首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phagosome is a central mediator of both the homeostatic and microbicidal functions of a macrophage. Following phagocytosis, Mycobacterium tuberculosis (Mtb) is able to establish infection through arresting phagosome maturation and avoiding the consequences of delivery to the lysosome. The infection of a macrophage by Mtb leads to marked changes in the behaviour of both the macrophage and the surrounding tissue as the bacterium modulates its environment to promote its survival. In this study, we use functional physiological assays to probe the biology of the phagosomal network in Mtb‐infected macrophages. The resulting data demonstrate that Mtb modifies phagosomal function in a TLR2/TLR4‐dependent manner, and that most of these modifications are consistent with an increase in the activation status of the cell. Specifically, superoxide burst is enhanced and lipolytic activity is decreased upon infection. There are some species‐ or cell type‐specific differences between human and murine macrophages in the rates of acidification and the degree of proteolysis. However, the most significant modification is the marked reduction in intra‐phagosomal lipolysis because this correlates with the marked increase in the retention of host lipids in the infected macrophage, which provides a potential source of nutrients that can be accessed by Mtb.  相似文献   

2.
Efficient killing of mycobacteria by host macrophages depends on a number of mechanisms including production of reactive oxygen species (ROS) by the phagosomal NADPH oxidase, NOX2. Survival of pathogenic mycobacteria in the phagosome relies on the ability to control maturation of the phagosome such that it is biologically and chemically altered in comparison to phagosomes containing non‐pathogenic bacteria. In this study we show that the action of NOX2 to produce ROS in the mycobacterial phagosome is paradoxically dependent on a bacterial potassium transporter. We show that a Mycobacterium bovis BCG mutant (BCGΔkef), deficient in a Kef‐type K+ transporter, exhibits an increased intracellular survival phenotype in resting and activated macrophages, yet retains the ability to inhibit phagosome acidification, and does not show increased resistance to acidic conditions or ROS. Addition of a ROS scavenger replicates this phenotype in macrophages infected with wild‐type BCG, and the production of ROS by macrophages infected with BCGΔkef is substantially decreased compared with those infected with wild‐type BCG. Our results suggest that increased intracellular survival of BCGΔkef is mediated by inducing a decreased macrophage oxidative burst, and are consistent with Kef acting to alter the ionic contents of the phagosome and promoting NOX2 production of ROS.  相似文献   

3.
The potent human pathogen Mycobacterium tuberculosis persists in macrophages within a specialized, immature phagosome by interfering with the pathway of phagolysosome biogenesis. The molecular mechanisms underlying this process remain to be fully elucidated. Here, using four-dimensional microscopy, we detected on model phagosomes, which normally mature into phagolysosomes, the existence of cyclical waves of phosphatidylinositol 3-phosphate (PI3P), a membrane trafficking regulatory lipid essential for phagosomal acquisition of lysosomal characteristics. We show that mycobacteria interfere with the dynamics of PI3P on phagosomal organelles by altering the timing and characteristics of the PI3P waves on phagosomes. The default program of cyclical PI3P waves on model phagosomes is composed of an initial stage (phase I), represented by a strong PI3P burst occurring only upon the completion of phagosome formation, and a subsequent stage (phase II) of recurring PI3P waves on maturing phagosomes with the average periodicity of 20 min. Mycobacteria alter this program in two ways: (i) by inducing, in a cholesterol-dependent fashion, a neophase I* of premature PI3P production, coinciding with the process of mycobacterial entry into the macrophage, and (ii) by inhibiting the calmodulin-dependent phase II responsible for the acquisition of lysosomal characteristics. We conclude that the default pathway of phagosomal maturation into the phagolysosome includes temporally organized cyclical waves of PI3P on phagosomal membranes and that this process is targeted for reprogramming by mycobacteria as they prevent phagolysosome formation.  相似文献   

4.
Upon entry of Francisella tularensis to macrophages, the Francisella‐containing phagosome (FCP) is trafficked into an acidified late endosome‐like phagosome with limited fusion to the lysosomes followed by rapid escape into the cytosol where the organism replicates. Although the Francisella Pathogenicity Island (FPI), which encodes a type VI‐like secretion apparatus, is required for modulation of phagosome biogenesis and escape into the cytosol, the mechanisms involved are not known. To decipher the molecular bases of modulation of biogenesis of the FCP and bacterial escape into the macrophage cytosol, we have screened a comprehensive mutant library of F. tularensis ssp. novicida for their defect in proliferation within human macrophages, followed by characterization of modulation of phagosome biogenesis and bacterial escape into the cytosol. Our data show that at least 202 genes are required for intracellular proliferation within macrophages. Among the 125 most defective mutants in intracellular proliferation, we show that the FCP of at least 91 mutants colocalize persistently with the late endosomal/lysosomal marker LAMP‐1 and fail to escape into the cytosol, as determined by fluorescence‐based phagosome integrity assays and transmission electron microscopy. At least 34 genes are required for proliferation within the cytosol but do not play a detectable role in modulation of phagosome biogenesis and bacterial escape into the cytosol. Our data indicate a tremendous adaptation and metabolic reprogramming by F. tularensis to adjust to the micro‐environmental and nutritional cues within the FCP, and these adjustments play essential roles in modulation of phagosome biogenesis and escape into the cytosol of macrophages as well as proliferation in the cytosol. The plethora of the networks of genes that orchestrate F. tularensis‐mediated modulation of phagosome biogenesis, phagosomal escape and bacterial proliferation within the cytosol is novel, complex and involves an unusually large portion of the genome of an intracellular pathogen.  相似文献   

5.
6.
It is commonly assumed that all phagosomes have identical molecular composition. This assumption has remained largely unchallenged due to a paucity of methods to distinguish individual phagosomes. We devised an assay that extends the utility of nitro blue tetrazolium for detection and quantification of NAPDH oxidase (NOX) activity in individual phagosomes. Implementation of this assay revealed that in murine macrophages there is heterogeneity in the ability of individual phagosomes to generate superoxide, both between and within cells. To elucidate the molecular basis of the variability in NOX activation, we employed genetically encoded fluorescent biosensors to evaluate the uniformity in the distribution of phospholipid mediators of the oxidative response. Despite variability in superoxide generation, the distribution of phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3-phosphate, and phosphatidic acid was nearly identical in all phagosomes. In contrast, diacylglycerol (DAG) was not generated uniformly across the phagosomal population, varying in a manner that directly mirrored superoxide production. Modulation of DAG levels suggested that NOX activation is precluded when phagosomes fail to reach a critical DAG concentration. In particular, forced expression of diacylglycerol kinase β abrogated DAG accumulation at the phagosome, leading to impaired respiratory burst. Conversely, pharmacological inhibition of DAG kinases or expression of an inactive diacylglycerol kinase β mutant increased the proportion of DAG-positive phagosomes, concomitantly potentiating phagosomal NOX activity. Our data suggest that diacylglycerol kinases limit the extent of NADPH oxidase activation, curtailing the production of potentially harmful reactive oxygen species. The resulting heterogeneity in phagosome responsiveness could enable the survival of a fraction of invading microorganisms.  相似文献   

7.
The Gram-negative bacterium Shigella flexneri invades the colonic epithelium and causes bacillary dysentery. S. flexneri requires the virulence factor invasion plasmid antigen B (IpaB) to invade host cells, escape from the phagosome and induce macrophage cell death. The mechanism by which IpaB functions remains unclear. Here, we show that purified IpaB spontaneously oligomerizes and inserts into the plasma membrane of target cells forming cation selective ion channels. After internalization, IpaB channels permit potassium influx within endolysosomal compartments inducing vacuolar destabilization. Endolysosomal leakage is followed by an ICE protease-activating factor-dependent activation of Caspase-1 in macrophages and cell death. Our results provide a mechanism for how the effector protein IpaB with its ion channel activity causes phagosomal destabilization and induces macrophage death. These data may explain how S. flexneri uses secreted IpaB to escape phagosome and kill the host cells during infection and, may be extended to homologs from other medically important enteropathogenic bacteria.  相似文献   

8.
Although the inositol phosphatase SHIP-1 is generally thought to inhibit signaling for Fc receptor-mediated phagocytosis, the product of its activity, phosphatidylinositol 3,4 bisphosphate (PI(3,4)P(2)), has been implicated in activation of the NADPH oxidase. This suggests that SHIP-1 positively regulates the generation of reactive oxygen species after phagocytosis. To examine how SHIP-1 activity contributes to Fc receptor-mediated phagocytosis, we measured and compared phospholipid dynamics, membrane trafficking, and the oxidative burst in macrophages from SHIP-1-deficient and wild-type mice. SHIP-1-deficient macrophages showed significantly elevated ratios of PI(3,4,5)P(3) to PI(3,4)P(2) on phagosomal membranes. Imaging reactive oxygen intermediate activities in phagosomes revealed decreased early NADPH oxidase activity in SHIP-1-deficient macrophages. SHIP-1 deficiency also altered later stages of phagosome maturation, as indicated by the persistent elevation of PI(3)P and the early localization of Rab5a to phagosomes. These direct measurements of individual organelles indicate that phagosomal SHIP-1 enhances the early oxidative burst through localized alteration of the membrane 3'-phosphoinositide composition.  相似文献   

9.
A key aspect of Mycobacterium tuberculosis pathogenesis is the ability of the bacteria to survive within the host macrophage. A phagosome containing an IgG-coated bead matures into a lysosomal compartment as evidenced by a decrease in pH and an increased acquisition of hydrolytic enzymes. In contrast, when M. tuberculosis is phagocytosed, the maturation of the bacteria-containing phagosome is arrested, and the bacterium resides within a vacuole that retains characteristics of early endosomal compartments. M. tuberculosis-containing phagosomes are delayed in the recruitment of the early endosome autoantigen EEA1. Acquisition of EEA1 is dependent on the presence of phosphatidylinositol-3-phosphate (PI-3-P) generated by the kinase Vps34. We tested the hypothesis that delayed recruitment of EEA1 was due to altered kinetics of PI-3-P accumulation at the phagosomal membrane. Biochemical analysis of the phosphatidylinositol phosphates on M. tuberculosis-containing phagosomes revealed that PI-3-P acquisition was markedly retarded and reduced in comparison to IgG bead-containing phagosomes. Given the role these lipids play in the regulation of phagosome maturation these findings have implications with respect to the mechanisms behind the arrest of phagosome maturation.  相似文献   

10.
Monoclonal antibodies (MAbs) to a cell surface histone on Histoplasma capsulatum modify murine infection and decrease the growth of H. capsulatum within macrophages. Without the MAbs, H. capsulatum survives within macrophages by modifying the intraphagosomal environment. In the present study, we aimed to analyze the affects of a MAb on macrophage phagosomes. Using transmission electron and fluorescence microscopy, we showed that phagosome activation and maturation are significantly greater when H. capsulatum yeast are opsonized with MAb. The MAb reduced the ability of the organism to regulate the phagosomal pH. Additionally, increased antigen processing and reduced negative costimulation occur in macrophages that phagocytose yeast cells opsonized with MAb, resulting in more-efficient T-cell activation. The MAb alters the intracellular fate of H. capsulatum by affecting the ability of the fungus to regulate the milieu of the phagosome.  相似文献   

11.
Pathogenic mycobacteria such as Mycobacterium tuberculosis and Mycobacterium avium facilitate disease by surviving intracellularly within a potentially hostile environment: the macrophage phagosome. They inhibit phagosome maturation processes, including fusion with lysosomes, acidification and, as shown here, membrane actin assembly. An in vitro assay developed for latex bead phagosomes (LBPs) provided insights into membrane signalling events that regulate phagosome actin assembly, a process linked to membrane fusion. Different lipids were found to stimulate or inhibit actin assembly by LBPs and mycobacterial phagosomes in vitro. In addition, selected lipids activated actin assembly and phagosome maturation in infected macrophages, resulting in a significant killing of M. tuberculosis and M. avium. In contrast, the polyunsaturated sigma-3 lipids behaved differently and stimulated pathogen growth. Thus, lipids can be involved in both stimulatory and inhibitory signalling networks in the phagosomal membrane.  相似文献   

12.
The phagosome is key to most macrophage functions. It is the site of degradation of particulate material, of bacterial killing and the generation of peptides for antigen presentation. Despite its role at the fulcrum of the innate and acquired immune systems, little is known about the physiology of this organelle in activated macrophages. In this study, we utilize fluorometric techniques to characterize functional alterations in the lumenal environment of the maturing phagosome following stimulation of macrophages with interferon-gamma and/or lipopolysaccharide. In addition to modulating the kinetics of phagosomal acidification, activation results in a phagosome with diminished hydrolytic activities that varies markedly with the activation status of the cell. Differential levels of proteolytic, lipolytic and beta-galactosidase activities were observed in the phagosome but not in the total lysosomal extract, indicating selective delivery of enzymes to the developing phagosome. Despite the suppression of hydrolytic activities observed in early phagosomes, late phagosomes exhibit an enhanced and protracted accumulation of lysosomal cargo. The data are consistent with limiting proteolysis in the early phagosome to maximize epitope generation and antigen presentation while sequestering the degradative capacity in the late phagolysosome.  相似文献   

13.
Mycobacterium tuberculosis (M.tb) is a leading cause of global infectious mortality. The pathogenesis of tuberculosis involves inhibition of phagosome maturation, leading to survival of M.tb within human macrophages. A key determinant is M.tb-induced inhibition of macrophage sphingosine kinase (SK) activity, which normally induces Ca2+ signaling and phagosome maturation. Our objective was to determine the spatial localization of SK during phagocytosis and its inhibition by M.tb. Stimulation of SK activity by killed M.tb, live Staphylococcus aureus, or latex beads was associated with translocation of cytosolic SK1 to the phagosome membrane. In contrast, SK1 did not associate with phagosomes containing live M.tb. To characterize the mechanism of phagosomal translocation, live cell confocal microscopy was used to compare the localization of wild-type SK1, catalytically inactive SK1G82D, and a phosphorylation-defective mutant that does not undergo plasma membrane translocation (SK1S225A). The magnitude and kinetics of translocation of SK1G82D and SK1S225A to latex bead phagosomes were indistinguishable from those of wild-type SK1, indicating that novel determinants regulate the association of SK1 with nascent phagosomes. These data are consistent with a model in which M.tb inhibits both the activation and phagosomal translocation of SK1 to block the localized Ca2+ transients required for phagosome maturation.  相似文献   

14.

Background

Household air pollution in low income countries is an important cause of mortality from respiratory infection. We hypothesised that chronic smoke exposure is detrimental to alveolar macrophage function, causing failure of innate immunity. We report the relationship between macrophage function and prior smoke exposure in healthy Malawians.

Methods

Healthy subjects exposed daily to cooking smoke at home volunteered for bronchoalveolar lavage. Alveolar macrophage particulate content was measured as a known correlate of smoke exposure. Phagocytosis and intraphagosomal function (oxidative burst and proteolysis) were measured by a flow cytometric assay. Cytokine responses in macrophages were compared following re-exposure in vitro to wood smoke, before and after glutathione depletion.

Results

Volunteers had a range of alveolar macrophage particulate loading. The macrophage capacity for phagosomal oxidative burst was negatively associated with alveolar macrophage particulate content (n = 29, r2 = 0.16, p = 0.033), but phagocytosis per se and proteolytic function were unaffected. High particulate content was associated with lower baseline CXCL8 release (ratio 0.51, CI 0.29–0.89) and lower final concentrations on re-exposure to smoke in vitro (ratio 0.58, CI 0.34–0.97). Glutathione depletion augmented CXCL8 responses by 1.49x (CI 1.02–2.17) compared with wood smoke alone. This response was specific to smoke as macrophages response to LPS were not modulated by glutathione.

Conclusion

Chronic smoke exposure is associated with reduced human macrophage oxidative burst, and dampened inflammatory cytokine responses. These are critical processes in lung defence against infection and likely to underpin the relationship between air pollution and pneumonia.  相似文献   

15.
The fungus Cryptococcus neoformans is a major human pathogen with a remarkable intracellular survival strategy that includes exiting macrophages through non-lytic exocytosis (Vomocytosis) and transferring between macrophages (Dragotcytosis) by a mechanism that involves sequential events of non-lytic exocytosis and phagocytosis. Vomocytosis and Dragotcytosis are fungal driven processes, but their triggers are not understood. We hypothesized that the dynamics of Dragotcytosis could inherit the stochasticity of phagolysosome acidification and that Dragotcytosis was triggered by fungal cell stress. Consistent with this view, fungal cells involved in Dragotcytosis reside in phagolysosomes characterized by low pH and/or high oxidative stress. Using fluorescent microscopy, qPCR, live cell video microscopy, and fungal growth assays we found that the that mitigating pH or oxidative stress reduced Dragotcytosis frequency, whereas ROS susceptible mutants of C. neoformans underwent Dragotcytosis more frequently. Dragotcytosis initiation was linked to phagolysosomal pH, oxidative stresses, and macrophage polarization state. Dragotcytosis manifested stochastic dynamics thus paralleling the dynamics of phagosomal acidification, which correlated with the inhospitality of phagolysosomes in differently polarized macrophages. Hence, randomness in phagosomal acidification randomly created a population of inhospitable phagosomes where fungal cell stress triggered stochastic C. neoformans non-lytic exocytosis dynamics to escape a non-permissive intracellular macrophage environment.  相似文献   

16.
Cryptococcus neoformans (Cn) is an encapsulated yeast that is a facultative intracellular pathogen and a frequent cause of human disease. The interaction of Cn with alveolar macrophages is critical for containing the infection , but Cn can also replicate intracellularly and lyse macrophages . Cn has a unique intracellular pathogenic strategy that involves cytoplasmic accumulation of polysaccharide-containing vesicles and intracellular replication leading to the formation of spacious phagosomes in which multiple cryptococcal cells are present . The Cn intracellular pathogenic strategy in macrophages and amoebas is similar, leading to the proposal that it originated as a mechanism for survival against phagocytic predators in the environment . Here, we report that under certain conditions, including phagosomal maturation, possible actin depolymerization, and homotypic phagosome fusion, Cn can exit the macrophage host through an extrusion of the phagosome, while both the released pathogen and host remain alive and able to propagate. The phenomenon of "phagosomal extrusion" indicates the existence of a previously unrecognized mechanism whereby a fungal pathogen can escape the intracellular confines of mammalian macrophages to continue propagation and, possibly, dissemination.  相似文献   

17.
Biogenesis of phagolysosomes is central to the elimination of pathogens by macrophages. We previously showed that Src homology region 2 domain-containing phosphatase 1 (SHP-1) participates in the regulation of phagosome maturation. Through proteomics, we identified moesin and the non-muscle myosin-IIA as proteins interacting with SHP-1 during phagocytosis. Silencing of either moesin or myosin IIA with small interfering RNA inhibited phagosomal acidification and recruitment of LAMP-1. Moreover, the intraphagosomal oxidative burst was impaired in the absence of either SHP-1 or myosin IIA but not moesin. Finally, absence of either SHP-1, moesin, or myosin IIA ablated the capacity of macrophages to clear bacterial infection. Collectively, these results implicate both moesin and myosin IIA in the regulation of phagolysosome biogenesis and in host defense against infections.  相似文献   

18.
Candida glabrata currently ranks as the second most frequent cause of invasive candidiasis. Our previous work has shown that C. glabrata is adapted to intracellular survival in macrophages and replicates within non-acidified late endosomal-stage phagosomes. In contrast, heat killed yeasts are found in acidified matured phagosomes. In the present study, we aimed at elucidating the processes leading to inhibition of phagosome acidification and maturation. We show that phagosomes containing viable C. glabrata cells do not fuse with pre-labeled lysosomes and possess low phagosomal hydrolase activity. Inhibition of acidification occurs independent of macrophage type (human/murine), differentiation (M1-/M2-type) or activation status (vitamin D3 stimulation). We observed no differential activation of macrophage MAPK or NFκB signaling cascades downstream of pattern recognition receptors after internalization of viable compared to heat killed yeasts, but Syk activation decayed faster in macrophages containing viable yeasts. Thus, delivery of viable yeasts to non-matured phagosomes is likely not triggered by initial recognition events via MAPK or NFκB signaling, but Syk activation may be involved. Although V-ATPase is abundant in C. glabrata phagosomes, the influence of this proton pump on intracellular survival is low since blocking V-ATPase activity with bafilomycin A1 has no influence on fungal viability. Active pH modulation is one possible fungal strategy to change phagosome pH. In fact, C. glabrata is able to alkalinize its extracellular environment, when growing on amino acids as the sole carbon source in vitro. By screening a C. glabrata mutant library we identified genes important for environmental alkalinization that were further tested for their impact on phagosome pH. We found that the lack of fungal mannosyltransferases resulted in severely reduced alkalinization in vitro and in the delivery of C. glabrata to acidified phagosomes. Therefore, protein mannosylation may play a key role in alterations of phagosomal properties caused by C. glabrata.  相似文献   

19.
Protein kinase C (PKC) plays a prominent role in immune signaling. To elucidate the signal transduction in a respiratory burst and isoform-specific function of PKC during FcgammaR-mediated phagocytosis, we used live, digital fluorescence imaging of mouse microglial cells expressing GFP-tagged molecules. betaI PKC, epsilonPKC, and diacylglycerol kinase (DGK) beta dynamically and transiently accumulated around IgG-opsonized beads (BIgG). Moreover, the accumulation of p47(phox), an essential cytosolic component of NADPH oxidase and a substrate for betaI PKC, at the phagosomal cup/phagosome was apparent during BIgG ingestion. Superoxide (O(2)(-)) production was profoundly inhibited by G?6976, a cPKC inhibitor, and dramatically increased by the DGK inhibitor, R59949. Ultrastructural analysis revealed that BIgG induced O(2)(-) production at the phagosome but not at the intracellular granules. We conclude that activation/accumulation of betaI PKC is involved in O(2)(-) production, and that O(2)(-) production is primarily initiated at the phagosomal cup/phagosome. This study also suggests that DGKbeta plays a prominent role in regulation of O(2)(-) production during FcgammaR-mediated phagocytosis.  相似文献   

20.
An increase in cytosolic Ca(2+)concentration periphagosomally is critical for phagolysosomal formation and neutrophil elimination of microbes. The Ca(2+)increase could be achieved through release of Ca(2+)from mobilized intracellular stores. Alternatively, Ca(2+)that passively enter the phagosome during phagocytosis could be provided by the phagosome. Intraphagosomal Ca(2+)changes in single human neutrophils was measured during phagocytosis of serum opsonized Fura-2-conjugated zymosan particles, using a digital image processing system for microspectrofluorometry. A decrease in phagosomal Ca(2+)down to nanomolar concentrations was seen within minutes following phagosomal closure. Blockage of plasma membrane Ca(2+)channels by econazole abolished this decrease. The fluorescence properties of Fura-2 zymosan were retained after phagocytosis and stable to pH changes, reactive oxygen species, and proteolytic enzymes. We suggest that Ca(2+)ions present in the phagosome enter the cell cytosol through Ca(2+)channels in the phagosomal membrane, achieving a localized Ca(2+)rise that is important for phagosome processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号