首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the efficiency of the pentagalloic acid compound in inhibiting the metal ions and cell lines that mediate in low density lipoprotein (LDL) oxidation. Pentagalloic acid prolonged the lag time preceeding the onset of conjugated diene formation. In chemically induced LDL oxidation by Cu2+ plus hydrogen peroxide or peroxyl radical generated by 2, 2′-azo-bis (2-amidino propane) hydrochloride (AAPH), pentagalloic acid inhibited LDL oxidation as monitored by measuring the thiobarbituric acid reactive substances (TBARS), malondialdehyde (MDA), and gel electrophoretic mobility. The physiological relevance of the antioxidative activity was validated at the cellular level where pentagalloic acid inhibited mouse macrophage J774 and endothelial cell-mediated LDL oxidation. When compared with several other antioxidants, pentagalloic acid showed a much higher ability than naturally occuring antioxidants, α-tocopherol and ascorbic acid, and the synthetic antioxidant, probucol.  相似文献   

2.
《Free radical research》2013,47(4):267-278
The susceptibility of low density lipoprotein (LDL) to oxidative modification can be determined by analyzing the lag phase for initiation of diene formation in isolated LDL exposed to Cu2+. However, the applicability of this assay for clinical studies is limited by the requirement of a preparative ultracentrifugation of LDL and that the influence of water soluble antioxidants and other lipoproteins is not accounted for. The present paper describes a modification of this assay allowing determination of lag phase for lipoprotein diene formation in serum. The formation of dienes in serum exposed to Cu2+ begins following the consumption of serum α-tocopherol, correlates to the formation of thiobarbituric acid reactive substances (r = 0.987, n = 8), is inhibited by the addition of ascorbic acid and is absent in lipoprotein-deficient serum. It is also accompanied by an increased mobility of serum lipoproteins on agarose gel electrophoresis and with an ability of serum to displace isolated copper-oxidized LDL from binding sites mediating degradation in mouse peritoneal macrophages. The coefficient of variance of the analysis is below 3%. It is concluded that this technique allows analysis of lipoprotein oxidation susceptibility in serum samples and may prove to be useful in clinical analysis of the lipoprotein oxidation susceptibility.  相似文献   

3.
《FEBS letters》1997,413(2):202-204
The role of oxidatively modified LDL in the pathogenesis of atherosclerosis has been well documented. These studies have focused on modifications of lipid and protein parts of LDL. Recently desialylated LDL has received attention in relation to atherosclerosis and coronary artery disease. We examined the possible involvement of radical reactions in desialylation of LDL. Human LDL was subjected to oxidative damage using Cu2+ ion. As the conjugated dienes monitored by absorption at 234 nm increased, the content of sialic acid decreased steadily. Both the elevation of conjugated diene and the decrease of sialic acid were inhibited by β-mercaptoethanol, a typical radical scavenger. Besides, both butylated hydroxytoluene and a nitrogen atmosphere inhibited the decrease of sialic acid. These inhibition experiments suggested that sialic acid moieties in LDL were reactive toward radicals.  相似文献   

4.
《Free radical research》2013,47(4):317-327
We report on a new method for the determination of lipid oxidation in lipoproteins and plasma. The biological lipid system is preloaded with a fluorescent analog of phosphatidylcholine containing diphenylhexatriene (DPH) propionic acid covalently linked to the sn-2 position. When externally added, the respective phospholipid label (DPHPC) localizes to the surface monolayer of a lipoprotein. Under oxidative conditions (e.g. in the presence of Cu2+ ions) the fluorophore undergoes decomposition, resulting in a continuous decrease of fluorescence intensity which reflects the oxidation of a chemically defined phospholipid molecule with well defined localization. When incorporated into LDL particles, the kinetics of the decrease in DPHPC fluorescence intensity upon exposure to Cu2+ is very similar to that of conjugated diene accumulation. Furthermore, our assay can be applied to follow the oxidation of lipids in diluted serum and may also be developed into a suitable test system for clinical studies of susceptibility of plasma lipids to oxidation.  相似文献   

5.
《Free radical research》2013,47(12):1319-1330
Paraoxonase1 (PON1), one of antioxidant proteins to protect low density lipoprotein (LDL) from the oxidation, is known to lose its activity in the oxidative environment. Here, we attempted to elucidate the possible mechanisms for the oxidative inactivation of PON1, and to examine the capability of hydroxyl radicals-inactivated PON1 to prevent against LDL oxidation. Of various oxidative systems, the ascorbate/Cu2+ system was the most potent in inactivating the purified PON1 (PON1) as well as HDL-bound PON1 (HDL-PON1). In contrast to a limited inactivation by Fe2+ (2.0?μM), the inclusion of Cu2+ (0.1–1.0?μM) remarkably enhanced the inactivation of PON1 in the presence of ascorbate (0.5?mM). A similar result was also obtained with the inactivation of HDL-PON1. The inactivation of PON1 by ascorbate/Cu2+ was pevented by catalase, but not general hydroxyl radical scavengers, supporting Cu2+-catalyzed oxidative inactivation. In addition, Cu2+ alone inactivated PON1, either soluble or HDL-bound, by different mechanisms, concentration-dependent. Separately, there was a reverse relationship between the inactivation of PON1 and its preventive action against LDL oxidation during Cu2+-induced oxidation of LDL. Noteworthy, ascorbate/Cu2+-inactivated PON1, which was charaterized by the partial loss of histidine residues, expressed a lower protection against Cu2+-induced LDL oxidation, compared to native PON1. Based on these results, it is proposed that metal-catalyzed oxidation may be a primary factor to cause the decrease of HDL-associated PON1 activity under oxidative stress, and radicals-induced inactivation of PON1 may lead to the decrease in its antioxidant action against LDL oxidation.  相似文献   

6.
Lowering high cholesterol concentration decreases the probability of atherosclerotic-related pathology onset. MUFA and PUFA decrease total plasma and LDL cholesterol but PUFA may increase the susceptibility of LDL to undergo oxidative modifications thus becoming more atherogenetic. Olive oil, the predominant fat source in Mediterranean diet, may combine the advantages of both lowering cholesterol level and decreasing LDL susceptibility to oxidation. We studied the effects of feeding MUFA vs PUFA enriched diet on LDL composition and feature in hypercholesterolemic (IIb) patients Antioxidant values remained constant during the study while LDL fatty acids composition reflected the dietary intake: MUFA concentration increased 11% whereas PUFA decreased 10% after olive oil diet (p < 0.05). PUFA/MUFA ratio and the unsaturation index were lower at the end of MUFA-enriched diet. The challenge, in vitro, of oleate-enriched LDL with Cu2+ yielded to lower lag-phase (p < 0.05) in diene conjugated production; the same LDL gave lower lipid hydroperoxide contents after exposition to AAPH. We conclude that oleate-enriched LDL and with lower PUFA content were more resistant to oxidative modifications, as measured by different peroxidation indexes. This feature acquired with the diet may be an useful tool for lowering LDL oxidation and indirectly their atherogenicity.  相似文献   

7.
Summary

Lipid peroxidation and subsequent oxidative modification of low-density lipoprotein (LDL) have been implicated as causal events in atherosclerosis. Cu2+ may play an important role in LDL oxidation by binding to histidine residues of apolipoprotein B-100 (apo B) and initiating and propagating lipid peroxidation. To investigate the role of histidine residues, we used diethylpyrocarbonate (DEPC), a lipid-soluble histidine-specific modifying reagent. When LDL (0.1 mg protein/ml, or 0.2 µM) was incubated with DEPC (1 mM), at least 76 ± 7% of the histidine residues in apo B were modified. Treatment of LDL with DEPC led to an increase in the rate of Cu2+-induced initiation of lipid peroxidation (Ri), but a significant decrease in the rate of propagation. These changes resulted in an overall increased resistance of LDL to oxidation, with a significantly increased lag phase preceding the propagation phase of lipid peroxidation. In contrast to DEPC, ascorbate completely prevented the initiation of LDL oxidation (Ri = 0). Our data indicate that there are two types of copper/histidine binding sites on apo B: those facing the lipid core of the LDL particle, which mediate the propagation of lipid peroxidation and are modified by DEPC; and those found on the surface of the LDL particle exposed to the aqueous environment, which are responsible for mediating the initiation of lipid peroxidation and are modifiable by ascorbate in the presence of Cu2+.  相似文献   

8.
Although several plants belonging to the Bromeliaceae family have been used as heavy metal accumulators in biomonitoring studies, their accumulation ability has not been investigated. The present study obtained the accumulation rates of Ni2+, Cu2+, Pb2+ and Zn2+ in leaves of Tillandsia capillaris and revealed their effects on lipid peroxidation by measuring the Malondialdehyde content (MDA). Leaves of T. capillaris were exposed to different metallic solutions of Cu2+, Ni2+, Pb2+ and Zn2+ cations. After this exposure period, the accumulation of these ions was measured by Total Reflection X-Ray Fluorescence (TXRF) analysis with Synchrotron Radiation, and the MDA content was calculated. Data sets were evaluated by a one-way analysis of variance (ANOVA) and a fitted regression hyperbola model. The results showed significant differences in the accumulation efficiencies of the cations under study. In addition, the enrichment factor (EF) estimated for these cations was higher for Ni2+, suggesting a greater affinity of the plant with this element. Over time, all the metals under study caused significant increases in the MDA content, indicating their toxicity effects even in the most diluted solutions used in this study.  相似文献   

9.
There is accumulating evidence that LDL oxidation is essential for atherogenesis and antioxidants that prevent oxidation may either decelerate or reduce atherogenesis. Current study focused on the effect and mechanism of 3′,4′-dihydroxy-5,6,7,8-tetramethoxyflavone (DTF), a major metabolite of nobiletin (NOB, a citrus polymethoxylated flavone) on atherogenesis. We found DTF had stronger inhibitory activity than α-tocopherol on inhibiting Cu2+-mediated LDL oxidation measured by thiobarbituric acid-reactive substances assay (TBARS), conjugated diene formation and electrophoretic mobility. Monocyte-to-macrophage differentiation plays a vital role in early atherogenesis. DTF (10–20 μM) dose-dependently attenuated differentiation along with the reduced gene expression of scavenger receptors, CD36 and SR-A, in both PMA- and oxidized low-density lipoprotein (oxLDL)-stimulated THP-1 monocytes. Furthermore, DTF treatment of monocytes and macrophages led to reduction of fluorescent DiI-acLDL and DiI-oxLDL uptake. In conclusion, at least three mechanisms are at work in parallel: DTF reduces LDL oxidation, attenuates monocyte differentiation into macrophage and blunts uptake of modified LDL by macrophage. The effect is different from that of NOB, from which DTF is derived. This study thus significantly enhanced our understanding on how DTF may be beneficial against atherogenesis.  相似文献   

10.
Trolox C (Trolox), a water-soluble analogue of vitamin E lacking the phytyl chain, was investigated with respect to its effect on the oxidation of low-density lipoprotein (LDL). Trolox was added at different time points of LDL oxidation induced by Cu2+ and aqueous peroxyl radicals. In the case of Cu2+ -induced LDL oxidation, the effect of Trolox changed from antioxidant to prooxidant when added at later time points during oxidation; this transition occurred whenever α-tocopherol was just consumed in oxidizing LDL. Thus, in the case of Cu2+-dependent LDL oxidation, the presence of lipophilic antioxidants in the LDL particle is likely to be a prerequisite for the antioxidant activity of Trolox.

When oxidation was induced by peroxyl radicals, as a model of metal-independent oxidation, the effect of Trolox was always antioxidant, suggesting the importance of Cu2+/Cu+ redox-cycling in the prooxidant mechanism of Trolox. Our data suggest that, in the absence of significant amounts of lipophilic antioxidants, LDL becomes highly susceptible to oxidation induced by transition metals in the presence of aqueous reductants.  相似文献   

11.
Oxidative modification of lipoproteins may play a crucial role in the pathogenesis of atherosclerosis. This study was designed to examine whether increased lipid peroxides and/or oxidative susceptibility of plasma lipoproteins occur in patients with coronary artery disease. The levels of lipid peroxides, estimated as thiobarbituric acid-reactive substances (TBARS), were significantly greater in the plasma and very low density lipoprotein (VLDL) of symptomatic patients with coronary artery disease than in those of healthy persons, but the TBARS levels of low density lipoprotein (LDL) and high density lipoprotein (HDL) showed insignificant difference between patients and normals. To evaluate the oxidative susceptibility of lipoproteins, we employed in vitro Cu2+ oxidation of lipoproteins monitored by changes in fluorescenece, TBARS level, trinitrobenzene sulfonic acid (TNBS) reactivity, apolipoprotein immunoreactivity and agarose gel electrophoretic mobility. While VLDL and LDL of normal controls were oxidazed at 5–10 μM Cu2+, pooled VLDL and LDL of patients with coronary artery disease were oxidized at 1–2.5 μM Cu2+, i.e., at relatively lowver oxidative stress. At 5 μM Cu2+, VLDL and LDL of patients with coronary artery disease still showed at faster oxidation rate, judged by the rate of fluorescence increase, higher TBARS level, less TNBS reactivity, greater change in apo B immunoreactivity and higher electrophoretic mobility than those of normal controls. However, the difference on the oxidizability of HDL was insignificant for patients vs. normals. In conclusion, we have shown that plasm VLDL and LDL of patients with coronary artery disease are more susceptible to in vitro oxidative modification than those of health persons. The data suggest that enhanced oxidizability of plasma lipoproteins may be important factor influencing the development of coronary artery disease.  相似文献   

12.
In this work we report on a study of the morphological changes of LDL induced in vitro by metallic ions (Cu2+ and Fe3+). These modifications were characterized by transmission electron microscopy, nuclear magnetic resonance and the Z-scan technique. The degree of oxidative modification of LDL was determined by the TBARS and lipid hydroperoxides assays. It is shown that distinct pathways for modifying lipoproteins lead to different morphological transformations of the particles characterized by changes in size and/or shape of the resulting particles, and by the tendency to induce aggregation of the particles. There were no evidence of melting of particles promoted by oxidative processes with Cu and Fe.  相似文献   

13.
In an attempt to gain deeper understanding of the mechanism or mechanisms responsible for the protective effect of serum albumin against Cu2+-induced peroxidation of low density lipoprotein (LDL), we have examined the influence of the concentrations of bovine serum albumin (BSA), Cu2+ and LDL on the kinetics of peroxidation. Since the common method of monitoring the oxidation by continuous recording of the absorbance of conjugated dienes at 234 nm cannot be used at high BSA-concentrations because of the intensive absorption of BSA, we have monitored the time-dependent increase of absorbance at 245 nm. At this wavelength, conjugated dienes absorb intensely, whereas the background absorbance of BSA is low. Using this method, as well as the TBARS assay for determination of malondialdehyde, over a large range of BSA concentrations, we show that in many cases the influence of BSA on the kinetics of oxidation can be compensated for by increasing the concentration of copper. This reconciles the apparent contradiction between previously published data. Detailed studies of the kinetic profiles obtained under different conditions indicate that binding of Cu2+ to albumin plays the major role in its protective effect while other mechanisms contribute much less than copper binding. This conclusion is consistent with the less pronounced effect of BSA on the oxidation induced by the free radical generator AAPH. It is also shown that the copper-albumin complex is capable of inducing LDL oxidation, although the kinetics of the latter process is very different from that of copper-induced oxidation. Nevertheless, when compared to copper induced oxidation at similar concentration of the oxidation-promotor, the kinetics of oxidation induced by copper-albumin complex is very different and is consistent with a tocopherol mediated peroxidation, characteristic under low radical flux. Similar kinetics was observed for copper-induced oxidation only at much lower copper concentrations.  相似文献   

14.
Fast axonal transport of [3H]protein has been examined in bullfrog primary afferent neurons incubated in media supplemented with divalent cations that can act as agonists or antagonists of calcium ions. Incubation in calcium-free medium (CFM) had no effect on the rate of transport, but reduced the amount of transported [3H]protein by 40–60% relative to transport in the contralateral preparation maintained in normal medium. Preparations incubated in CFM supplemented with 1.8 mM SrCl2 (equimolar to the CaCl2 concentration in normal medium) carried out transport at control levels. Incubation conditions in which primary afferent somata were exposed to the Sr2+-medium while nerve trunks were maintained in CFM also supported normal transport. By contrast, selective exposure of nerve trunks to Sr2+-medium, and somata to CFM resulted in a reduced level of transport similar to that observed when the whole preparation was incubated in CFM. The depression of transport resulting from incubation in CFM was shown to be reversible when preparations were transferred from CFM to either Sr2+-supplemented CFM or to normal medium. By contrast to the effects of Sr2+, Ba2+ (up to 18 mM) did not substitute for Ca2+ in the transport process. When normal medium was supplemented with calciumantagonist cations, the amount of transport was depressed (Co2+ > Mn2+ >> Mg2+), with no concomitant effect on the rate of transport. Results of studies with Co2+, as well as those with Sr2+, suggest that a major locus of action of these cations is within the neuronal soma at a step subsequent to protein synthesis, and prior to the onset of protein translocation via the transport system. Thus, it is inferred that these divalent cations affect a calcium-dependent step that occurs during the initiation phase of fast axonal transport.  相似文献   

15.
The oxidative modification of LDL may play an important role in the early events of atherogenesis. Thus the identification of antioxidative compounds may be of therapeutic and prophylactic importance regarding cardiovascular disease. Copper-chlorophyllin (Cu-CHL), a Cu2+-protoporphyrin IX complex, has been reported to inhibit lipid oxidation in biological membranes and liposomes. Hemin (Fe3+-protoporphyrin IX) has been shown to bind to LDL thereby inducing lipid peroxidation. As Cu-CHL has a similar structure as hemin, one may assume that Cu-CHL may compete with the hemin action on LDL. Therefore, in the present study Cu-CHL and the related compound magnesium-chlorophyllin (Mg-CHL) were examined in their ability to inhibit LDL oxidation initiated by hemin and other LDL oxidizing systems. LDL oxidation by hemin in presence of H2O2 was strongly inhibited by both CHLs. Both chlorophyllins were also capable of effectively inhibiting LDL oxidation initiated by transition metal ions (Cu2+), human umbilical vein endothelial cells (HUVEC) and tyrosyl radicals generated by myeloperoxidase (MPO) in presence of H2O2 and tyrosine. Cu- and Mg-CHL showed radical scavenging ability as demonstrated by the diphenylpicrylhydracylradical (DPPH)-radical assay and estimation of phenoxyl radical generated diphenyl (dityrosine) formation. As assessed by ultracentrifugation the chlorophyllins were found to bind to LDL (and HDL) in serum. The present study shows that copper chlorophyllin (Cu-CHL) and its magnesium analog could act as potent antagonists of atherogenic LDL modification induced by various oxidative stimuli. As inhibitory effects of the CHLs were found at concentrations as low as 1 μmol/l, which can be achieved in humans, the results may be physiologically/therapeutically relevant.  相似文献   

16.
The effect of agents stimulating the oxidative burst (OB) in oil-elicited guinea pig peritoneal macrophages (MPs) on cyclic adenosine 3′,5′-monophosphate (cAMP) levels was examined. We found that: (i) Phorbol myristate acetate (PMA), the Ca2+ ionophore A23187, concanavalin A (Con A), wheat germ agglutinin (WGA), N-formyl-l-methionyl-l-leucyl-l-phenylalanine (FMLP) and opsonized zymosan, elevated cAMP levels two- to fivefold; (ii) the biologically inactive PMA analog, 4-O-methyl-PMA, was proportionally less effective than PMA in stimulating cAMP accumulation; (iii) increased levels of cAMP were evident after 10 min of incubation with the stimulants, in the presence of the phosphodiesterase inhibitor 3-isobutyl methylxanthine (IBX); (iv) basal cAMP levels in MPs increased proportionally with the extracellular Ca2+ concentration; (v) the cAMP-elevating effect of all stimulants (with the exception of A23187) was more pronounced in low Ca2+ media, associated with lower basal cAMP levels. A23187 did not elevate cAMP levels in the absence of extracellular Ca2+; (vi) short-term incubation of MPs with arachidonic acid and with the arachidonic acid precursor, linoleic acid, induced an increase in the level of cAMP; (vii) the elevations in cAMP levels induced by OB stimulants were enhanced, not blocked, by mepacrine, 5,8,11,14-eicosatetraynoic acid (ETYA), indomethacin or aspirin, demonstrating that prostaglandin (PG) synthesis was not involved; (viii) the cAMP-elevating effect of arachidonic and linoleic acids was blocked by ETYA and indomethacin, indicating that it was mediated by PGs. The mechanism by which OB stimulants elevate cAMP levels could not be determined but changes in the cellular level of Ca2+ seem to play a pivotal role.  相似文献   

17.
We investigated the effect of Cu2+ catalyzed peroxidation on the status of tryptophan (Trp) in protein moieties in HDL and LDL together with its effect on apolipoprotein-lipid association. Incubation of HDL with Cu2+ resulted in a rapid decrease of Trp fluorescence intensity with time with a concomitant increase in Trp maximum emission wavelength (λmax). LDL incubated with Cu2+ also showed a rapid decrease in Trp fluorescence intensity with time, but with no associated increase in λmax. The status of apo HDL and apo LDL was investigated after 4 h oxidation (4h-oxHDL and 4h-oxLDL respectively). With 4h-oxHDL, the shift in λmax was not associated with protein dissociation but rather with protein crosslinking and formation of larger HDL species. Progressive increase in λmax was observed in 4h-oxHDL with increase in guanidine hydrochloride (GuHCl) concentration; this was not due to protein dissociation. Although oxidation of LDL did not produce an increase in λmax, a significant increase in wavelength was observed when 4h-oxLDL was exposed to increasing concentration of GuHCl. SDS-polyacrylamide gel electrophoresis and nondenaturing gradient gel electrophoresis of the 4h-oxLDL indicated formation of smaller molecular weight protein fragments that were still associated with LDL. Ultracentrifugation of oxidized LDL in the presence and absence of GuHCl showed no dissociated protein. In summary, these data indicate the following: (a) lipid peroxidation has a direct effect on Trp residues in both HDL and LDL, (b) oxidation of HDL is associated with conformational change in apo HDL, crosslinking and formation of larger particles, (c) oxidized HDL have a more stable apolipoprotein-lipid association than native HDL, (d) oxidation of LDL is associated with changes in apo B, that by fluorescence are apparent only in presence of GuHCl and results in fragmentation of apo B without dissociation of protein or change in particle size, and (e) stability of apolipoprotein-lipid association is comparable in oxidized and native LDL.  相似文献   

18.
Low-density lipoprotein (LDL) oxidation is the primary event in atherosclerosis, and LDL lipoperoxidation leads to modifications in apolipoprotein B-100 (apo B-100) and lipids. Intermediate species of lipoperoxidation are known to be able to generate amino acid-centered radicals. Thus, we hypothesized that lipoperoxidation intermediates induce protein-derived free radical formation during LDL oxidation. Using DMPO and immuno-spin trapping, we detected the formation of protein free radicals on LDL incubated with Cu2+ or the soybean lipoxidase (LPOx)/phospholipase A2 (PLA2). With low concentrations of DMPO (1 mM), Cu2+ dose-dependently induced oxidation of LDL and easily detected apo B-100 radicals. Protein radical formation in LDL incubated with Cu2+ showed maximum yields after 30 min. In contrast, the yields of apo B-100 radicals formed by LPOx/PLA2 followed a typical enzyme-catalyzed kinetics that was unaffected by DMPO concentrations of up to 50 mM. Furthermore, when we analyzed the effect of antioxidants on protein radical formation during LDL oxidation, we found that ascorbate, urate, and Trolox dose-dependently reduced apo B-100 free radical formation in LDL exposed to Cu2+. In contrast, Trolox was the only antioxidant that even partially protected LDL from LPOx/PLA2. We also examined the kinetics of lipid radical formation and protein radical formation induced by Cu2+ or LPOx/PLA2 for LDL supplemented with α-tocopherol. In contrast to the potent antioxidant effect of α-tocopherol on the delay of LDL oxidation induced by Cu2+, when we used the oxidizing system LPOx/PLA2, no significant protection was detected. The lack of protection of α-tocopherol on the apo B-100 and lipid free radical formation by LPOx may explain the failure of vitamin E as a cardiovascular protective agent for humans.  相似文献   

19.
Oxidized low density lipoprotein (LDL) has a major impact in the development of atherosclerosis. Risk for oxidative modification of LDL is usually determined indirectly by measuring the capability of LDL to resist radical insult. We compared three different methods quantifying the antioxidative capacity of LDL ex vivo in dyslipidemic patients with coronary heart disease. Plasma samples were obtained from two double-blinded cross-over trials. The duration of all interventions (placebo, lovastatin 60 mg/day, RRR-α-tocopherol 300 mg/day and lovastatin + RRR-α-tocopherol combined) was 6 weeks. The total radical capturing capacity of LDL (TRAP) in plasma was determined using 2,2-azobis(2,4-dimethyl-valeronitrile) (AMVN)-induced oxidation, and measuring the extinction time of chemiluminescence. TRAP was compared to the variables characterizing formation of conjugated dienes in copper-induced oxidation. Also the initial concentrations and consumption times of reduced α-tocopherol (α-TOH) and ubiquinol in AMVN-induced oxidation were determined.

Repeatability of TRAP was comparable to that of the lag time in conjugated diene formation. Coefficient of variation within TRAP assay was 4.4% and between TRAP assays 5.9%. Tocopherol supplementation produced statistically significant changes in all antioxidant variables except those related to LDL ubiquinol. TRAP increased by 57%, the lag time in conjugated diene formation by 34% and consumption time of α-TOH by 88%. When data of all interventions were included in the analyses, TRAP correlated with the lag time (r = 0.75, p < 10-6), with LDL α -TOH (r = 0.50, p < 0.001) and with the consumption time of α-TOH (r = 0.58, p < 0.0001). In the baseline data, the associations between different antioxidant variables were weaker. TRAP correlated with the lag time (r = 0.55, p < 0.001) and α-TOH consumption time (r = 0.48, p < 0.05), and inversely with apolipoprotein Al (r = -0.51, p < 0.05). Lag time at the baseline did not correlate with ubiquinol or tocopherol parameters, or with any plasma lipid or lipoprotein levels analyzed. Lovastatin treatment did not significantly affect the antioxidant capacity of LDL. In conclusion, TRAP reflects slightly different properties of LDL compared to the lag time. Thus, LDL TRAP assay may complement the other methods used to quantify the antioxidant capacity of LDL. However, TRAP and the lag time react similarly to vitamin E supplementation.  相似文献   

20.
The presence of Ca2+ is essential for survival in culture of fully grown oocytes isolated from mouse ovaries but not for survival of small, meiotically incompetent oocytes, metaphase II oocytes, and early embryos. Ninety percent of fully grown ovarian oocytes die within 2 hr when cultured in calcium-free medium (CFM). CFM death does not occur if other cations (1 mM La3+ or 10 mM Sr2+, but not 12 mM Mg2+ nor 1 mM D-600) replace Ca2+ in the medium. Sensitivity to CFM is progressively acquired by the oocyte during the growth phase, in parallel with the acquisition of meiotic competence, and is lost after 2 hr of culture in the presence of at least 0.5 mM Ca2+. The loss of sensitivity to CFM during in vitro culture is not related to the concomitant spontaneous resumption of meiosis, since the oocyte becomes resistant to CFM even if germinal vesicle breakdown is prevented by the addition of dibutyryl cAMP to the culture medium. Some hypotheses are put forward to explain the peculiar and transient high calcium requirements of fully grown oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号