首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hordatine A and aperidine have been previously isolated from beer as active ingredients, which bind to muscarinic M3 receptor. In addition, these compounds have exhibited antagonist activity against the α1A adrenoceptor. Although the relative structures of these two molecules have previously been determined, the absolute stereochemistry was unclear. Hence, to elucidate the absolute stereochemistry of natural hordatine A, we synthesized each enantiomer of hordatine A and aperidine from optically pure dehydrodi-p-coumaric acid. Several additional related compounds were also synthesized for structure–activity relationship studies. Chiral column HPLC analysis demonstrated that the absolute stereochemistry of natural hordatine A is (2S,3S), while based on the isomerization mechanism, the stereochemistry of aperidine is (2R,3S). The α1A adrenoceptor binding activity of (2R,3R)-hordatine A is the most potent among the enantiomeric pairs of hordatines and aperidines. Furthermore, the related, synthetic compound, (2R,3R)-methyl benzofurancarboxylate exhibits antagonist activity against the α1A adrenoceptor at a lower concentration than that of hordatine A.  相似文献   

2.
Two new eudesmane sesquiterpenoids artanoate (1) and eudesmanomolide (2) were isolated from the aerial parts of Artemisia anomala S. Moore. Their structures were elucidated as methyl (4R, 5S, 6S, 7S, 10R)-1-oxo-4, 6-dihydroxy-eudesma-2, 11 (13)-dien-12-oate (1) and (1R, 5R, 6R, 10R)-3, 13-diacetoxy-1-hydroxy-3, 7(11)-diene-12, 6-olide (2) on the basis of extensive spectroscopic analyses. Compound 1 showed cytotoxicity against HCT-8 cell lines with IC50 value of 9.13 μM, and compound 2 exhibited inhibitory activities against HCT-8 and A549 cell lines with IC50 values of 3.76 and 5.49 μM, respectively.  相似文献   

3.
Dolabellane diterpenoids, (1R,3E,7E,10S,11S,12R)-dolabella-3,7-dien-10,18-diol (1), (1R,3S,7E,11S,12R)-dolabella-4(16),7-dien-3,18-diol (2), (1R,7E,11S,12R)-18-hydroxydolabella-4(16),7-dien-3-one (3), (1R,3S,4S,7E,11S,12R)-3,4-epoxydolabella-7-en-18-ol (4), and (1R,3R,7E,11S,12R)-dolabella-4(16),7,18-trien-3-ol (5), were obtained from the ornamental plant Aglaia odorata. Their structures were characterized on the basis of spectroscopic analyses and further confirmed by X-ray diffraction. Compounds 1 and 5 showed weak cytotoxicity against the human myeloid leukemia HL-60, hepatocellular carcinoma SMMC-7721, and lung cancer A-549 cells.  相似文献   

4.

Aims and Background

While the temperature response of soil respiration (RS) has been well studied, the partitioning of heterotrophic respiration (RH) by soil microbes from autotrophic respiration (RA) by roots, known to have distinct temperature sensitivities, has been problematic. Further complexity stems from the presence of roots affecting RH, the rhizosphere priming effect. In this study the short-term temperature responses of RA and RH in relation to rhizosphere priming are investigated.

Methods

Temperature responses of RA, RH and rhizosphere priming were assessed in microcosms of Poa cita using a natural abundance δ13C discrimination approach.

Results

The temperature response of RS was found to be regulated primarily by RA, which accounted for 70 % of total soil respiration. Heterotrophic respiration was less sensitive to temperature in the presence of plant roots, resulting in negative priming effects with increasing temperature.

Conclusions

The results emphasize the importance of roots in regulating the temperature response of RS, and a framework is presented for further investigation into temperature effects on heterotrophic respiration and rhizosphere priming, which could be applied to other soil and vegetation types to improve models of soil carbon turnover.  相似文献   

5.
The absolute stereochemistry of fatty acid (FA) desaturation in Bombyx mori and Manduca sexta female pheromone glands (PGs), catalysed by FA-CoA Δ11-(Z)-desaturases, was determined using chiral, specifically labelled palmitic acids {[2,2,3,4,5,5,6,6,7,8,9,9,11,12−2H14]–(11R,12S)−1 and [2,2,3,4,5,5,6,6,7,8,9,9,11,12−2H14]–(11S,12R)−1)} as metabolic probes. The (11R,12S)−1 acid was converted in PGs of treated virgin females to labelled methyl (11Z)-hexadecenoate ([2H14]−2, Mw=282 Da). In incubations with the opposite enantiomer two deuterium atoms from (11S,12R)−1 were removed, yielding [2H12]−2 of Mw=280 Da. These results were confirmed by methylthiolation of [2H14]−2 and [2H12]−2 with a dimethyl disulfide/iodine mixture. Mass spectra of the DMDS adducts directly showed the distribution of deuterium atoms in the labelled methyl esters of 2. The data consistently indicate, that the studied insects possess Δ11-(Z)-desaturases with pro-(R) C(11)-H and pro-(R) C(12)-H stereospecificity, catalysing a syn-elimination of two hydrogen atoms.  相似文献   

6.
Four abietane diterpenoids, inflexanin C, inflexanin D, inflexuside A and inflexuside B, were isolated from the aerial parts of Isodon inflexus. Their respective structures were established by NMR, mass spectrometry and CD as (+)-(1S,4R,5S,7S,8S,10S,13S)-1,7,18-trihydroxy-abieta-9(11)-ene-12-one 1-monoacetate, (+)-(1S,4R,5S,10S,13S)-1,18-dihydroxy-abieta-7,9(11)-diene-12-one 1-monoacetate, (−)-(1S,5S,10S,11R,13R)-1,11,13-trihydroxy-abieta-8-ene-7-one 1-O-β-d-glucopyranoside and (−)-(1S,5S,10S,11R,13R)-1,11,13-trihydroxy-abieta-8-ene-7-one 1-O-(2-O-coumaroyl)-β-d-glucopyranoside. All compounds showed strong inhibitory activity against nitric oxide (NO) production in RAW264.7 lipopolysaccaride (LPS)-activated macrophages.  相似文献   

7.
Aspergilli express fusion proteins of an animal haem peroxidase domain with fatty acid dioxygenase (DOX) activity (∼ 600 amino acids) and a functional or non-functional hydroperoxide isomerase/cytochrome P450 domain (∼ 500 amino acids with EXXR and GPHXCLG motifs). 5,8-Linoleate diol synthases (LDS; ppoA) and 10R-DOX (ppoC) of Aspergillusnidulans and A. fumigatus belong to this group. Our objective was to determine the oxylipins formed from linoleic acid by A. clavatus and their mechanism of biosynthesis. A. clavatus oxidized linoleic acid to (8R)-hydroperoxylinoleic acid (8R-HPODE), (10R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE), and to (5S,8R)-dihydroxy- and (8R,11S)-dihydroxylinoleic acids (DiHODE) as major products. This occurred by abstraction of the pro-S hydrogen at C-8 and antarafacial dioxygenation at C-8 or at C-10 with double bond migration. 8R-HPODE was then isomerized to 5S,8R-DiHODE and to 8R,11S-DiHODE by abstraction of the pro-S hydrogens at C-5 and C-11 of 8R-HPODE, respectively, followed by suprafacial oxygenation. The genome of A. clavatus codes for two enzymes, which can be aligned with > 65% amino acid identity to 10R-DOX and 5,8-LDS, respectively. The 5,8-LDS homologue likely forms and isomerizes 8R-HPODE to 5S,8R-DiHODE. A third gene (ppoB) codes for a protein which carries a serine residue at the cysteine position of the P450 motif. This Cys to Ser replacement is known to abolish P450 2B4 catalysis and the hydroperoxide isomerase activity of 5,8-LDS, suggesting that ppoB of A. clavatus may not be involved in the biosynthesis of 8R,11S-DiHODE.  相似文献   

8.
The epimeric diterpenes (+)‐(1S,3E,7E,11S,12S)‐verticilla‐3,7‐dien‐12‐ol ( 1 ), isolated from Bursera suntui, and (+)‐(1S,3E,7E,11S,12R)‐verticilla‐3,7‐dien‐12‐ol ( 2 ), isolated from Bursera kerberi, gave the same Wagner‐Meerwein rearrangement product (?)‐(1E,4Z,8Z,11S,12R)‐phomacta‐1,(15)4,8‐triene ( 3 ). The Et2O:BF3‐induced transformations evidence that verticillenes and phomactanes, both containing the bicyclo[9.3.1]pentadecane skeleton, are biogenetically related through the verticillen‐12‐yl cation ( A + ), which also is a key intermediate in the biosynthetic pathways to generate antitumor taxanes. Molecular modeling using the Monte Carlo protocol, followed by density functional theory (DFT) geometry optimization employing the hybrid functionals B3LYP and B3PW91, both with the DGDZVP basis set, secured the configuration of 3 as followed from the good agreement between the calculated and experimental vibrational circular dichroism spectra. Similar DFT calculations allowed determining the absolute configuration of (+)‐(1R,4R,5R,8S,9S,11S,12R,15R)‐1,15:4,5:8,9‐triepoxyphomactane ( 9 ), which surprisingly derives from epoxidation of the second minimum energy conformer of 3 .  相似文献   

9.
Two diastereoisomers, 5R,6R-5-hydroxy-6(9α)-oxido-11α,15S-dihydroxyprost-13-enoic acid (7) and 5S,6S-5-hydroxy-6(9α)-oxido-11α,15S-dihydroxyprost-13-enoic acid (10) were synthesized for evaluation as possible biosynthetic intermediates in the enzymatic transformation of PGH2 or PGG2 into PGI2. The synthetic sequence entails the stereospecific reduction of the 9-keto function in PGE2 methyl ester after protecting the C-11 and C-15 hydroxyls as tbutyldimethylsilyl ethers. The resulting PGF derivative was epoxidized exclusively at the C-5 (6) double bond to yield a mixture of epoxides, which underwent facile rearrangement with SiO2 to yield the 5S,6S and 5R,6R-5-hydroxy-6(9α)-oxido cyclic ethers. It was found that dog aortic microsomes were unable to transform radioactive 9β-5S,6S[3H] or 9β-5R,6R[3H]-5-hydroxy-6(9α)-oxido cyclic ethers into PGI2. Also, when either diastereoisomer was included in the incubation mixture, neither isomer diluted the conversion of [1-14C]arachidonic acid into [1-14C]PGI2.  相似文献   

10.
Acid treatment of (13S)-(9Z,11E)-13-hydroperoxy-9,11-octadecadienoic acid in tetrahydrofuran-water solvent afforded mainly (11R,12R,13S)-(Z)-12,13-epoxy-11-hydroxy-9-octadecenoic acid, diastereomeric (Z)-11,12,13-trihydroxy-9-octadecenoic acids and four isomers of (E)-9,12,13(9,10,13)-trihydroxy-10(11)-octadecenoic acid. Other minor products were oxooctadecadienoic, (E)-9(13)-hydroxy-13(9)-oxo-10(11)-octadecenoic and (E)-12-oxo-10-dodecenoic acids. A heterolytic mechanism for acid catalysis was indicated, even though most of the products characterized also have been observed as a result of homolytic decomposition of the hydroperoxide via an oxy radical. Most of the products found in this study have been observed as metabolites of (13S)-(9Z,11E)-13-hydroperoxy-9,11-octadecadenoic acid in biological systems, and analogous compounds have been reported as metabolites of (12S)-(5Z,8Z,10E, 14Z)-12-hydroperoxy-5,8,10,14-hydroperoxy-5,8,10,14-eicosatetraenoic acid in either blood platelets or lung tissue.  相似文献   

11.
《Phytochemistry》1987,26(10):2781-2784
The investigation of Aristolochia brasiliensis and A. esperanzae afforded 12 clerodane derivatives, including the following six novel ones: rel (5S, 8R, 9S, 10R)-2-oxo-ent-3-cleroden-15-oic acid, rel (5S, 8R, 9S, 10R)-2-oxo-ent-clerod-3,13-dien-15-oic acid methyl ester, (5R, 8R, 9S, 10R)-ent-3-cleroden-15-oic acid, rel (5S, 8R, 9S, 10R)-ent-clerod-3,13-dien-15-oic acid, (2S, 5R, 8R, 9S, 10R)-2-hydroperoxy-ent-3-cleroden-15-oic acid methyl ester and (2S, 5R, 8R, 9S, 10R)-2-hydroperoxy-ent-clerod-3,13-dien-15-oic acid methyl ester. The structures were assigned on the basis of spectral data and derivatization by chemical reactions. The occurrence of this type of diterpene has not previously been reported in Aristolochiaceae.  相似文献   

12.
  • 1.1. The kinetic parameters of the cytosolic epoxide hydrolase were examined with two sets of spectrophotometric substrates. The (2S,3S)- and (2R,3R)-enantiomers of 4-nitrophenyl trans-2,3-epoxy-3-phenylpropyl carbonate had a Kmof 33 and 68 μm and a Vmax of 16 and 27 μmol/min/mg, respectively. With the (2S,3S)- and (2R,3R)- enantiomers of 4-nitrophenyl trans-2,3-epoxy-3-(4-nitrophenyl)propyl carbonate, cytosolic epoxide hydrolase had a KM of 8.0 and 15 μM and a Vmax of 7.8 and 5.0 μmol/min/mg, respectively.
  • 2.2. Glycidyl 4-nitrobenzoate had the lowest I50 of the compounds tested in the glycidyl 4-nitrobenzoate series (I50= 140 μM). The I50 of the (2R)-enantiomer was 3.7-fold higher. The inhibitor with the lowest i50 in the glycidol series, and the lowest I50 of any compound tested, was (2S,3S)-3-(4-nitrophenyl)glycidol (I50 = 13.0μM). It also showed the greatest difference in I50 between the enantiomers (330-fold).
  • 3.3. All enantiomers of glycidyl 4-nitrobenzoates and trans-3-phenylglycidols gave differential inhibition of cytosolic epoxide hydrolase. However, neither the (S,S)-/(S)- or (R,R)-/(R)-enantiomer always had the lower I50.
  • 4.4. Addition of one or more methyl groups to either enantiomer of glycidyl 4-nitrobenzoate resulted in increased I50. However, addition of a methyl group to C2 of either enantiomer of 3-phenylglycidol resulted in a decreased I50. Finally, when the hydroxyl group of trans-3-(4-nitrophenyl)glycidol was esterified the I50 of the (2S,3S)- but not the (2R,3R)-enantiomer increased.
  相似文献   

13.
The scope and limitation of circular dichroism (CD) correlations of several C-2′ substituted monocyclic monochiral, homodichiral and heterodichiral carotenoids have been investigated, aiming at the assignment of absolute configuration at C-2′ by using the diester and 2′-β-d-tetraacetylglucosyl derivative of (2′R)-plectaniaxanthin and a synthetic chiral C45-carotene as key references. The correlations are based on the additivity hypothesis, the conformational rule and a comparison of CD spectra, preferably conservative ones. Quantitative aspects of the conformational rule are considered. Substituent effects at C-2′ and C-1′ have been studied. Absolute configurations are suggested for (2′)-phleixanthophyll (3S,2′S)-2′-hydroxyflexixanthin, (3R,2′S)-myxoxanthophyll, (3S,2′S-4-ketomyxoxanthophyll (3R,2′S)-myxol-2′-O-methyl methylpentoside and (2R,2′S)-Cp. 473 from relevant CD correlations. The chiralities of (2′S)-4-ketophleixanthophyll and (2R,6R,2′S)-A.g. 471 are suggested from biogenetic considerations. A chemosystematic consideration of chirality and source is included.  相似文献   

14.
Seeds of broad bean (Vicia faba L.) contain a hydroperoxide-dependent fatty acid epoxygenase. Hydrogen peroxide served as an effective oxygen donor in the epoxygenase reaction. Fifteen unsaturated fatty acids were incubated with V. faba epoxygenase in the presence of hydrogen peroxide and the epoxy fatty acids produced were identified. Examination of the substrate specificity of the epoxygenase using a series of monounsaturated fatty acids demonstrated that (Z)-fatty acids were rapidly epoxidized into the corresponding cis-epoxy acids, whereas (E)-fatty acids were converted into their trans-epoxides at a very slow rate. In the series of (Z)-monoenoic acids, the double bond position as well as the chain length influenced the rate of epoxidation. The best substrates were found to be palmitoleic, oleic, and myristoleic acids. Steric analysis showed that most of the epoxy acids produced from monounsaturated fatty acids as well as from linoleic and α-linolenic acids had mainly the (R),(S) configuration. Exceptions were C18 acids having the epoxide group located at C-12/13, in which cases the (S),(R) enantiomers dominated. 13(S)-Hydroxy-9(Z),11(E)-octadecadienoic acid incubated with epoxygenase afforded the epoxy alcohol 9(S),10(R)-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid as the major product. Smaller amounts of the diastereomeric epoxy alcohol 9(R),10(S)-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid as well as the α,β-epoxy alcohol 11(R),12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoic acid were also obtained. The soluble fraction of homogenate of V. faba seeds contained an epoxide hydrolase activity that catalyzed the conversion of cis-9,10-epoxyoctadecanoic acid into threo-9,10-dihydroxyoctadecanoic acid.  相似文献   

15.
The aerial parts of Aruncus dioicus var. kamtschaticus afforded five new monoterpenoids (1-5): 4-(erythro-6,7-dihydroxy-9-methylpent-8-enyl)furan-2(5H)-one (1, aruncin A), 2-(8-ethoxy-8-methylpropylidene)-5-hydroxy-3,6-dihydro-2H-pyran-4-carboxylic acid (2, aruncin B), 4-(hydroxymethyl)-6-(8-methylprop-7-enyl)-5,6-dihydro-2H-pyran-2-one-11-O-β-d-glucopyranoside (3, aruncide A), (3S,4S,5R,10R)-3-(10-ethoxy-11-hydroxyethyl)-4-(5-hydroxy-7-methylbut-6-enyl)oxetan-2-one-11-O-β-d-glucopyranoside (4, aruncide B), and (3S,4S,5R,7R)-5-(9-methylprop-8-enyl)-1,6-dioxabicyclo[3,2,0]heptan-2-one-7-(hydroxymethyl)-12-O-β-d-glucopyranoside (5, aruncide C). Compound 2 showed potent cytotoxicity against Jurkat T cells with an IC50 value of 17.15 μg/mL. In addition, compounds 7 and 10 exhibited moderate antioxidant activity with IC50 values of 46.3 and 11.7 μM, respectively.  相似文献   

16.
Feeding experiments in cupric chloride-treated Pisum sativum pods and seedlings have demonstrated the preferential incorporation of (+)-(6aS,11aS)-[3H]maackiain over (?)-(6aR, 11aR)-[14C]maackiain into (+)-(6aR, 11aR)-pisatin, establishing that the 6a-hydroxylation of pterocarpans proceeds with retention of configuration. (+)- (6aR,11aR)-6a-hydroxymaackiain was similarly incorporated much better than (?)-(6aS,11aS)-6a- hydroxymaackiain. Where (?)-isomers were incorporated, optical activity measurements on the pisatin produced indicated significant synthesis of (?)-pisatin as well as the normal (+)-pisatin. 7,2′-Dihydroxy-4′,5′- methylenedioxyisoflav-3-ene and both enantiomers of 7,2′-dihydroxy-4′,5′-methylenedioxyisoflavan were poor precursors of pisatin.  相似文献   

17.
Abstract

Adenosine derivatives bearing in 2-position the (R,S)- phenylhydroxypropynyl chain were evaluated for their potency at human A2B adenosine receptor, stably transfected on CHO cells, on the basis that (R,S)-2-phenylhydroxy-propynyl-5′-N-ethylcarboxyamidoadenosine [(R,S)-PHPNECA] was found to be a good agonist at the A2B receptor subtype. Biological studies demonstrated that the presence of small alkyl groups in N 6-position of these molecules are well tolerated, whereas large groups abolished A2B potency. On the other hand, the presence of an ethyl group in the 4′-carboxamido function seems to be optimal, the (S)-PHPNECA resulting the most potent agonist at A2B receptor reported so far.  相似文献   

18.
(R,S)-Isoproterenol inhibits the formation of toxic granular tau oligomers associated with neuronal loss and development of cognitive disorders, and is an attractive drug candidate for Alzheimer’s disease. To elucidate its behavior in the brain by positron emission tomography, we synthesize (R,S)-[11C]isoproterenol by reductive alkylation of (R,S)-norepinephrine with [2-11C]acetone, which was in turn synthesized in situ under improved conditions afforded a decay-corrected radiochemical yield of 54%. The reductive alkylation using NaBH(OAc)3 as reducing agent in the presence of benzoic acid in DMSO/DMF (60:40 v/v) at 100 °C for 10 min gave (R,S)-[11C]isoproterenol in an 87% radio-high performance liquid chromatography (HPLC) analytical yield. HPLC separation using a strong cation exchange column, followed by pharmaceutical formulation in the presence of d/l-tartaric acid, afforded (R,S)-[11C]isoproterenol with a total radioactivity of 2.0 ± 0.2 GBq, a decay-corrected radiochemical yield of 19 ± 2%, chemical and radiochemical purities of 71% and >99%, respectively, and a molar activity of 100 ± 13 GBq/μmol (n = 3). The overall synthesis time from the end of the bombardment to pharmaceutical formulation was 48 min. A preliminary preclinical PET study in a rat demonstrated the potential of the radioligand for the evaluation of the penetration of (R,S)-isoproterenol in human brain.  相似文献   

19.
The destructive resolution of (6aR,S)-glaucine (Ic) was accomplished by oxidation of the (6aS)-(+)-enantiomer (Ia), using Fusarium solani ATCC 12823 to yield the unnatural alkaloid (6aR)-(−)-glaucine (Ib). Eighteen cultures were examined for their ability to metabolize the (6aR)-(−)-enantiomer (Ib), and Aspergillus flavipes ATCC 1030 was found to catalyze the stereoselective oxidation of this substrate to didehydroglaucine. Thus, it has been demonstrated that “R” and “S” organisms exist with regard to the oxidation of aporphines to didehydroaporphines.  相似文献   

20.
The structures of three new 11-monomethoxy pentacyclic oxindole alkaloids have been elucidated by chemical correlations with reserpinine: caboxine-A was assigned to the allo C19-méthyl α series: 3S, 4R, 7S, 19S; isocaboxine-A and B to the epi-allo C19-methyl α series and have, respectively, the following configurations 3R, 4S, 7S, 19S and 3R, 4S, 7R, 19S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号