quality and wood anatomy were examined at the end of the exposure. The elevated CO2 treatment lead to a 49% and 38% increase in stem biomass and stem wood volume, respectively. However, no significant effects of the elevated CO2 treatment on wood density were observed, neither when green wood density was estimated from stem biomass and stem volume, nor when oven-dry wood density was measured on small wood samples. Under elevated CO2 significantly wider growth rings were observed. The effect of elevated CO2 on growth ring width was primarily the result of an increase in earlywood width. Wood compression strength decreased under elevated CO2 conditions, which could be explained by significantly larger tracheids and the increased earlywood band, that has thinner walls and larger cavities. A significant decrease of the number of resin canals in the third growth ring was observed under the elevated treatment; this might indicate that trees produced and contained less resin, which has implications for disease and pest resistance. So, although wood volume yield in Scots pine increased significantly with elevated CO2 after three years of treatment, wood density remained unchanged, while wood strength decreased. Whilst wood volume and stem biomass production may increase in this major boreal forest tree species, wood quality and resin production might decrease under future elevated CO2 conditions.  相似文献   

7.
8.
Growth under elevated [CO2] promoted spring frost damage in field grown seedlings of snow gum ( Eucalyptus pauciflora Sieb. ex Spreng.), one of the most frost tolerant of eucalypts. Freezing began in the leaf midvein, consistent with it being a major site of frost damage under field conditions. The average ice nucleation temperature was higher in leaves grown under elevated [CO2] (– 5·7 °C versus – 4·3 °C), consistent with the greater incidence of frost damage in these leaves (34% versus 68% of leaves damaged). These results have major implications for agriculture, forestry and vegetation dynamics, as an increase in frost susceptibility may reduce potential gains in productivity from CO2 fertilization and may affect predictions of vegetation change based on increasing temperature.  相似文献   

9.
10.
Northern red oak in the western Lake States area of the USA exists on the most xeric edge of its distribution range. Future climate-change scenarios for this area predict decreased water availability along with increased atmospheric CO2. We examined recent photosynthate distribution and growth in seedlings as a function of CO2 mole fraction (400, 530 and 700 μmol mol−1 CO2), water regime (well watered and water-stressed), and ontogenic stage. Water stress effects on growth were largely offset by elevated CO2.
Water stress increased root mass ratio without concurrently increasing allocation of recent photosynthate to the roots. However, apparent sink strength of water-stressed seedlings at the completion of the third growth stage tended to be greater than that of well watered seedlings, as shown by continued high export, which may contribute carbon reserves to support preferential root growth under water-stressed conditions.
Elevated CO2 decreased apparent shoot sink strength associated with the rapid expansion of the third flush. Carbon resources for the observed enhanced growth under elevated CO2 could be provided by enhanced photosynthetic rate over an increased leaf area (Anderson & Tomlinson, 1998, this volume).
Increased sink strength of LG seedlings under water-stressed conditions, together with decreased apparent shoot sink strength associated with growth in elevated CO2 provide mechanisms for offsetting water stress effects by growth in elevated CO2.
Careful control of ontogeny was necessary to discern these changes and provides further evidence of the need for such careful control in mechanistic studies.  相似文献   

11.
Effects of elevated CO2 on the foraging behavior of cotton bollworm Helicoverpa arrnigera Hübner reared on milky grains of spring wheat grown in ambient, 550μL/L and 750μL/L CO2 concentration atmospheres in open-top chambers (OTC) were studied. The results indicated that: (i) elevated CO2 significantly affected both the type and amount of food eaten by H.arrnigera reared on milky grains of ambient CO2-grown wheat were significant higher than those for bollworm larvae reared on wheat grains grown in 550 and 750μL/L CO2 atmospheres; (ii) when bollworm larvae were reared on mixed milky grains from different CO2-grown wheat (food-choice condition), larval duration increased significantly-pupal weight, adult longevity, and fecundity decreased significantly, comparing with those reared on milky grains of ambient CO2-grown wheat, 550μL/L CO2-grown wheat and 750μL/L CO2-grown wheat respectively; (iii) significant decreases in the contents of fructose and gross protein (GP) and significant increases in the contents of glucose, amylose, total saccharides (TSC), TSC: GP ratio, free amino acids and soluble protein in the wheat grains with CO2 rising; (iv) and selected-foraging amount/food-choice index of cotton bollworm H.armigera were significantly positive correlated with the contents of fructose and GP of wheat grains, but they had significantly negative relationships with the contents of glucose, amylose, TSC and TSC: GP ratio of wheat grains.  相似文献   

12.
It is estimated that more than 100 geothermal CO2 springs exist in central-western Italy. Eight springs were selected in which the atmospheric CO2 concentrations were consistently observed to be above the current atmospheric average of 354μmol mol-1. CO2 concentration measurements at some of the springs are reported. The springs are described, and their major topographic and vegetational features are reported. Preliminary observations made on natural vegetation growing around the gas vents are then illustrated. An azonal pattern of vegetation distribution occurs around every CO2 spring regardless of soil type and phytoclimatic areas. This is composed of pioneer populations of a Northern Eurasiatic species (Agrostis canina L.) which is often associated with Scirpus lacustris L. The potential of these sites for studying the long-term response of vegetation to rising atmospheric CO2 concentrations is discussed.  相似文献   

13.
Young Scots pine trees naturally established at a pine heath were exposed to two concentrations of CO2 (ambient and doubled ambient) and two O3 regimes (ambient and doubled ambient) and their combination in open-top field chambers during growing seasons 1994, 1995 and 1996 (late May to 15 September). Filtered ozone treatment and chamberless control trees were also included in the treatment comparisons. Root ingrowth cores were inserted to the undisturbed soil below the branch projection of each tree at the beginning of the fumigation period in 1994 and were harvested at the end of the fumigation periods in 1995 and 1996. Root biomasses were determined from different soil layers in the ingrowth cores, and the infection levels of different mycorrhizal types were calculated. Elevated O3 and CO2 did not have significant effects on the biomass production of Scots pine coarse (Ø > 2 mm) or fine roots (Ø < 2 mm) and roots of grasses and dwarf shrubs. Elevated O3 caused a transient stimulation, observable in 1995, in the proportion of tuber-like mycorrhizas, total mycorrhizas and total short roots but this stimulation disappeared during the last study year. Elevated CO2 did not enhance carbon allocation to root growth or mycorrhiza formation, although a diminishing trend in the mycorrhiza formation was observed. In the combination treatment increased CO2 inhibited the transient stimulating effect of ozone, and a significant increase of old mycorrhizas was observed. Our conclusion is that doubled CO2 is not able to increase carbon allocation to growth of fine roots or mycorrhizas in nutrient poor forest sites and realistically elevated ozone does not cause a measurable limitation to roots within a period of three exposure years.  相似文献   

14.
In the present open‐top chamber experiment, two silver birch clones (Betula pendula Roth, clone 4 and clone 80) were exposed to elevated levels of carbon dioxide (CO2) and ozone (O3), singly and in combination, and soil CO2 efflux was measured 14 times during three consecutive growing seasons (1999–2001). In the beginning of the experiment, all experimental trees were 7 years old and during the experiment the trees were growing in sandy field soil and fertilized regularly. In general, elevated O3 caused soil CO2 efflux stimulation during most measurement days and this stimulation enhanced towards the end of the experiment. The overall soil respiration response to CO2 was dependent on the genotype, as the soil CO2 efflux below clone 80 trees was enhanced and below clone 4 trees was decreased under elevated CO2 treatments. Like the O3 impact, this clonal difference in soil respiration response to CO2 increased as the experiment progressed. Although the O3 impact did not differ significantly between clones, a significant time × clone × CO2× O3 interaction revealed that the O3‐induced stimulation of soil respiration was counteracted by elevated CO2 in clone 4 on most measurement days, whereas in clone 80, the effect of elevated CO2 and O3 in combination was almost constantly additive during the 3‐year experiment. Altogether, the root or above‐ground biomass results were only partly parallel with the observed soil CO2 efflux responses. In conclusion, our data show that O3 impacts may appear first in the below‐ground processes and that relatively long‐term O3 exposure had a cumulative effect on soil CO2 efflux. Although the soil respiration response to elevated CO2 depended on the tree genotype as a result of which the O3 stress response might vary considerably within a single tree species under elevated CO2, the present experiment nonetheless indicates that O3 stress is a significant factor affecting the carbon cycling in northern forest ecosystems.  相似文献   

15.
An inexpensive, potentially mobile field exposure system is described which may be easily constructed by a small workshop. It may be operated as an open-top with a frustrum or covered with a polycarbonate ‘lid’. The system is cost-effective for CO2 exposure work because the small size allows provision of CO2-enriched atmospheres over prolonged periods at relatively low cost. A preliminary assessment of the chambers has been made and concentrations can be maintained at ±6% for a target atmosphere of 680 cm3 m?3 CO2 under normal operating conditions. Other chamber environmental conditions are reported.  相似文献   

16.
Seedlings of Vicia faba L. were grown in open-top growth chambers at present (P=350μmol?1) and at elevated (E=700μmol mol?1) atmospheric CO2 concentration. The effects of CO2 enrichment on the first phase of growth after germination were examined over 45 d. There were no positive effects of CO2 enrichment on growth of the seedlings during this early phase. No differences were observed in leaf area or in total dry weight. No differences were found in morphology or anatomy of the leaves. The numbers of stomatal and epidermal cells, thickness of leaf, of epidermis and of mesophyll cell-layers were unaffected by CO2 enrichment. Also, no differences were observed in leaf concentrations of chlorophyll, reducing carbohydrates or starch. These results contrast markedly with results from similar experiments on poplar hybrids and Phaseolus vulgaris obtained in the same growth facility. It seems that the intitial growth is under internal control such that the atmospheric CO2 concentration has no effects. The lack of response in this case may be attributed to the presence and longevity of the large cotyledons which provided available substrate for growth.  相似文献   

17.
Decomposition of Quercus myrtifolia leaf litter in a Florida scrub oak community was followed for 3 years in two separate experiments. In the first experiment, we examined the effects CO2 and herbivore damage on litter quality and subsequent decomposition. Undamaged, chewed and mined litter generated under ambient and elevated (ambient+350 ppm V) CO2 was allowed to decompose under ambient conditions for 3 years. Initial litter chemistry indicated that CO2 levels had minor effects on litter quality. Litter damaged by leaf miners had higher initial concentrations of condensed tannins and nitrogen (N) and lower concentrations of hemicellulose and C : N ratios compared with undamaged and chewed litter. Despite variation in litter quality associated with CO2, herbivory, and their interaction, there was no subsequent effect on rates of decomposition under ambient atmospheric conditions. In the second experiment, we examined the effects of source (ambient and elevated) of litter and decomposition site (ambient and elevated) on litter decomposition and N dynamics. Litter was not separated by damage type. The litter from both elevated and ambient CO2 was then decomposed in both elevated and ambient CO2 chambers. Initial litter chemistry indicated that concentrations of carbon (C), hemicellulose, and lignin were higher in litter from elevated than ambient CO2 chambers. Despite differences in C and fiber concentrations, litter from ambient and elevated CO2 decomposed at comparable rates. However, the atmosphere in which the decomposition took place resulted in significant differences in rates of decomposition. Litter decomposing under elevated CO2 decomposed more rapidly than litter under ambient CO2, and exhibited higher rates of mineral N accumulation. The results suggest that the atmospheric conditions during the decomposition process have a greater impact on rates of decomposition and N cycling than do the atmospheric conditions under which the foliage was produced.  相似文献   

18.
Elevated CO2 and conifer roots: effects on growth, life span and turnover   总被引:5,自引:4,他引:1  
Elevated CO2 increases root growth and fine (diam. 2 mm) root growth across a range of species and experimental conditions. However, there is no clear evidence that elevated CO2 changes the proportion of C allocated to root biomass, measured as either the root:shoot ratio or the fine root:needle ratio. Elevated CO2 tends to increase mycorrhizal infection, colonization and the amount of extramatrical hyphae, supporting their key role in aiding the plant to more intensively exploit soil resources, providing a route for increased C sequestration. Only two studies have determined the effects of elevated CO2 on conifer fine-root life span, and there is no clear trend. Elevated CO2 increases the absolute fine-root turnover rates; however, the standing crop root biomass is also greater, and the effect of elevated CO2 on relative turnover rates (turnover:biomass) ranges from an increase to a decrease. At the ecosystem level these changes could lead to increased C storage in roots. Increased fine-root production coupled with increased absolute turnover rates could also lead to increases in soil organic C as greater amounts of fine roots die and decompose. Although CO2 can stimulate fine-root growth, it is not known if this stimulation persists over time. Modeling studies suggest that a doubling of the atmospheric CO2 concentration initially increases biomass, but this stimulation declines with the response to elevated CO2 because increases in assimilation are not matched by increases in nutrient supply.  相似文献   

19.
We report the results of a 2‐year study of effects of the elevated (current ambient plus 350 μmol CO2 mol?1) atmospheric CO2 concentration (Ca) on net ecosystem CO2 exchange (NEE) of a scrub–oak ecosystem. The measurements were made in open‐top chambers (OTCs) modified to function as open gas‐exchange systems. The OTCs enclosed samples of the ecosystem (ca. 10 m2 surface area) that had regenerated after a fire, 5 years before, in either current ambient or elevated Ca. Throughout the study, elevated Ca increased maximum NEE (NEEmax) and the apparent quantum yield of the NEE (φNEE) during the photoperiod. The magnitude of the stimulation of NEEmax, expressed per unit ground area, was seasonal, rising from 50% in the winter to 180% in the summer. The key to this stimulation was effects of elevated Ca, and their interaction with the seasonal changes in the environment, on ecosystem leaf area index, photosynthesis and respiration. The separation of these factors was difficult. When expressed per unit leaf area the stimulation of the NEEmax ranged from 7% to 60%, with the increase being dependent on increasing soil water content (Wsoil). At night, the CO2 effluxes from the ecosystem (NEEnight) were on an average 39% higher in elevated Ca. However, the increase varied between 6% and 64%, and had no clear seasonality. The partitioning of NEEnight into its belowground (Rbelow) and aboveground (Rabove) components was carried out in the winter only. A 35% and 27% stimulation of NEEnight in December 1999 and 2000, respectively, was largely due to a 26% and 28% stimulation of Rbelow in the respective periods, because Rbelow constituted ca. 87% of NEEnight. The 37% and 42% stimulation of Rabove in December 1999 and 2000, respectively, was less than the 65% and 80% stimulation of the aboveground biomass by elevated Ca at these times. An increase in the relative amount of the aboveground biomass in woody tissue, combined with a decrease in the specific rate of stem respiration of the dominant species Quercus myrtifolia in elevated Ca, was responsible for this effect. Throughout this study, elevated Ca had a greater effect on carbon uptake than on carbon loss, in terms of both the absolute flux and relative stimulation. Consequently, for this scrub–oak ecosystem carbon sequestration was greater in the elevated Ca during this 2‐year study period.  相似文献   

20.
Atmospheric CO2 (Ca) concentration has increased significantly during the last 20 000 years, and is projected to double this century. Despite the importance of belowground processes in the global carbon cycle, community‐level and single species root responses to rising Ca are not well understood. We measured net community root biomass over 3 years using ingrowth cores in a natural C3–C4 grassland exposed to a gradient of Ca from preglacial to future levels (230–550 μmol mol?1). Root windows and minirhizotron tubes were installed below naturally occurring stands of the C4 perennial grass Bothriochloa ischaemum and its roots were measured for respiration, carbohydrate concentration, specific root length (SRL), production, and lifespan over 2 years. Community root biomass increased significantly (P<0.05) with Ca over initial conditions, with linear or curvilinear responses depending on sample date. In contrast, B. ischaemum produced significantly more roots at subambient than elevated Ca in minirhizotrons. The lifespan of roots with five or more neighboring roots in minirhizotron windows decreased significantly at high Ca, suggesting that after dense root growth depletes soil resource patches, plants with carbon surpluses readily shed these roots. Root respiration in B. ischaemum showed a curvilinear response to Ca under moist conditions in June 2000, with the lowest rates at Ca<300 μmol mol?1 and peak activity at 450 μmol mol?1 in a quadratic model. B. ischaemum roots at subambient Ca had higher SRLs and slightly higher carbohydrate concentrations than those at higher Ca, which may be related to drier soils at low Ca. Our data emphasize that belowground responses of plant communities to Ca can be quite different from those of the individual species, and suggest that complex interactions between and among roots and their immediate soil environment influence the responses of root physiology and lifespan to changing Ca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号