首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Questions: Is light availability the main factor driving forest dynamics in Pyrenean sub‐alpine forests? Do pines and firs differ in growth, mortality and morphological response to low light availability? Can differences in shade tolerance affect predictions of future biome changes in Pyrenean sub‐alpine forests in the absence of thermal limitation? Location: Montane–sub‐alpine ecotones of the Eastern Pyrenees (NE Spain). Methods: We evaluated morphological plasticity, survival and growth response of saplings of Scots pine, mountain pine and silver fir to light availability in a mixed forest ecotone. For each species, we selected 100 living and 50 dead saplings and measured size, crown morphology and light availability. A wood disk at root collar was then removed for every sapling, and models relating growth and mortality to light were obtained. Results: Fir had the lowest mortality rate (<0.1) for any given light condition. Pines had comparable responses to light availability, although in deep shade Scots pine risked higher mortality (0.35) than mountain pine (0.19). Pines and fir developed opposing strategies to light deprivation: fir employed a conservative strategy based on sacrificing height growth, whereas pines enhanced height growth to escape from shade, but at the expense of higher mortality risk. Scots pine showed higher plasticity than mountain pine for all architectural and morphological traits analysed, having higher adaptive capacity to a changing environment. Conclusions: Our results support the prediction of future biome changes in Pyrenean sub‐alpine forests as silver fir and Scots pine may find appropriate conditions for colonizing mountain pine‐dominated stands due to land‐use change‐related forest densification and climate warming‐related temperature increases, respectively.  相似文献   

2.
Marchalina hellenica (Gennadius) (Hemiptera: Margarodidae) is a scale insect, endemic in pine (Pinus halepensis) forests of Greece and other Mediterranean countries, which plays a major role in the production of honeydew honey. We investigated the morphological and the biological characteristics of M. hellenica in the pine forests of Mt. Parnis in comparison with those in the high-altitude fir (Abies cephalonica) forest of Mt. Helmos where it has been recently established, after anthropogenic intervention. Morphologically, the final body size of the 1st instar and the adult stages of M. hellenica in the fir forest were equal to those in the pine forest. Biologically, in the fir forest, the insect exhibited a long 1st instar’s period, which was the stage of its overwintering. In the pine forest, the 1st instar period was short and the insect overwinters in the stage of 2nd instar. The number of eggs per female in the fir forest was quite low (25–145) compared with the number of eggs in the pine forest (200–300). Concerning the qualitative parameters of the resulting honeydew-honey, statistically significant differences were found in Diastase and HMF (p < 0.0001). No difference was found in sucrose, fructose + glucose and water content, neither to electrical conductivity and total acidity. All values were within the EU limits (EU Directive 2001).  相似文献   

3.
Aim Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low‐severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low‐severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and early historical reports, suggest the low‐severity model may only apply in limited geographical areas. The aim of this article is to elaborate a new variable‐severity fire model and evaluate the applicability of this model, along with the low‐severity model, for the ponderosa pine–Douglas fir forests of the Rocky Mountains. Location Rocky Mountains, USA. Methods The geographical applicability of the two fire models is evaluated using historical records, fire histories and forest age‐structure analyses. Results Historical sources and tree‐ring reconstructions document that, near or before ad 1900, the low‐severity model may apply in dry, low‐elevation settings, but that fires naturally varied in severity in most of these forests. Low‐severity fires were common, but high‐severity fires also burned thousands of hectares. Tree regeneration increased after these high‐severity fires, and often attained densities much greater than those reconstructed for Southwestern ponderosa pine forests. Main conclusions Exclusion of fire has not clearly and uniformly increased fuels or shifted the fire type from low‐ to high‐severity fires. However, logging and livestock grazing have increased tree densities and risk of high‐severity fires in some areas. Restoration is likely to be most effective which seeks to (1) restore variability of fire, (2) reverse changes brought about by livestock grazing and logging, and (3) modify these land uses so that degradation is not repeated.  相似文献   

4.
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of ?10.7% and ?16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.  相似文献   

5.
Aim Our objectives were to compare understorey plant community structure among forest types, and to test hypotheses relating understorey community structure within lower montane and subalpine forests to fire history, forest structure, fuel loads and topography. Location Forests on the North Rim of Grand Canyon National Park, Arizona, USA. Methods We measured understorey (< 1.4 m) plant community structure in 0.1‐ha plots. We examined differences in univariate response variables among forest types, used permutational manova to assess compositional differences between forest types, and used indicator species analysis to identify species driving the differences between forest types. We then compiled sets of proposed models for predicting plant community structure, and used Akaike's information criterion (AICC) to determine the support for each model. Model averaging was used to make multi‐model inferences if no single model was supported. Results Within the lower montane zone, pine–oak forests had greater understorey plant cover, richness and diversity than pure stands of ponderosa pine (Pinus ponderosa P. & C. Lawson var. scopulorum Engelm.). Plant cover was negatively related to time since fire and to ponderosa pine basal area, and was highest on northern slopes and where Gambel oak (Quercus gambelii Nutt.) was present. Species richness was negatively related to time since fire and to ponderosa pine basal area, and was highest on southern slopes and where Gambel oak was present. Annual forb species richness was negatively related to time since fire. Community composition was related to time since fire, pine and oak basal area, and topography. Within subalpine forests, plant cover was negatively related to subalpine fir basal area and amounts of coarse woody debris (CWD), and positively related to Engelmann spruce basal area. Species richness was negatively related to subalpine fir basal area and amounts of CWD, was positively related to Engelmann spruce basal area, and was highest on southern slopes. Community composition was related to spruce, fir and aspen basal areas, amounts of CWD, and topography. Main conclusions In montane forests, low‐intensity surface fire is an important ecological process that maintains understorey communities within the range of natural variability and appears to promote landscape heterogeneity. The presence of Gambel oak was positively associated with high floristic diversity. Therefore management that encourages lightning‐initiated wildfires and Gambel oak production may promote floristic diversity. In subalpine forests, warm southern slopes and areas with low amounts of subalpine fir and CWD were positively associated with high floristic diversity. Therefore the reduction of CWD and forest densities through managed wildfire may promote floristic diversity, although fire use in subalpine forests is inherently more difficult due to intense fire behaviour in dense spruce–fir forests.  相似文献   

6.
Extreme climatic events are key factors in initiating gradual or sudden changes in forest ecosystems through the promotion of severe, tree-killing disturbances such as fire, blowdown, and widespread insect outbreaks. In contrast to these climatically-incited disturbances, little is known about the more direct effect of drought on tree mortality, especially in high-elevation forests. Therefore projections of drought-induced mortality under future climatic conditions remain uncertain. For a subalpine forest landscape in the Rocky Mountains of northern Colorado (USA), we quantified lag effects of drought on mortality of Engelmann spruce Picea engelmannii , subalpine fir Abies lasiocarpa , and lodgepole pine Pinus contorta . For the period 1910–2004, we related death dates of 164 crossdated dead trees to early-season and late-season droughts. Following early-season droughts, spruce mortality increased over five years and fir mortality increased sharply over 11 years. Following late-season droughts, spruce showed a small increase in mortality within one year, whereas fir showed a consistent period of increased mortality over two years. Pine mortality was not affected by drought. Low pre-drought radial growth rates predisposed spruce and fir to drought-related mortality. Spruce and fir trees that died during a recent drought (2000–2004) had significantly lower pre-drought growth rates than live neighbour trees. Overall, we found large interspecific differences in drought-related mortality with fir showing the strongest effect followed by spruce and pine. This direct influence of climatic variability on differential tree mortality has the potential for driving large-scale changes in subalpine forests of the Rocky Mountains.  相似文献   

7.
Old forests are generally believed to exhibit low net primary productivity (NPP) and therefore to be insignificant carbon sinks. This relationship between age and NPP is based, in part, on the hypothesis that the biomass of respiratory tissues such as sapwood increases with age to a point where all photosynthate is required just to maintain existing tissue. However, this theoretical connection between respiration:assimilation ratios and forest productivity is based on age-dependent trends in the sapwood:leaf ratios of individual trees and even-aged stands; it does not take into account such processes in natural forests as disproportional increases in shade-tolerant species over time and multiple-age cohorts. Ignoring succession and structural complexity may lead to large underestimates of the productivity of old forests and inaccurate estimates of the ages at which forest productivity declines. To address this problem, we compared biomass allocation and productivity between whitebark pine, a shade-intolerant, early-successional tree species, and subalpine fir, a shade-tolerant, late-successional species, by harvesting 14 whitebark pines and nine subalpine firs that varied widely in dbh and calculating regression models for dbh vs annual productivity and biomass allocation to leaves, sapwood, and heartwood. Late-successional subalpine fir allocated almost twice as much biomass to leaves as early-successional whitebark pine. Subalpine firs also had a much lower allocation to sapwood and higher growth rates across all tree sizes. We then modeled biomass allocation and productivity for 12 natural stands in western Montana that were dominated by subalpine fir and whitebark pine varying in age from 67 to 458 years by applying the regressions to all trees in each stand. Whole-stand sapwood:leaf ratios and stand productivity increased asymptotically with age. Sapwood:leaf ratios and productivity of whitebark pine in these stands increased for approximately 200–300 years and then decreased slowly over the next 200 years. In contrast, sapwood:leaf ratios of all sizes of subalpine fir were lower than those of pine and productivity was higher. As stands shifted in dominance from pine to fir with age, subalpine fir appeared to maintain gradually increasing rates of whole-forest productivity until stands were approximately 400 years old. These results suggest that forests such as these may continue to sequester carbon for centuries. If shade-tolerant species that predominate late in succession maintain high assimilation-to-respiration ratios in other forests, we may be underestimating production in old forests, and current models may underestimate the importance of mature forests as carbon sinks for atmospheric CO2 in the global carbon cycle. Received 16 February 1999; accepted 24 November 1999.  相似文献   

8.
余蓉  项文化  宁晨  罗赵慧 《生态学报》2016,36(12):3499-3509
采用标准地调查和生物量实测方法,研究了长沙市区4种人工林生态系统生物量、碳储量及其分布特征。结果表明:马尾松林、杉木林、毛竹林和杨树林生态系统生物量分别为135.390、100.578、64.497、63.381 t/hm~2;林下植被及死地被物层分别为18.374、22.321、1.847 t/hm~2和2.602 t/hm~2。乔木层林木各器官含碳率为0.405—0.551 g C/g,林下植被层为0.421—0.518 g C/g,死地被物层为0.230—0.545 g C/g,土壤层有机碳含量为15.669—19.163 g C/kg。4种人工林生态系统总碳储量为208.671、176.723、149.168 t/hm~2和164.735 t/hm~2,其中植被层为32.789—67.8661 t/hm~2;死地被物层为0.394—6.163 t/hm~2;土壤层为134.642、116.911、115.985 t/hm~2和126.860 t/hm~2。4种森林年净固碳量为15.167 t hm-2a-1,固定CO_2量55.602 t hm-2a-1。研究结果可为深入研究城市森林碳平衡提供基础数据。  相似文献   

9.
Decreases in abundances and declines in growth of eastern white pine over the past century due mainly to human activities have resulted in few large intact old-growth white pine forests in Ontario. These stands may be vulnerable to replacement by deciduous species from temperate forests further south, where recruitment in canopy gap disturbances can greatly define the regeneration process. We investigated recruitment dynamics in canopy gaps of an old-growth white pine forest of Temagami, northern Ontario, Canada, the northern limit of the temperate?Cboreal ecotone. White pine, red pine, black spruce and eastern white cedar represented 85?% of the mature canopy abundance, where trees and saplings established equally in gaps and the closed canopy. Balsam fir and paper birch were more abundant in gaps, showing increases of abundance and basal area with increases in gap size representing canopy self-replacement (balsam fir) and autogenic succession (paper birch). Red maple, at its northernmost range limit, was the only species to show linear increases of abundance and basal area with increases in gap size and gap age. This result, along with adult red maples present in gaps but absent from the closed canopy, identifies the establishment of a northward migrating species in gaps as hypothesized for pine forests at the northern limit of this broad ecotone. We discuss how migration pressures, coupled with pine recruitment limitation through reduced fire frequency by regional fire suppression and predicted future increased warming of 2?C4?°C over the next century, threatens replacement of old-growth white pine forests at this latitude with northward migrating tree species found further south.  相似文献   

10.
Questions: (1) How do extreme climatic events and climate variability influence radial growth of conifers (silver fir, Norway spruce, Scots pine)? (2) How do elevation and soil water capacity (SWC) modulate sensitivity to climate? Location: The sampled conifer stands are in France, in western lowland and mountain forests, at elevations from 400 to 1700 m, and an SWC from 50 to 190 mm. Methods: We established stand chronologies for total ring width, earlywood and latewood width for the 33 studied stands (985 trees in total). Responses to climate were analysed using pointer years and bootstrapped response functions. Principal component analysis was applied to pointer years and response function coefficients in order to elucidate the ecological structure of the studied stands. Results: Extreme winter frosts are responsible for greater growth reductions in silver fir than in Norway spruce, especially at the upper elevation, while Scots pine was the least sensitive species. Exceptional spring droughts caused a notable growth decrease, especially when local conditions were dry (altitude<1000 m and SWC<100 mm for silver fir, western lowlands for Scots pine). Earlywood of silver fir depended on previous September and November and current‐year February temperature, after which current June and July water supply influenced latewood. Earlywood of Norway spruce was influenced by previous September temperature, after which current spring and summer droughts influenced both ring components. In Scots pine, earlywood and latewood depended on the current summer water balance. Local conditions mainly modulated latewood formation. Conclusions: If the climate becomes drier, low‐elevation dry stands or trees growing in western lowlands may face problems, as their growth is highly dependent on soil moisture availability.  相似文献   

11.
Aim The historical variability of fire regimes must be understood in the context of drivers of the occurrence of fire operating at a range of spatial scales from local site conditions to broad‐scale climatic variation. In the present study we examine fire history and variations in the fire regime at multiple spatial and temporal scales for subalpine forests of Engelmann spruce–subalpine fir (Picea engelmannii, Abies lasiocarpa) and lodgepole pine (Pinus contorta) of the southern Rocky Mountains. Location The study area is the subalpine zone of spruce–fir and lodgepole pine forests in the southern sector of Rocky Mountain National Park (ROMO), Colorado, USA, which straddles the continental divide of the northern Colorado Front Range (40°20′ N and 105°40′ W). Methods We used a combination of dendroecological and Geographic Information System methods to reconstruct fire history, including fire year, severity and extent at the forest patch level, for c. 30,000 ha of subalpine forest. We aggregated fire history information at appropriate spatial scales to test for drivers of the fire regime at local, meso, and regional scales. Results The fire histories covered c. 30,000 ha of forest and were based on a total of 676 partial cross‐sections of fire‐scarred trees and 6152 tree‐core age samples. The subalpine forest fire regime of ROMO is dominated by infrequent, extensive, stand‐replacing fire events, whereas surface fires affected only 1–3% of the forested area. Main conclusions Local‐scale influences on fire regimes are reflected by differences in the relative proportions of stands of different ages between the lodgepole pine and spruce–fir forest types. Lodgepole pine stands all originated following fires in the last 400 years; in contrast, large areas of spruce–fir forests consisted of stands not affected by fire in the past 400 years. Meso‐scale influences on fire regimes are reflected by fewer but larger fires on the west vs. east side of the continental divide. These differences appear to be explained by less frequent and severe drought on the west side, and by the spread of fires from lower‐elevation mixed‐conifer montane forests on the east side. Regional‐scale climatic variation is the primary driver of infrequent, large fire events, but its effects are modulated by local‐ and meso‐scale abiotic and biotic factors. The low incidence of fire during the period of fire‐suppression policy in the twentieth century is not unique in comparison with the previous 300 years of fire history. There is no evidence that fire suppression has resulted in either the fire regime or current forest conditions being outside their historic ranges of variability during the past 400 years. Furthermore, in the context of fuel treatments to reduce fire hazard, regardless of restoration goals, the association of extremely large and severe fires with infrequent and exceptional drought calls into question the future effectiveness of tree thinning to mitigate fire hazard in the subalpine zone.  相似文献   

12.
张家界国家森林公园土地利用格局变化   总被引:8,自引:0,他引:8  
阳柏苏  何平  赵同谦 《生态学报》2006,26(6):2027-2034
借助地理信息系统(GIS)技术对张家界国家森林公园1990~2000年土地利用格局变化进行了研究。结果表明:(1)1990~2000年问,张家界国家森林公园保护效果显著。近成过熟林面积基本稳定,1990年97.57%的阔叶近成过熟林、96.77%的马尾松近成过熟林和77.92%的杉木近成过熟林至2000年仍保存良好;未利用地恢复较好、灌木林保护较好,25.38%的未利用地、30%以上的灌木林分别转变为阔叶林、马尾松林或杉木林;中龄林、幼龄林保护较好,很大一部分中龄林、幼龄林分别转变为近成过熟林和中龄林。建议继续强化管理,落实《张家界国家森林公园森林经营方案》,避免重经济利益轻生态环境保护现象发生;(2)森林砍伐、农田侵占现象仍然存在。2000年,100%的马尾松幼龄林由1990年马尾松中龄林转变而来,74.06%杉木幼龄林由杉木近成过熟林转变而来,将近10%未利用地由阔叶近成过熟林或阔叶中龄林转变而来。2000年,11.19%居民点及道路与34.82%经济林均由农田转变而来。建议引导社区积极参与生态旅游,通过开展生态旅游切实提高农民收入,减小社区居民对森林公园的胁迫作用;同时注重耕地资源的保护。  相似文献   

13.
广西气候温和,雨量充沛,亚热带和热带森林资源十分丰富。为了合理利用和开发广西梧州、玉林等地区南亚热带的土地资源和充分发挥该地区森林资源的经济效益,1987年我们  相似文献   

14.
Aim Spatial and temporal variation in fire regime parameters and forest structure were assessed. Location A 2630‐ha area of mid‐ and upper montane forest in Lassen Volcanic National Park (LVNP). Methods Two hypotheses were tested concerned with fire‐vegetation relationships in southern Cascades forests: (1) fire regime parameters (return interval, season of burn, fire size, rotation period) vary by forest dominant, elevation and slope aspect; and (2) fire exclusion since 1905 has caused forest structural and compositional changes in both mid‐ and upper montane forests. The implications of the study for national park management are also discussed. Results Fire regime parameters varied by forest compositional group and elevation in LVNP. Median composite and point fire return intervals were shorter in low elevation Jeffrey pine (Pinus jeffreyi) (JP) (4–6 years, 16 years) and Jeffrey pine–white fir (Abies concolor) (JP‐WF) (5–10 years, 22 years) and longer in high elevation red fir (Abies magnifica)— western white pine (Pinus monticola) (RF‐WWP) forests (9–27 years, 70 years). Median fire return intervals were also shorter on east‐facing (6–9 years, 16.3 years) and longer on south‐ (11 years, 32.5 years) and west‐facing slopes (22–28 years, 54‐years) in all forests and in each forest composition group. Spatial patterns in fire rotation length were the same as those for fire return intervals. More growing season fires also occurred in JP (33.1%) and JP‐WF (17.5%) than in RF‐WWP (1.1%) forests. A dramatic decline in fire frequency occurred in all forests after 1905. Conclusions Changes in forest structure and composition occurred in both mid‐ and upper montane forests due to twentieth‐century fire exclusion. Forest density increased in JP and JP‐WF forests and white fir increased in JP‐WF forests and is now replacing Jeffrey pine. Forest density only increased in some RF‐WWP stands, but not others. Resource managers restoring fire to these now denser forests need to burn larger areas if fire is going to play its pre‐settlement role in montane forest dynamics.  相似文献   

15.
多样化松林中昆虫群落多样性特征   总被引:4,自引:2,他引:2  
刘兴平  刘向辉  王国红  韩瑞东  戈峰 《生态学报》2005,25(11):2976-2982
马尾松和湿地松是我国南方的2种主要松树。通过对6种不同林分结构下的马尾松林和湿地松林内昆虫群落调查与多样性指数分析,表明2种松树内的昆虫种类和数量无显著差异,混交林中的昆虫群落的种类和数量比纯林多,尤其以捕食天敌类群的种类和数量更为明显。整个昆虫群落和植食类群多样性指数以湿地松林内较大,而天敌(捕食类群和寄生类群)多样性指数则以马尾松林较高。从不同林分结构下昆虫多样性的比较来看,混交林内昆虫群落多样性指数波动较小,明显地高于纯林。但不同林分结构下昆虫多样性随水平分布和垂直分层格局而变化,松树北面和东面各样地之间的昆虫群落多样性指数差异显著,而南、西面之间差异较小;树冠层各样地之间的差异达极显著水平,而枯枝落叶层和树干层之间差异不显著。由此,还进一步讨论了混交林中昆虫群落稳定性问题。  相似文献   

16.
Genetic variability of AFLP markers was studied in 20 populations of Siberian fir (Abies sibirica, Pinaceae) and in two populations of Far-Eastern species Manchurian fir A. nephrolepis and Sakhalin fir A. sachalinensis each. Four pairs of selective primers were used. In total, 168 samples from three fir species were genotyped for 117 polymorphic loci. According to the AMOVA results, the variability proportion characterizing the differences among three Abies species was several times higher (F CT = 0.53) than that acounting for population differences within the species (F SC = 0.125). Differentiation of the A. sibirica populations based on AFLP markers exceeded 14% (F ST = 0.141). Significant correlation between the genetic distances calculated from the AFLP data and the geographic distances between populations was found. The results of AFLP variability analysis supported and supplemented the conclusions inferred previously from allozyme and cpSSR data: several genetically similar geographic groups of Siberian fir were identified. These groups differ both in allele frequencies and in the levels of genetic variation.  相似文献   

17.
Selection and development of tree species with high fixing CO2 capacity is an increasing problem worldwide. A comparative study on carbon fixation ability of three forest stands was conducted at Linlong Mountain, Li’nan County, Zhejiang Province, China. The results showed that total carbon storage in the ecosystems of Moso bamboo, Chinese fir, and Masson pine stands were 104.83, 95.66, and 96.49 t C/ha, respectively. The spatial distribution of carbon storage in the three ecosystems decreased in the order: soil > tree story > the vegetation under the forests. Carbon storage in the soils under Moso bamboo, Chinese fir, and Masson pine stands accounted for 65.3, 61.4, and 55.6% of the total CSs, respectively. The Moso bamboo forest ecosystem fixed 1.69 and 1.63 times as much C (9.64 t C/ha/year) as the Chinese fir and Masson pine forest ecosystems, respectively.  相似文献   

18.
Results of pollenanalytical investigations in the Highlands of Mexico (area of Puebla — Tlaxcala) are presented together with a survey of the last 35 000 years of vegetation history. After 3 pine periods from 35 000 to about 7 000–8 000 B. P., according to high and late Pleistocene condition, the Holocene vegetation history becomes more diversified: periods of alder, pine, fir and mixed oak forests alternate and end in a period of cultivated landscape.  相似文献   

19.
Bekker  Matthew F.  Taylor  Alan H. 《Plant Ecology》2001,155(1):15-28
Species distribution and abundance patterns in the southern Cascades are influenced by both environmental gradients and fire regimes. Little is known about fire regimes and variation in fire regimes may not be independent of environmental gradients or vegetation patterns. In this study, we analyze variation in fire regime parameters (i.e., return interval, season, size, severity, and rotation period) with respect to forest composition, elevation, and potential soil moisture in a 2042 ha area of montane forest in the southern Cascades in the Thousand Lakes Wilderness (TLW). Fire regime parameters varied with forest composition, elevation, and potential soil moisture. Median composite and point fire return intervals were shorter (4-9 yr, 14-24 yr) in low elevation and more xeric white fir (Abies concolor)-sugar pine (Pinus lambertiana) and white fir-Jeffrey pine (P. jeffreyi) and longest (20-37 yr, 20-47 yr) in mesic high elevation lodgepole pine (Pinus contorta) and red fir (Abies magnifica)-mountain hemlock (Tsuga mertensiana) forests. Values for mid-elevation red fir-white fir forests were intermediate. The pattern for fire rotation lengths across gradients was the same as for fire return intervals. The percentage of fires that occurred during the growing season was inversely related to elevation and potential soil moisture. Mean fire sizes were larger in lodgepole pine forests (405 ha) than in other forest groups (103-151 ha). In contrast to other parameters, fire severity did not vary across environmental and compositional gradients and >50% of all forests burned at high severity with most of the remainder burning at moderate severity. Since 1905, fire regimes have become similar at all gradient positions because of a policy of suppressing fire and fire regime modification will lead to shifts in landscape scale vegetation patterns.  相似文献   

20.
The southern pine beetle, Dendroctonus frontalis Zimmerman, is the most destructive insect pest of pine forests in the southeastern United States, Mexico, and Central America. Southern pine beetle aggressively attacks pine trees, and when in epidemic stages, they are capable of killing even the most healthy pine trees in a short period of time. Despite the amount of destruction caused by the southern pine beetle and the amount of monetary loss faced by the timber industry and recreation, the population genetics of this species has been limited to comparisons among distant geographic locations. This study investigates the fine-scale genetic population structure of the southern pine beetle in Mississippi. Very little genetic differentiation was observed among samples. Bayesian assignment testing failed to detect multiple groups within all samples; estimates of genetic differentiation and genetic distance were very low in magnitude; and a Mantel test did not reveal a significant relationship between genetic distance and geographic distance. These results suggest that management of the southern pine beetle needs to consider the potential movements of individuals within and among national forests and should be focused on a large scale, at least as big as continuously forested areas and possibly even multiple forests. These results further suggest that removal of beetle-infested trees is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号