首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bamboo is one of the fastest growing plants in the world, but their shoot buds develop very slowly. Information about the sugar storage and metabolism during the shoot growth is lacking. In the present study, we determined the activity of sucrose and starch metabolizing enzymes during the developmental period of Fargesia yunnanensis from shoot buds to the young culms that have achieved their full height. The soluble sugars and starch contents were also determined and analyzed in shoot buds and shoots at different developmental stages. The results showed that there were higher sucrose contents in shoot buds than shoots, which coincides with the sweeter taste of shoot buds. As the shoot buds sprouted out of the ground, the starch and sucrose were depleted sharply. Coupled with this, the activity of soluble acid invertase (SAI), cell wall-bound invertase (CWI), sucrose synthase at cleavage direction (SUSYC) and starch phosphorylase (STP) increased significantly in the rapidly elongating internodes. These enzymes dominated the rapid elongation of internodes. The activities of SAI, CWI, SUSYC and STP and adenosine diphosphate-glucose pyrophosphorylase were higher as compared to other enzymes in the shoot buds, but were far lower than those in the developing shoots. The slow growth of shoot buds was correlated with the low activity of these enzymes. These results complement our understanding of the physiological differences between shoot buds and elongating shoots and ascertain the physiological mechanism for the rapid growth of bamboo shoots.  相似文献   

2.
The synthesis of cell wall polysaccharides is highly active in rapidly growing bamboo shoots. We cloned a set of BoCesA cDNAs that encode cellulose synthase from bamboo (Bambusa oldhamii) and investigated the expression patterns of the BoCesA2, BoCesA5, BoCesA6 and BoCesA7 genes. The four BoCesA genes were differentially expressed in the different parts of growing bamboo shoots, in various organs, and in multiple shoots that were cultured in vitro. They were down-regulated by α-naphthaleneacetic acid and differentially affected by thidiazuron in the multiple shoots. In situ RT-PCR analyses demonstrated that BoCesA2, BoCesA5, BoCesA6, and BoCesA7 mRNAs were present throughout the base and the internode regions of the etiolated shoots that emerged from pseudorhizomes, and in the internode regions of the juvenile branch shoots that emerged from nodes of mature bamboo culms; however, the expression of the four genes in the lignified internode of the branch shoot was predominantly detected in the center of the vascular bundles. Our results for cDNA cloning, expression analyses, and phylogenetic analysis suggest that the 10 BoCesA genes cloned from the etiolated bamboo shoots participate in cellulose synthesis in the primary cell walls of the growing bamboo, and that at least three additional BoCesA genes involved in cellulose synthesis in the secondary walls may be present in the bamboo genome. The expressions of BoCesA genes may be under fine control in response to the various developmental stages and physiological conditions of bamboo.  相似文献   

3.
4.
We describe the use of a synthetic primer to select a cDNA recombinant clone containing H5 coding sequences. The strategy used was as follows: 1. Prepare oligo(dT) cellulose-bound mRNA from chicken reticulocytes and select 11S-18S material from sucrose gradients. 2. Use this RNA fraction both to prepare a cDNA library and as a template for H5-specific cDNA synthesis using a synthetic primer. 3. Screen out most globin cDNA recombinants with oligo(dT)-primed globin cDNA. 4. Search for H5 recombinants using H5 specific cDNA and verify the identity by DNA sequencing. Our screening suggests an H5 mRNA abundance of about two parts per thousand in chicken reticulocyte poly(A)-containing RNA. The isolation of an H5 cDNA recombinant clone is an initial step in the study of H5 genes and their relationship to H1 and core histone genes.  相似文献   

5.
Yeh SH  Lin CS  Wu FH  Wang AY 《Planta》2011,234(6):1179-1189
A cDNA, BohLOL1, encoding a protein containing three zf-LSD1 (zinc finger-Lesions Simulating Disease resistance 1) domains was cloned from growing bamboo (Bambusa oldhamii) shoots. A phylogenetic analysis revealed that BohLOL1 is a homolog of Arabidopsis LSD1 and LOL1 (LSD-one-like 1), which have been reported to act antagonistically in controlling cell death via the maintenance of reactive oxygen species homeostasis. The BohLOL1 gene was differentially expressed in various bamboo shoot tissues and was upregulated in shoots with higher rates of culm elongation. The expression level of this gene in multiple shoots of bamboo, which were cultured in vitro, was also upregulated by auxins, cytokinins, pathogen infection, 2,6-dichloroisonicotinic acid (a functional analog of salicylic acid), and hydrogen peroxide. The results suggest that BohLOL1 participates in bamboo growth and in the response to biotic stress. The DNA-binding assays and subcellular localization studies demonstrated that BohLOL1 is a nuclear DNA-binding protein. BohLOL1 might function through protein-DNA interactions and thus affect the expression of its target genes. The results of this study extend the role of plant LSD1 and LOL1 proteins from the regulation of cell death to cell growth. The growth-dependent up-regulation of BohLOL1 expression, which uniquely occurs in growing bamboo, might be one of the critical factors that contribute to the rapid growth of this remarkable plant.  相似文献   

6.
7.
Curatti L  Flores E  Salerno G 《FEBS letters》2002,513(2-3):175-178
Sucrose synthase (SuS) expression was studied in the filamentous, nitrogen-fixing cyanobacterium Anabaena sp. PCC 7119. SuS activity, SusA polypeptide, and susA mRNA levels were lower in cells cultured diazotrophically than in the presence of combined nitrogen. An insertional susA mutant presented a dramatic increase in sucrose levels, whereas the disaccharide was not detectable in a susA overexpressing strain, indicating that SusA is involved in the cleavage of sucrose in vivo. Diazotrophic growth was impaired in the susA overexpressing strain, suggesting a role for sucrose in diazotrophic metabolism and the involvement of SusA in the control of carbon flux in the N(2)-fixing filament.  相似文献   

8.
9.
糙花少穗竹是福建优良乡土竹种,笋材两用,其竹鞭、竹笋、幼竹生长节律与单轴散生竹毛竹相似。竹鞭垂直分布多数在土层20 cm范围,4~15 m长的鞭系占78.1%,发笋期较集中在3月中下旬,单个笋重为盛期笋> 初期笋> 末期笋。从笋出土到幼竹高生长停止,可分为初期、上升期、盛期和末期。但竹鞭垂直分布比毛竹浅,出笋期比毛竹早,且出笋没有明显的大小年,具有较高的开发利用价值。在自然分布区可根据其生物学特性、竹鞭生长与发笋成竹规律采取相应技术措施,垦复改造荒芜野生竹林,2~3年即可郁闭成林。  相似文献   

10.
11.
Anthocyanin synthesis and chlorophyll degradation in regenerated torenia (Torenia fournieri Linden ex Fourn.) shoots induced by osmotic stress with 7% sucrose were examined to identify the genes regulating the underlying molecular mechanism. To achieve this, suppression subtractive hybridization was performed to enrich the cDNAs of genes induced in anthocyanin-synthesizing and chlorophyll-degrading regenerated shoots. The nucleotide sequences of 1,388 random cDNAs were determined, and these were used in the preparation of cDNA microarrays for high-throughput screening. From 1,056 cDNAs analyzed in the microarrays, 116 nonredundant genes were identified, which were up regulated by 7% sucrose to induce anthocyanin synthesis and chlorophyll degradation in regenerated shoots. Of these, eight genes were selected and RNAi transformants prepared, six of which exhibited anthocyanin synthesis inhibition and/or chlorophyll degradation in their leaf discs. Notably, the RNAi transformants of the glucose 6-phosphate/phosphate translocator gene displayed inhibition both of anthocyanin synthesis and chlorophyll degradation in both leaf discs and regenerated shoots. There was also less accumulation of anthocyanin in the petals, and flowering time was shortened. The genes we identified as being up-regulated in the regenerated torenia shoots may help further elucidate the molecular mechanism underlying the induction of anthocyanin synthesis and chlorophyll degradation.  相似文献   

12.
Seven-day-old seedlings obtained from seeds primed with mannitol (4%)and water showed three to four fold more growth with respect to root and shootlength in comparison with seedlings obtained from non-primed seeds. Seedlingswere grown under water deficit stress conditions created by 15% polyethyleneglycol (PEG) 6000 in the medium. Priming of chickpea seeds with NaCl and PEGwasnot effective in increasing seedling growth under these water deficit stressconditions. The activities of amylase, invertases (acid and alkaline), sucrosesynthase (SS) and sucrose phosphate synthase (SPS) were higher in shoots ofprimed seedlings. An increase in the activities of SS, and both the acid andalkaline invertases was also observed in roots of primed seedlings. The twofoldincrease in specific activity of sucrose phosphate synthase was observed incotyledons of primed seedlings. The higher amylase activity in shoots of primedseedlings enhanced the rapid hydrolysis of transitory starch of the shootleading to more availability of glucose for shoot growth and this was confirmedby the low level of starch in shoots of primed seedlings.  相似文献   

13.
<正>竹笋是大熊猫(Ailuropoda melanoleuca)最为喜爱的天然食物。竹笋相对于竹叶和竹茎含水量更丰富,粗纤维含量更低,适口性更好;大宗养分、微量元素、必需氨基酸等含量丰富(周昂等,1996;唐平等,1997;周材权等,1997),而丹宁等具有微毒性的次生代谢物含量却最少(赵晓红等,2001),更利于大熊猫对生活必需营养的吸收  相似文献   

14.
15.
对金佛山国家级自然保护区内3个不同类型群落(落叶阔叶林、常绿落叶阔叶混交林、常绿阔叶林)下紫耳箭竹(Fargesia decurvata J. L. Lu)幼笋的生长发育进行研究。结果显示:(1)落叶阔叶林和常绿落叶阔叶混交林下的紫耳箭竹出笋期早而长,历时110 d,出笋量大,出笋率高;常绿阔叶林下的出笋期晚而短,历时88 d,出笋量少,出笋率低;常绿落叶阔叶混交林中出笋量最大。(2)出笋期分为3个阶段:初期、盛期和末期,各群落中的紫耳箭竹进入每个时期的时间有所差异,常绿落叶阔叶混交林中最早进入出笋盛期,落叶阔叶林次之,常绿阔叶林最迟。出笋盛期也是退笋的高峰期,退笋率的大小为:常绿落叶阔叶混交林落叶阔叶林常绿阔叶林。(3)同一群落冠层环境下,紫耳箭竹不同时期出土的幼笋地径无显著差异。在落叶阔叶林和常绿落叶阔叶混交林林冠环境中,各时期出土的幼笋地径间无显著差异,但均显著大于常绿阔叶林(P 0.05)。(4)紫耳箭竹幼笋出土后80 d左右完成高生长过程,且符合Logistic方程,呈"慢-快-慢"的生长趋势。高生长速率为:常绿落叶阔叶混交林落叶阔叶林常绿阔叶林,且差异显著(P 0.05)。(5)紫耳箭竹的克隆繁殖与分株密度间有密切关系。随着分株密度的增加,出笋数量增加,成竹数量降低。本研究表明不同群落冠层环境下紫耳箭竹生长发育存在显著差异,在常绿落叶阔叶混交林中发育最好,常绿阔叶林中发育最差,种群密度对竹类的更新发展起重要调节作用。  相似文献   

16.
蔗糖是植物体内碳水化合物长距离转运的主要( 甚至唯一) 形式, 为植物生长发育提供碳架与能量。蔗糖转运蛋白(sucrose transporter, SUT)负责蔗糖的跨膜运输, 在韧皮部介导的源-库蔗糖运输, 以及库组织的蔗糖供给中起关键作用。自从菠菜中克隆到第一个SUT基因以来, 已先后有多个SUT基因的cDNA得到克隆与功能分析, 涉及34种双子叶与单子叶植物。每种植物都有一个中等规模 的SUT基因家族, 其不同成员之间具有较高的氨基酸序列同源性, 但在蔗糖吸收的动力学特性、转运底物的特异性和表达谱等方面存在差异。本文系统介绍国内外(主要是国外)在植物SUT基因的克隆、分类与进化、细胞定位与功能, 以及研究方法等方面的研究进展, 并简要介绍我们在橡胶树SUT基因研究上的初步结果。  相似文献   

17.
植物蔗糖转运蛋白的基因与功能   总被引:16,自引:0,他引:16  
蔗糖是植物体内碳水化合物长距离转运的主要(甚至唯一)形式,为植物生长发育提供碳架与能量。蔗糖转运蛋白(sucrose transporter,SUT)负责蔗糖的跨膜运输,在韧皮部介导的源-库蔗糖运输,以及库组织的蔗糖供给中起关键作用。自从菠菜中克隆到第一个SUT基因以来,已先后有多个SUT基因的cDNA得到克隆与功能分析,涉及34种双子叶与单子叶植物。每种植物都有一个中等规模的SUT基因家族,其不同成员之间具有较高的氨基酸序列同源性,但在蔗糖吸收的动力学特性、转运底物的特异性和表达谱等方面存在差异。本文系统介绍国内外(主要是国外)在植物SUT基因的克隆、分类与进化、细胞定位与功能,以及研究方法等方面的研究进展,并简要介绍我们在橡胶树SUT基因研究上的初步结果。  相似文献   

18.
慈竹(Bambusa emeiensis)纤维素含量丰富,是较好的造纸原料,但竹茎中木质素影响着制浆生产及纸浆质量。目前,对慈竹木质素生物合成机制所知甚少,这限制了遗传调控竹木质素的研究。本文以拟南芥、水稻等植物的已知木质素基因作为查询序列,通过BLASTp和系统进化分析,从10、50、100和150 cm慈竹笋转录组数据中筛选到351个木质素生物合成相关Unigenes,包括51个LAC,37个4CL、26个PAL、34个CCR和25个CAD相关转录子,其数量高于其他已报道的竹类植物。转录丰度和定量基因表达分析发现16个木质素基因,包括2个PAL、5个CCR、3个4CL、2个CADH2和4个LAC,随着笋发育而表达上调,表明其可能与发育性木质素积累相关。  相似文献   

19.
20.
施肥对毛竹(Phyllostachys pubescens)竹笋生长的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
 毛竹(Phyllostachys pubescens)为具有重要经济价值的高大乔木状竹种。本文通过完全随机化区组施肥试验,探讨了施肥量及施肥方式对毛竹竹笋生长的效应。结果表明:在毛竹林内施肥可使出笋数和活笋数提高3倍以上,但对竹笋(幼竹)的个体大小却几乎没有改良效果。竹笋的存活率基本上是恒定的,不随施肥量的改变而改变。当地下茎(竹鞭)穿越养分分布不均的环境时,竹笋能有选择地大量长于养分丰富的地段而避开养分贫乏的地段。另一方面,跨越于有利地段和不利地段的竹(笋)株间有明显的生理整合作用,而且这种生理整合在显著增加了长在不利地段的竹笋数(高收益)的同时,基本上没有减少长在有利地段的竹笋数(低耗费)。9m×9m的样方已足以观测到显著的施肥效果,这比传统的毛竹研究中使用的1亩的样方面积效率要高。在竹林培育方面,不均匀施肥如带状或点状施肥要比均匀施肥效率高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号