首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time course of fused tetani of three main types of motor units: slow (S), fast resistant (FR) and fast fatigable (FF) was studied in the rat medial gastrocnemius. The rate of tension generation and of the relaxation within a tetanus was measured under isometric conditions. These measurements were performed at three points during both the contraction and relaxation: the beginning, the middle and the end of the phase of changes in tension. Significant differences were found in the rate of tension changes between fast and slow units. Comparison of FF and FR units showed less pronounced differences in their rates of the contraction and the relaxation. Moreover, slow units showed significantly greater slowing of both the contraction and relaxation within a tetanus in relation to the speed of their twitch when compared to fast motor units. The rate of changes in tetanic tension correlated to twitch time parameters and to tension generated during twitch or tetanus. The results point out that the well known difference in the speed of twitch contraction between fast and slow units is also visible in their fused tetani.  相似文献   

2.
The tension-time area is an estimation of the work performed by contracting motor units. The relationship between tension and frequency of stimulation and between tension-time area and frequency have been studied on 148 single motor units of the rat medial gastrocnemius muscle, under isometric conditions. Motor units were classified as fast fatigable (FF), fast resistant to fatigue (FR) or slow (S). Trains of stimuli of increasing frequency and constant duration were used. For all motor units a half of the maximum tetanic tension corresponded to lower frequencies compared to frequencies at a half of the maximum tension-time area. Moreover, the slopes of tension-frequency and area-frequency curves (change of tension or area per 1 Hz rise in frequency) were higher for slow than for fast motor units. The tension-time area per one pulse was calculated for different frequencies of stimulation. For slow units the maximum area per pulse corresponded to significantly lower frequencies than for fast ones, especially of FF type. However, for all three types of motor units this optimal frequency corresponded to sub-fused tetani with a tension of about 75% of the maximum tension, and with the fusion index slightly over 0.90. The absolute values of the maximum tension-time area per pulse revealed that in one contraction within the tetanus, slow units are generating greater work than FR units. The work performed by FF units is nearly two times larger than for S units, although the tension of slow units is over eight times lower. The presented results reveal that the contraction of slow motor units is much more effective than was suggested based on their low tension.  相似文献   

3.
Unfused tetanic contractions evoked in fast motor units exhibit extra-efficient force production at the onset of contraction, an effect called “boost”. Boost is diminished in subsequent contractions if there is a short rest period between contractions, but can be re-established with a longer period of rest. We tested the hypothesis that contractile activity and rest could enhance boost-related metrics. Two sets of 3 unfused tetani were evoked 3 min apart in fast fatigable (FF) and fast fatigue-resistant (FR) motor units of the rat medial gastrocnemius. The greatest changes occurred in the first unfused tetanic contractions. Relative to the first contraction in the first set, the first contraction in the second set exhibited higher peak force during boost in a subset of motor units (76% of FF and 48% of FR). Enhanced force during boost was influenced by interaction of slowing of twitch contraction time (up to 20% and 25%, for FF and FR motor units, respectively), half-relaxation time (up to 37% and 49% for FF and FR motor units, respectively), and potentiation of the first twitch (up to 13% and 5% for FF and FR motor units, respectively). Examination of twitches evoked between sets suggested opportunity for greater enhancement of boost with shorter intervening rest periods. The phenomenon of enhanced boost following motor unit activity may interest sports scientists.  相似文献   

4.
A broad survey of muscle unit properties in 14 muscles of the cat hind limb is presented which emphasizes some general features of unit properties in mammalian muscles. A more detailed analysis of muscle unit properties in three muscles of the posterior compartment of the lower leg is then presented using Burke's tetrapartite (FF, FI or F (Int.), FR, and S) unit classification scheme. Our data on the properties of motor units in cat tibialis posterior (TP) have been compared to those generated by Burke and colleagues on units in flexor digitorum longus (FDL) and medial gastrocnemius (MG). In all three muscles, twitch contraction time was distinctly slower for type S units and specific tension outputs were substantially greater for type FF units than for type S units. The innervation ratios of type FR units were slightly lower than for type S units but the specific tension of the FR units was closer to FF units than to type S units. The FF units controlled 70–74% of the cumulative force output of each muscles, indicating a substantial capacity for powerful rapid contractions of all three of these muscles despite their differences in “size,” action, and force generation. Distinctive features of the three muscles included differences in the unit types' force producing capabilities and in the relative representation of “nonfatigable” type FR and S units in each muscle. In particular, TP is endowed with some unusually powerful type FF units and a high percentage (42%) of type S units. In contrast, FDL has units that develop relatively little force and an unusually high representation (56%) of type FR units. The possible relationships between these muscle features and their presumed role in posture and locomotion is discussed.  相似文献   

5.
The course of unfused tetani with the sag effect in fast motor units of rat medial gastrocnemius was studied. The analysis of the course of successive contractions within these tetani showed that the high peak force at the beginning of tetanus before the sag resulted from temporary, very efficient sum mation of contractions at this phase, both in FF (fast fatigable) and FR (fast resistant to fatigue) units. The process of summation developed in spite of parallel shortening of the contraction and relaxation. The peak of tetanus force was visible on the average at the 2nd contraction in FF units and at the 5th contraction in FR units. After the tetanus peak the process of the efficient summation was completed and the force decreased what was visible as a sag. In the following part of the tetanus, mainly in FF units, the potentiation occurred and the force of successive contractions increased. The rise of force was visible in spite of shortening of the contraction time and was due to prolongation of the relaxation in this part of the tetanus. These observations indicated that the processes of the summation of successive contractions before sag and during the potentiation underwent different mechanisms discussed in this paper. Considerable release of Ca2+ ions from the sarcoplasmic reticulum was proposed as a possible mechanism responsible for a very efficient summation at the beginning of the tetanus whereas phosphorylation of regulatory light chain of myosin (RLC) in muscle fibers was considered as the reason of potentiation. Moreover, the present analysis revealed that previously found differences in tetani profiles between FF and FR units resulted from faster development of described changes in the course of contractions summating into the tetanus in FF motor units.  相似文献   

6.
The motor unit twitch torque is modified by sustained contraction, but the association to changes in muscle fiber electrophysiological properties is not fully known. Thus twitch torque, muscle fiber conduction velocity, and action potential properties of single motor units were assessed in 11 subjects following an isometric submaximal contraction of the tibialis anterior muscle until endurance. The volunteers activated a target motor unit at the minimum discharge rate in eight 3-min-long contractions, three before and five after an isometric contraction at 40% of the maximal torque, sustained until endurance. Multichannel surface electromyogram signals and joint torque were averaged with the target motor unit potential as trigger. Discharge rate (mean +/- SE, 6.6 +/- 0.2 pulses/s) and interpulse interval variability (33.3 +/- 7.0%) were not different in the eight contractions. Peak twitch torque and recruitment threshold increased significantly (93 +/- 29 and 12 +/- 5%, P <0.05) in the contraction immediately after the endurance task with respect to the preendurance values (0.94 +/- 0.26 mN.m and 3.7 +/- 0.5% of the maximal torque), whereas time to peak of the twitch torque did not change (74.4 +/- 10.1 ms). Muscle fiber conduction velocity decreased and action potential duration increased in the contraction after the endurance (6.3 +/- 1.8 and 9.8 +/- 1.8%, respectively, P <0.05; preendurance values, 3.9 +/- 0.2 m/s and 11.1 +/- 0.8 ms), whereas the surface potential peak-to-peak amplitude did not change (27.1 +/- 3.1 microV). There was no significant correlation between the relative changes in muscle fiber conduction velocity or surface potential duration and in peak twitch torque (R2= 0.04 and 0.10, respectively). In conclusion, modifications in peak twitch torque of low-threshold motor units with sustained contraction are mainly determined by mechanisms not related to changes in action potential shape and in its propagation velocity.  相似文献   

7.
Reports on measurement of muscle fiber conduction velocity in humans are scarce. Inferences on the behavior of conduction velocity have been drawn from the behavior of myoelectric spectral parameters. The present report contains information on conduction velocity and spectral parameters studied at various muscle contraction levels and during and after sustained contractions. The following results have been obtained from measurements on the tibialis anterior muscle. Conduction velocity demonstrated a positive correlation with limb circumference and with muscle force output. Thus we conclude that the diameters of the muscle fibers of high-threshold motor units are, on an average, larger than those of low-threshold motor units. The study of a sustained contraction and on the recovery after such a contraction revealed that conduction velocity consistently decreased during a strong contraction as did various myoelectric spectral parameters. However, the spectral parameters decreased approximately twice as much as did the conduction velocity, and we conclude that factors other than the conduction velocity along the muscle fibers affect the myoelectric signal during a high-level contraction. These other factors appertain to changes in the firing statistics of individual motor units as well as the correlation between the firings of different motor units.  相似文献   

8.
The synchronized firings of active motor units (MUs) increase the oscillations of muscle force, observed as physiological tremor. This study aimed to investigate the effects of synchronizing the firings within three types of MUs (slow—S, fast resistant to fatigue–FR, and fast fatigable–FF) on the muscle force production using a mathematical model of the rat medial gastrocnemius muscle. The model was designed based on the actual proportion and physiological properties of MUs and motoneurons innervating the muscle. The isometric muscle and MU forces were simulated by a model predicting non-synchronized firing of a pool of 57 MUs (including 8 S, 23 FR, and 26 FF) to ascertain a maximum excitatory signal when all MUs were recruited into the contraction. The mean firing frequency of each MU depended upon the twitch contraction time, whereas the recruitment order was determined according to increasing forces (the size principle). The synchronization of firings of individual MUs was simulated using four different modes and inducing the synchronization of firings within three time windows (± 2, ± 4, and ± 6 ms) for four different combinations of MUs. The synchronization was estimated using two parameters, the correlation coefficient and the cross-interval synchronization index. The four scenarios of synchronization increased the values of the root-mean-square, range, and maximum force in correlation with the increase of the time window. Greater synchronization index values resulted in higher root-mean-square, range, and maximum of force outcomes for all MU types as well as for the whole muscle output; however, the mean spectral frequency of the forces decreased, whereas the mean force remained nearly unchanged. The range of variability and the root-mean-square of forces were higher for fast MUs than for slow MUs; meanwhile, the relative values of these parameters were highest for slow MUs, indicating their important contribution to muscle tremor, especially during weak contractions.  相似文献   

9.
Immunocytochemical characteristics of myosin have been demonstrated directly in normal and cross-reinnervated skeletal muscle fibers whose physiological properties have been defined. Fibers belonging to individual motor units were identified by the glycogen-depletion method, which permits correlation of cytochemical and physiological data on the same fibers. The normal flexor digitorum longus (FDL) of the cat is composed primarily of fast-twitch motor units having muscle fibers with high myosin ATPase activity. These fibers reacted with antibodies specific for the two light chains characteristic of fast myosin, but not with antibodies against slow myosin. Two categories of fast fibers, corresponding to two physiological motor unit types (FF and FR), differed in their immunochemical response, from which it can be concluded that their myosins are distinctive. The soleus (SOL) consists almost entirely of slow-twitch motor units having muscle fibers with low myosin ATPase activity. These fibers reacted with antibodies against slow myosin, but not with antibodies specific for fast myosin. When the FDL muscle was cross-reinnervated by the SOL nerve, twitch contraction times were slowed about twofold, and motor units resembled SOL units in a number of physiological properties. The corresponding muscle fibers had low ATPase activity, and they reacted with antibodies against slow myosin only. The myosin of individual cross-reinnervated FDL muscle units was therefore transformed, apparently completely, to a slow type. In contrast, cross-reinnervation of the SOL muscle by FDL motoneurons did not effect a complete converse transformation. Although cross-reinnervated SOL motor units had faster than normal twitch contraction times (about twofold), other physiological properties characteristic of type S motor units were unchanged. Despite the change in contraction times, cross-reinnervated SOL muscle fibers exhibited no change in ATPase activity. They also continued to react with antibodies against slow myosin, but in contrast to the normal SOL, they now showed a positive response to an antibody specific for one of the light chains of fast myosin. The myosins of both fast and slow muscles were thus converted by cross-reinnervation, but in the SOL, the newly synthesized myosin was not equivalent to that normally present in either the FDL or SOL. This suggests that, in the SOL, alteration of the nerve supply and the associated dynamic activity pattern are not sufficient to completely respecify the type of myosin expressed.  相似文献   

10.
Ability of muscle fibers to generate force is decreased when higher frequency of stimulation of motor units immediately follows lower frequency. This phenomenon called tetanic depression was found in rat medial gastrocnemius. However, it was not clear whether tetanic depression occurred only in rat muscle or it concerns all mammals. This study was conducted on motor units of cat medial gastrocnemius. Analyses were made at three successive trains of stimulation: 30 Hz, 20 and 30 Hz and again 30 Hz (the first pattern) or 40 Hz, 25 and 40 Hz and 40 Hz (the second pattern). In all fast units force generated within the middle tetanus was lower than force generated at the same, but constant frequency of stimulation applied earlier or later. The mean tetanic depression in 30 Hz tetani amounted to 10.9% for fast fatigable (FF) and 15.9% for fast resistant (FR) motor units, whereas in 40 Hz tetani mean values were 5.6% and 7.3% for FF and FR motor units, respectively. In slow motor units tetanic depression was not observed. These results proved the existence of tetanic depression in the feline muscle and indicated that its intensity depends on the fusion of tetanus. It has been concluded, that the tetanic depression is a general property of fast motor units in mammals.  相似文献   

11.
The purpose of the study was to evaluate the use of cross-correlation analysis between simulated surface electromyograms (EMGs) of two muscles to quantify motor unit synchronization. The volume conductor simulated a cylindrical limb with two muscles and bone, fat, and skin tissues. Models of two motor neuron pools were used to simulate 120 s of surface EMG that were detected over both muscles. Short-term synchrony was established using a phenomenological model that aligned the discharge times of selected motor units within and across muscles to simulate physiological levels of motor unit synchrony. The correlation between pairs of surface EMGs was estimated as the maximum of the normalized cross-correlation function. After imposing four levels of motor unit synchrony across muscles, five parameters were varied concurrently in the two muscles to examine their influence on the correlation between the surface EMGs: 1) excitation level (5, 10, 15, and 50% of maximum); 2) muscle size (350 and 500 motor units); 3) fat thickness (1 and 4 mm); 4) skin conductivity (0.1 and 1 S/m); and 5) mean motor unit conduction velocity (2.5 and 4 m/s). Despite a constant and high level of motor unit synchronization among pairs of motor units across the two muscles, the cross-correlation index ranged from 0.08 to 0.56, with variation in the five parameters. For example, cross-correlation of EMGs from pairs of hand muscles, each having thin layers of subcutaneous fat and mean motor unit conduction velocities of 4 m/s, may be relatively insensitive to the level of synchronization across muscles. In contrast, cross-correlation of EMGs from pairs of leg muscles, with larger fat thickness, may exhibit a different sensitivity. These results indicate that cross correlation of the surface EMGs from two muscles provides a limited measure of the level of synchronization between motor units in the two muscles.  相似文献   

12.
Physiological and developmental implications of motor unit anatomy   总被引:2,自引:0,他引:2  
There is increasing evidence that the architectural design and arrangement of the fibers within a motor unit have important physiological and developmental ramifications. Limited data, however, are available to directly address this issue. In the present study the physiological properties of one motor unit in each of seven cat tibialis anterior (TA) muscles were determined. Each of these units then was repetitively stimulated to deplete the glycogen in all muscle fibers within the unit. Subsequently, the length, type of ending, and spatial distribution of fibers sampled from these physiologically and histochemically typed motor units were determined. Four fast fatigable (FF), one fast, fatigue resistant (FR), and two slow (S) motor units (MU) were studied. The samples consisted of all those glycogen-depleted fibers (9-27) contained within a single fascicle or a circumscribed area of each of the motor unit territories. The mean fiber lengths for the two slow motor units were 35.9 and 45.5 mm. The mean fiber lengths for the fast motor unit samples ranged from 8.8 to 48.5 mm. Some fibers of both the fast and slow units reached lengths of 58 mm. Most of the fibers in the slow units extended the entire distance between the proximal and distal musculotendinous planes, had relatively constant cross-sectional areas, and terminated at the tendon as blunt endings. In contrast, the majority of the fibers in the fast units terminated intrafascicularly at one end, and the cross-sectional area decreased progressively along their lengths, that is, showed a tapering pattern for a significant proportion of their lengths. Therefore, the force generated by units that end midfascicularly would appear to be transmitted to connective tissue elements and/or adjacent fibers. All fibers of a fast unit within a fascicle were located at approximately the same proximo-distal location. Thus, developmentally the selection of muscle fibers by a motoneuron would seem to be influenced by their spatial distribution. The architectural complexities of motor units also have clear implications for the mechanical interactions of active and inactive motor units. For example, the tension capabilities of a motor unit may be influenced not only by the spatial arrangement of its own fibers, but also by the level of activation of neighboring motor units.  相似文献   

13.
The purpose of the study was to analyze the interspecies differences of motor unit contractile properties in two most frequently studied mammals: cats and rats. A total sample of 166 motor units (79 in cats and 85 in rats) was investigated in the medial gastrocnemius muscle. Considerable differences were found in composition of the studied muscle. In cats, fast fatigable, fast resistant and slow units formed 68, 18 and 14% of the investigated population, whereas in rats 36, 52 and 12%, respectively. The contraction and relaxation times of motor units in the cat muscle were evidently longer than in the rat and the border values for fast/slow motor units division in these species were 44 and 20 ms, respectively. The mean values of twitch and tetanic forces appeared to be 7-8 times lower in rats, for fast, while 2-5 times for slow motor units. Also variability between the strongest and the weakest units within each type revealed differences 10-60 times in cats, whereas only 3.5-14 times in rats. The summation of twitches into tetanus for fast units was comparable in both species, but for S units was evidently more effective in the cat. In fast motor units' tetanic contractions evident interspecies differences concerned sag appearance and profiles of unfused tetani of FF and FR units. Differences in contractile properties described in the study may depend on the size, number and innervation ratio of motor units in the muscle of cat and rat, as well as their biochemical variability. Differences in composition of motor unit types and uneven mechanisms of force development may reflect biological adaptation to variable behaviour of cats and rats.  相似文献   

14.
Properties of motor unit action potentials (MUAPs) were compared for medial gastrocnemius (MG) motor units (MUs) in cats and rats. The experiments on functionally isolated MUs were performed under general anaesthesia, under comparable conditions (surgery, stimulating protocol and recording methods) for both species investigated. The proportions of motor units and contractile properties of the sample used in the study were consistent with previous studies performed on the MG muscle in both animal species, so comparisons of action potentials of individual types of MUs were acknowledged as fully reliable. The most prominent differences concerning MUAPs were observed in total duration and peak-to-peak times which for all MU types were about twice longer in cat MUs, in comparison to the rat MUs. The considerable disproportions were observed between the MUAP amplitudes of FF (fast fatigable), FR (fast resistant to fatigue) and S (slow) MUs in each species (the highest amplitudes were measured for FF and the lowest for S MUs), but there were no significant differences between cat and rat when respective types of MUs were compared. The shapes of MUAPs were commonly characterized by biphasic waveforms composed of two or three turns in all types of units, and no interspecies differences were revealed. Several factors influencing MUAP parameters were discussed indicating most of all importance of variable length of cat and rat muscle fibres and ambiguous influence of motor unit size, thickness of muscle fibres and their density around the recording electrode in the MG muscle of both species.  相似文献   

15.
Fibre conduction velocity and fibre composition in human vastus lateralis   总被引:6,自引:0,他引:6  
The relationship between muscle fibre composition and fibre conduction velocity was investigated in 19 male track athletes, 12 sprinters and 7 distance runners, aged 20-24 years, using needle biopsy samples from vastus lateralis. Cross sectional areas of the fast twitch (FT) and slow twitch (ST) fibres were determined by histochemical analysis. The percentage of FT fibre areas ranged from 22.6 to 93.6%. Sprinters had a higher percentage of FT fibres than distance runners. Muscle fibre conduction velocity was measured with a surface electrode array placed along the muscle fibres, and calculated from the time delay between 2 myoelectric signals recorded during a maximal voluntary contraction. The conduction velocity ranged from 4.13 to 5.20 m.s-1. A linear correlation between conduction velocity and the relative area of FT fibres was statistically significant (r = 0.84, p less than 0.01). This correlation indicates that muscle fibre composition can be estimated from muscle fibre conduction velocity measured noninvasively with surface electrodes.  相似文献   

16.
The relationship between surface myoelectric signal parameters and the level of voluntary or electrically elicited contractions was studied in 32 experiments on the tibialis anterior muscle of 22 healthy human subjects. Contractions were performed at 20 and 80% of the maximum voluntary contraction torque. Two levels of stimulation current were used, yielding, respectively, a maximum M wave and an M wave approximately 30% of the maximum. A four-bar electrode probe was used to detect single- and double-differential signals from which mean and median frequency of the power spectrum and average muscle fiber conduction velocity were estimated. Measurements obtained from voluntary contractions showed a positive correlation between contraction levels and both conduction velocity and spectral parameters. Conduction velocity increased by 21.2 +/- 10.9% when voluntary contraction level increased from 20 to 80% of the maximal value. Spectral parameters increased by similar amounts. Tetanic electrical stimulation was applied to a muscle motor point for 20 s via surface electrodes. Rectangular current pulses with 0.1-ms width and frequencies of 20, 25, 30, 35, and 40 Hz were used. Four types of behavior were observed with increasing stimulation level: 1) the two spectral parameters and conduction velocity both increased with stimulation in 15 experiments, 2) the two spectral parameters decreased and conduction velocity increased in 8 experiments, 3) the two spectral parameters and conduction velocity both decreased in 6 experiments, and 4) the two spectral parameters increased and conduction velocity decreased in 3 experiments. Conduction velocity increased with increasing stimulation current in 72% of the experiments, indicating a recruitment order similar to that of voluntary contractions, although it decreased in the other 28% of the cases, indicating a reverse order of recruitment. Contrary to what is observed in direct stimulation of nerves, motor units are not in general recruited in reverse order of size during electrical stimulation of a muscle motor point. This discrepancy may be the result of geometric factors or a lack of correlation between axonal branch diameter and the diameter of the parent motoneuron axon. Changes of conduction velocity and spectral parameters in opposite directions may be the result of the combined effect of the motor unit recruitment order and of the different tissue filtering function associated with the geometric location of the recruited motor units within the muscle.  相似文献   

17.
Motor units of the medial gastrocnemius (MG) and the single lateral gastrocnemius/soleus (LG/S) muscles of the opossum (Didelphis virginiana) were found to have uniformly slow contraction times relative to homologous muscles of the cat. Though a broad range of peak tetanic tensions was found among motor units from both muscles, most of the motor units were quite large relative to tension of the whole muscle. Comparison of the relative sizes of motor units showed that those of LG/S are significantly larger and slower than the units of MG. This suggests that the motor units of the two muscles may be differentially recruited during different behaviors. All of the MG and LG/S motor units were highly or moderately resistant to fatigue. Histochemical staining for NADH-diaphorase activity indicated consistently high levels of the enzyme in all of the fibers of both muscles. Apparently, all of the fast motor units consist of fast oxidative/glycolytic (FOG)-type muscle fibers. Our data provide functional evidence that the types of myofibrillar ATPase demonstrated by Brooke and Kaiser ('70), are not necessarily correlated to physiological classification of fiber types as slow oxidative (SO), fast oxidative/glycolytic (FOG), and fast glycolytic (FG) (Peter et al., '72). Perhaps compartmentalization of muscle fiber types may be a first step in the separation of muscles into multiple heads during the evolution of specialization to diverse locomotor habits among the mammals.  相似文献   

18.
The aim of this human study was to investigate the effect of experimentally induced muscle pain on the modifications of motor unit discharge rate during sustained, constant-force contractions. Intramuscular and multichannel surface electromyographic (EMG) signals were collected from the right and left tibialis anterior muscle of 11 volunteers. The subjects performed two 4-min-long isometric contractions at 25% of the maximal dorsiflexion torque, separated by a 20-min rest. Before the beginning of the second contraction, hypertonic (painful; right leg) or isotonic (nonpainful; left leg) saline was injected into the tibialis anterior. Pain intensity scores did not change significantly in the first 150 s of the painful contraction. Exerted torque and its coefficient of variation were the same for the painful and nonpainful contractions. Motor unit discharge rate was higher in the beginning of the nonpainful contraction than the painful contraction on the right side [means +/- SE, 11.3 +/- 0.2 vs. 10.6 +/- 0.2 pulses/s (pps); P < 0.01] whereas it was the same for the two contractions on the left side (11.6 +/- 0.2 vs. 11.5 +/- 0.2 pps). The decrease in discharge rate in 4 min was smaller for the painful (0.4 +/- 0.1 pps) than for the control contractions (1.3 +/- 0.1 pps). Initial value and decrease in motor unit conduction velocity were not different in the four contractions (right leg, 4.0 +/- 0.1 m/s with decrease of 0.6 +/- 0.1 m/s in 4 min; left leg, 4.1 +/- 0.1 m/s with 0.7 +/- 0.1 m/s decrease). In conclusion, stimulation of nociceptive afferents by injection of hypertonic saline did not alter motor unit conduction velocity but reduced the initial motor unit discharge rates and the difference between initial and final discharge rates during sustained contraction.  相似文献   

19.
Differences between motor units in hindlimb locomotor muscles of male and female Wistar rats were studied. The contractile and action potential properties of various types of motor units as well as proportions of these units in the medial gastrocnemius muscle were analyzed. Experiments were based on functional isolation and electrical stimulation of axons of single motor units. Composition of motor units was different for male and female subjects, with higher number of the fast fatigable and lower number of slow type units in male animals. The contraction and the half-relaxation times were significantly longer in male motor units, what might be due to differences in muscle size. Slower contraction of male motor units likely corresponds to lower firing rates of their motoneurons. On the other hand, no significant differences between sexes were observed with respect to force parameters of motor units (the twitch and the maximum tetanus forces), except the fast resistant units (higher force values in male muscles). The mass of the muscle was approximately 1.5 time bigger in male rats. However, the mean ratio of motor unit tetanus force to the muscle mass was almost twice smaller in this group, what indirectly suggests that muscles of male rats are composed of higher number of motor units. Finally, female muscles appeared to have higher fatigue resistance as the effect of higher proportion of resistant units (slow and fast resistant) and higher values of the fatigue index in respective motor unit types. The motor unit action potentials in female rats had slightly lower amplitudes and shorter time parameters although this difference was significant only for fast resistant units.  相似文献   

20.
The contractile characteristics of single motor units, isolated from rat plantaris muscles subjected to short-term (30 days) compensatory overload, were assessed to determine whether motor units in transition could be detected. In the control plantaris 88% of the motor units were classified as fast. After overload, a large decline (26.5%) in the proportion of typical fast motor units was noted. The estimated contribution of fast fatigable units to whole muscle tetanic tension (Po 200) also declined (from 55 to 25%), whereas that of fast intermediate motor units increased (from 33 to 55%). In the overloaded plantaris, motor units that exhibited unusual "sag" and contraction time characteristics were detected. These motor units, which could be further subdivided into two distinct types by a variety of indexes, exhibited characteristics intermediate to fast and slow units and therefore were termed "transitional." Transitional units accounted for 12% of the estimated whole muscle Po200 after overload. These experiments characterize novel classifications of motor units undergoing transformation and further detail the motor unit shift that accompanies compensatory overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号