首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The aim of this study was to asses vertical and seasonal variations of inorganic carbon allocation into macromolecules by phytoplankton population in an humic and acidic lake (Lake Vassivière) and in a clearwater lake (Lake Pavin). Biochemical fractionation was done by consecutive differential extractions in order to separate proteins, polysaccharides, lipids and low molecular weight compounds (LMW) by virtue of their relative solubilities in different extraction solvents.Independent of depth and season, the principal photosynthetic end products were polysaccharides followed by proteins, LMW and lipids. However, inorganic carbon allocation into macromolecules varied, in these two lakes, with depth and with the taxonomic composition of phytoplankton. Carbon allocation into polysaccharides decreased with increasing depth, especially in the brown-colored humic lake, and Diatoms, showed high C incorporation into polysaccharides.  相似文献   

2.
The aim of this study was to compare vertical and seasonal variationsof inorganic carbon allocation into macromolecules by the phytoplanktonpopulation in a eutrophic lake (Lake Aydat) and an oligo-mesotrophiclake (Lake Pavin). Biochemical fractionation was conducted byconsecu tive differential extractions in order to separate proteins,polysaccharides, lipids, and low molecular weight compounds(LMW). The ratio of light absorption at480 and 665 nm by acetoneextracts of phytoplankton pigments was used as an indicatorof the nutritional statusof natural phytoplankton populations.Our results show that in Lake Aydat, the main photosyntheticend productswere poly saccharides, whereas in Lake Pavin, radioactivitywas predominantly incorporated into the protein fraction. Moreover,the seasonal cycles of mixing and stratification in these twolakes affected the pattern of 14C incorporation into LMW andmacromolecules. An increase in the relative synthesis of proteinsoccurred during stratification periods. It was linked to anincrease in temperature and nutrient limitation further complicatedby the shift in species composition of the populations. Differences recorded both between the two lakes of different trophicstatus and between seasons confirm that the proportion of carbonincorporated into proteins might be a useful indicator of thephysio logical status of phvtoplankton communities.  相似文献   

3.
Alkenones are long-chain methyl/ethyl ketones (mainly in length of C37-C39) with two to four trans-unsaturated bonds produced by several kinds of marine haptophytes such as Emiliania huxleyi (coccolithophore). The physiological functions and metabolic profile of alkenones are not well known yet. In this study, we focused on elucidating how alkenones contribute to energy storage and cellular carbon partitioning in relation to other cellular components. For the purpose, we analyzed the changes in carbon allocation among various cell components like lipids, alkenones, proteins, and polysaccharides between cells exposed to N-sufficient (+N) and N-limited conditions (?N) in E. huxleyi CCMP 2090. Finally, the alkenones were found to function as main storage lipids and their accumulation was clearly increased by ?N, whereas triacylglycerols (TAGs) were barely detected under any N conditions. The mobilization of carbons into alkenones was stimulated by ?N from 15% under +N to 27% under ?N. However, photosynthetic C allocation into other components was suppressed by ?N, showing that percent C allocation into fatty acids, proteins, and polysaccharides was decreased from 9, 46, and 6.8% under +N to 7, 25, and 4.5% under ?N, respectively. In addition, fatty acids such as 16:0, 18:0, 18:1, and 18:2 became dominant under ?N while 18:5 became dominant under +N conditions, with no significant change in 22:6. This study revealed that alkenones function as primary carbon storage pools especially under ?N condition in E. huxleyi CCMP 2090 and that N supply triggers a dynamic change in carbon metabolism by modifying membrane lipid composition and regulating carbon allocation preferences.  相似文献   

4.
Photosynthetic carbon allocations into different macromolecular classes provide important clues regarding physiological conditions of phytoplankton and the nutritional status of potential grazers. The productivity experiments for photosynthetic carbon allocations were conducted at three light depths (100, 30, and 1 %) for nine different stations in the northern Bering Sea as an important gateway into the western Arctic Ocean, using the 13C isotope tracer technique to determine the major controlling factors and physiological conditions of phytoplankton. The photosynthetic carbon allocations into different macromolecular classes [Low molecular weight metabolites (LMWM), lipids, proteins, and polysaccharides] of primary producers were determined based on the productivity experiments. LMWM and polysaccharides had similar vertical patterns whereas lipids and proteins had reverse vertical patterns at all the stations, which is consistent with other results under different light depths. The overall average allocations were 37.9 (SD = ± 18.8 %), 26.6 (SD = ± 17.4 %), 26.5 (SD = ± 20.7 %), and 9.1 % (SD = ± 7.8 %), for LMWM, lipids, proteins, and polysaccharides, respectively. Based on a general pattern of macromolecular production in the northern Bering Sea, phytoplankton was in a physiologically transitional phase from an unlimited status to a nitrogen-deficient condition during our cruise period, 2007. However, more in situ field measurements for macromolecular production under a variety of environmental conditions will improve the understanding of the physiological responses of phytoplankton to the ongoing environmental changes in the Arctic Ocean.  相似文献   

5.
Positive root pressure in Vitis rotundifolia Michx. cv. Noble was employed to quantify diurnal and temporal changes in the chemical profile of xylem exudate. Xylem fluid osmolarity (7.2 to 16.8 m M ), water flux (8.2 to 18.5 ml h−1) and solute flux (0.7 to 2.2 mmol h−1) from a cut spur exhibited a diurnal pattern with maxima during midday and minima at night. Total osmolarity was similar to the sum of all organic and inorganic entitites quantified, indicating that the major solutes have been identified. Total amino acid and organic acid concentration were about equal (2 to 7 m M ), and sugars accounted for a minor fraction of the total profile (<0.2 m M ). Glutamine represented ca 80% of the organic N and 70% of the total N transported in the xylem fluid. A circadian rhythm in water flux and net flux of most organic and inorganic entities was observed with maxima during midday and minima at night. The increase in xylem fluid osmolarity occurring during midday was primarily a consequence of increased organic acid (oxalic, citric, tartaric, malic and succinic acids) and ion (NH4+, No3, P and Ca) concentration. A diurnal cycle in amino acid concentration was less clear. The concentration of individual organic and inorganic entities varied asynchronously with time. Xylem solute was comprised of 80% organic and 20% inorganic components when collected 5 min to 2 h after the commencement of bleeding, but the ratio of organic to inorganic components fell to about 50% after 7 days.  相似文献   

6.
Histological autoradiographs and biochemical analyses show that 14C-labelled microalgae (diatoms, chlorophytes and dinoflagellates) are used by the soft coral Dendronephthya sp. Digestion of the algae took place at the point of exit of the pharynx into the coelenteron. Ingestion and assimilation of the labelled algae depended on incubation time, cell density, and to a lesser extent on species-specificity. 14C incorporation into polysaccharides, proteins, lipids and compounds of low molecular weight was analysed. The 14C-labelling patterns of the four classes of substances varied depending on incubation time and cell density. 14C incorporation was highest into lipids and proteins. Dissolved labelled algal metabolites, released during incubation into the medium, contributed between 4% and 25% to the total 14C activity incorporated. The incorporated microalgae contributed a maximum of 26% (average of the four species studied) to the daily organic carbon demand, as calculated from assimilation rates at natural eucaryotic phytoplankton densities and a 1 h incubation period. The calculated contribution to the daily organic carbon demand decreased after prolonged incubation periods to about 5% after 3 h and to 1–3% after 9 h. Thus the main energetic demand of Dendronephthya sp. has to be complemented by other components of the seston. Received in revised form: 17 April 2001 Electronic Publication  相似文献   

7.
Ice algae are a case study in photo-autotrophic growth and metabolism under chronically low temperature and irradiance. We measured the allocation of 14C-labelled photosynthate among major classes of intracellular carbon (low molecular weight compounds, or LMW; lipid; protein; and polysaccharide) and found light-dependent changes in allocation broadly similar to photo-adaptive responses known in phytoplankton at higher temperatures; average relative allocation to protein varied inversely (10–37%) and allocation to lipids and polysaccharides directly (10–23%, and 16–21%, respectively) with the sub-inhibiting irradiance levels we employed (3.5–33.0 μE.M−2. s−1). Unlike many observations at higher temperatures, ours indicated (on average) a large and light-insensitive allocation to LMW (ca. 40%) and a greater light-sensitivity in lipid than in polysaccharide allocation. At the higher incubation irradiances, resembling in situ levels typical of areas with little (0–5 cm) snow cover, allocation to protein was often low (10–13%) compared to many observations of nutrient-sufficient or light-limited phytoplankton. Allocation to protein increased substantially (to ca. 40%) during a period of intensified tidal mixing, and assimilation numbers also attained a maximum at about the same time. Such dynamics show that the ice algae are not constrained to their often protein-poor allocation by the constantly low ambient temperature. Rather, they display marked shifts in metabolism consistent with major changes in light and inorganic nutrient supply, driven in part by the physical process of tidal mixing.  相似文献   

8.
Specific dynamic action (SDA) and incorporation of carbon into protein, lipids, and polysaccharides were measured in copepodite CV and adult female Calanus finmarchicus during the spring/summer growth season in Raunefjorden, Norway. Organic carbon from the food (Rhodomonas baltica) was allocated differently in the two developmental stages. Copepodites incorporated 50-80% of the carbon into lipids and only 7-22% into protein. Carbon incorporation into protein was higher in females, constituting 23% in May at 7 °C and 34% in June at 11 °C. This resulted in significant differences in the magnitude of SDA, measured as the increase in oxygen consumption during and after an 8-h feeding event. On average, the rate of carbon incorporation into protein was 2 times higher and the magnitude of SDA was 2.5 times higher in females than in copepodites. There was a significant correlation between the magnitude of SDA and carbon incorporation into protein suggesting that SDA is linked to protein synthesis. When comparing ATP equivalents of the magnitude of SDA with ATP equivalents of the total amount of carbon incorporated, more energy was produced than consumed. This supports speculations of an energy demand associated with a rapid turnover of newly synthesised protein.  相似文献   

9.
The uptake of carbon into primary and major products of photosynthesisin natural populations has been determined in 4 h and 24 h time-seriesexperiments at 50% of the incident radiation. During activegrowth the communities assimilated the largestproportion ofcarbon into poiysaccharides at all time intervals and the amountof label incorporated into primary products was approximatelyequal to or exceeded that in the proteins and lipids. When therewas no growth the synthesis of protein was the dominant metabolicprocess. The community in experiment 6 appeared to be in anactive phase, however, in one experiment the uptake of carboninto protein was faster than with no growth and during the darkperiod actively growing cells maintained protein productionby utilizing carbon stored in the polysaccharides only; stationarygrowth cells required both primary products and polysacchaiidcsfor protein synthesis at night.  相似文献   

10.
We used a device called a Phototron to measure the effects of UV radiation on the cosmopolitan algae, Cryptomonas erosa, grown in continuous cultures. In the Phototron, we investigated changes in photosynthetic parameters (Pmax – specific production rate at optimal light intensity; – initial slope of the linear portion of the Photosynthesis-Irradiance curve; and – the convexity or rate of bending) and carbon allocation as a function of irradiance at three different environmentally-realistic doses of UV radiation in unconditioned (no prior UV exposure) and conditioned algae (15 d previous UV exposure). For unconditioned control algae, Pmax-Total was lower, although not significantly, than the two highest UV treatments. For conditioned control algae, Pmax-Total was higher, although not significantly, than all UV treatments. Our data suggest that short term (4 h) exposure to low levels of UV (8.09 W m–2 unweighted) does not affect Pmax-Total in C. erosa, but does change the proportion of carbon allocated to lipids and proteins. Also, comparisons of lipids, polysaccharides and proteins as a percent of total carbon uptake between unconditioned and conditioned algae indicate that exposure history to UV radiation can have a negative impact on carbon allocation to lipids and proteins, in a wetland alga species that is crucial to the efficient transfer of energy through freshwater food webs.  相似文献   

11.
Carbon from glycerol and palmitate, but not significantly from five other carbon sources tested, was incorporated into lipids by suspensions of non-growing Mycobacterium leprae organisms. However, of the five other substrates three-citrate, glucose and pyruvate-were taken up. Nongrowing Mycobacterium microti and Mycobacterium avium incorporated carbon into lipids from most simple carbon sources tested unless they were obtained from growth media including palmitate or from experimentally infected animals, when incorporation of carbon into lipids from carbon sources except palmitate occurred up to 20 times more slowly. Thus, utilization of simple carbon appeared to be repressible while utilization of the one fatty acid tested, palmitate, appeared constitutive. In M. leprae, carbon from glycerol was incorporated into the glycerol moiety of acylglycerols but not into the fatty acid moieties or into free fatty acids. M. microti and M. avium incorporated carbon from simple carbon sources into fatty acids, even (though very slowly) when these organisms were obtained from host tissue. Isocitrate lyase, malate synthase and acetate kinase were detected in M. leprae. However acetyl-CoA synthetase was not detectable and phosphoacetylase was deficient; thus, M. leprae may be incapable of making acetyl-CoA from acetate. Phosphotransacetylase was readily detected in both host-grown M. avium and M. microti.  相似文献   

12.
Ice algae are a case study in photo-autotrophic growth and metabolism under chronically low temperature and irradiance. We measured the allocation of 14C-labelled photosynthate among major classes of intracellular carbon (low molecular weight compounds, or LMW; lipid; protein; and polysaccharide) and found light-dependent changes in allocation broadly similar to photo-adaptive responses known in phytoplankton at higher temperatures; average relative allocation to protein varied inversely (10–37%) and allocation to lipids and polysaccharides directly (10–23%, and 16–21%, respectively) with the sub-inhibiting irradiance levels we employed (3.5–33.0 μE·M−2·s−1). Unlike many observations at higher temperatures, ours indicated (on average) a large and light-insensitive allocation to LMW (ca. 40%) and a greater light-sensitivity in lipid than in polysaccharide allocation. At the higher incubation irradiances, resembling in situ levels typical of areas with little (0–5 cm) snow cover, allocation to protein was often low (10–13%) compared to many observations of nutrient-sufficient or light-limited phytoplankton. Allocation to protein increased substantially (to ca. 40%) during a period of intensified tidal mixing, and assimilation numbers also attained a maximum at about the same time. Suck dynamics show that the ice algae are not constrained to their often protein-poor allocation by the constantly low ambient temperature. Rather, they display marked shifts in metabolism consistent with major changes in light and inorganic nutrient supply, driven in part by the physical process of tidal mixing.  相似文献   

13.
The Biogenesis of Ethylene in Penicillium Digitatum   总被引:5,自引:4,他引:1  
The origin of the ethylene carbon skeleton in Penicillium digitatum appears to be intimately associated with the Krebs cycle acids, particularly the middle carbon atoms of dicarboxylic acids. Among the other compounds studied, certain carbon atoms of beta-alanine, propionic acid, and methionine can be incorporated into the ethylene carbon skeleton presumably by way of an indirect route via the Krebs cycle acids. Carbon atoms of acrylic acid, particularly C-2, were also found to be incorporated into the ethylene skeleton. Inhibition of ethylene but not respiratory CO(2) formation in the mold by cis-3-chloroacrylic acid at 1 x 10(-3)m pointed to the possibility that acrylic acid may be related to the precursor for ethylene.  相似文献   

14.
Plant growth involves the coordinated distribution of carbon resources both towards structural components and towards storage compounds that assure a steady carbon supply over the complete diurnal cycle. We used 14CO2 labelling to track assimilated carbon in both source and sink tissues. Source tissues exhibit large variations in carbon allocation throughout the light period. The most prominent change was detected in partitioning towards starch, being low in the morning and more than double later in the day. Export into sink tissues showed reciprocal changes. Fewer and smaller changes in carbon allocation occurred in sink tissues where, in most respects, carbon was partitioned similarly, whether the sink leaf assimilated it through photosynthesis or imported it from source leaves. Mutants deficient in the production or remobilization of leaf starch exhibited major alterations in carbon allocation. Low‐starch mutants that suffer from carbon starvation at night allocated much more carbon into neutral sugars and had higher rates of export than the wild type, partly because of the reduced allocation into starch, but also because of reduced allocation into structural components. Moreover, mutants deficient in the plant's circadian system showed considerable changes in their carbon partitioning pattern suggesting control by the circadian clock.  相似文献   

15.
Cyanobacteria are a model photoautotroph and a chassis for the sustainable production of fuels and chemicals. Knowledge of photoautotrophic metabolism in the natural environment of day/night cycles is lacking, yet has implications for improved yield from plants, algae and cyanobacteria. Here, a thorough approach to characterizing diverse metabolites—including carbohydrates, lipids, amino acids, pigments, cofactors, nucleic acids and polysaccharides—in the model cyanobacterium Synechocystis sp. PCC 6803 (S. 6803) under sinusoidal diurnal light:dark cycles was developed and applied. A custom photobioreactor and multi‐platform mass spectrometry workflow enabled metabolite profiling every 30–120 min across a 24‐h diurnal sinusoidal LD (‘sinLD’) cycle peaking at 1600 μmol photons m?2 sec?1. We report widespread oscillations across the sinLD cycle with 90%, 94% and 40% of the identified polar/semi‐polar, non‐polar and polymeric metabolites displaying statistically significant oscillations, respectively. Microbial growth displayed distinct lag, biomass accumulation and cell division phases of growth. During the lag phase, amino acids and nucleic acids accumulated to high levels per cell followed by decreased levels during the biomass accumulation phase, presumably due to protein and DNA synthesis. Insoluble carbohydrates displayed sharp oscillations per cell at the day‐to‐night transition. Potential bottlenecks in central carbon metabolism are highlighted. Together, this report provides a comprehensive view of photosynthetic metabolite behavior with high temporal resolution, offering insight into the impact of growth synchronization to light cycles via circadian rhythms. Incorporation into computational modeling and metabolic engineering efforts promises to improve industrially relevant strain design.  相似文献   

16.
Green nonsulfur-like bacteria (GNSLB) in hot spring microbial mats are thought to be mainly photoheterotrophic, using cyanobacterial metabolites as carbon sources. However, the stable carbon isotopic composition of typical Chloroflexus and Roseiflexus lipids suggests photoautotrophic metabolism of GNSLB. One possible explanation for this apparent discrepancy might be that GNSLB fix inorganic carbon only during certain times of the day. In order to study temporal variability in carbon metabolism by GNSLB, labeling experiments with [13C]bicarbonate, [14C]bicarbonate, and [13C]acetate were performed during different times of the day. [14C]bicarbonate labeling indicated that during the morning, incorporation of label was light dependent and that both cyanobacteria and GNSLB were involved in bicarbonate uptake. 13C-labeling experiments indicated that during the morning, GNSLB incorporated labeled bicarbonate at least to the same degree as cyanobacteria. The incorporation of [13C]bicarbonate into specific lipids could be stimulated by the addition of sulfide or hydrogen, which both were present in the morning photic zone. The results suggest that GNSLB have the potential for photoautotrophic metabolism during low-light periods. In high-light periods, inorganic carbon was incorporated primarily into Cyanobacteria-specific lipids. The results of a pulse-labeling experiment were consistent with overnight transfer of label to GNSLB, which could be interrupted by the addition of unlabeled acetate and glycolate. In addition, we observed direct incorporation of [13C]acetate into GNSLB lipids in the morning. This suggests that GNSLB also have a potential for photoheterotrophy in situ.  相似文献   

17.
Mobilization of the reserve β-1,3-glucan (chrysolaminaran) in N-limited cells of the marine diatom Skeletonema costatum (Grev.) Cleve (Bacillariophyceae) was investigated. The diatom was grown in pH-regulated batch cultures with a 14:10-h light:dark cycle until N depletion. In a pulse-chase experiment, the cells were first incubated in high light (200 μmol photons·m 2·s 1) with 14C-bicarbonate until dissolved inorganic carbon was exhausted. Unlabeled bicarbonate (1 mM) was then added, and the cells were incubated in the dark and subsequently in low light (20 μmol photons·m 2·s 1) with additions of 40 μM NH4 + . In the 14C pulse phase with high light and N depletion, β-1,3-glucan accumulated and accounted for 85% of incorporated 14C. In the subsequent 14C chase phases, added NH4 + was assimilated at an N-specific rate of 0.11 h 1 in both the dark and low light, and in both cases it caused a significant mobilization of β-1,3-glucan (dark, 26%; low light, 19%). Biochemical fractionation of organic 14C showed that free amino acids were most rapidly labeled in the early stage of NH4 + assimilation, whereas proteins and polysaccharides were labeled more rapidly after 1.2 h. Analysis of the cellular free amino acids strongly indicated that de novo biosynthesis was occurring, with a Gln:Glu ratio increasing from 0.4 to 10 within 1.2 h. After the NH4 + was exhausted, the cellular pools of glucan and amino acids became constant or slowly decreased. In another experiment, N-limited cells were first incubated in high light until dissolved inorganic carbon was exhausted and were further incubated in high light with 150 μM NH4 + under inorganic carbon limitation. Added NH4 + was assimilated at an N-specific rate of 0.023 h 1, and cellular β-1,3-glucan decreased by 15% within 6 h. Hence, β-1,3-glucan was mobilized during NH4 + assimilation, even though inorganic carbon was modifying the metabolic rates. The results provide new evidence of β-1,3-glucan supplying essential precursors for biosynthesis of amino acids and other components in S. costatum in both the dark and subsaturating light and even saturating light under inorganic carbon limitation.  相似文献   

18.
Summary Investigations of the bloom-forming arctic diatom Thalassiosira antarctica COMBER show that at all temperature and light conditions tested, the 14C-incorporation rates in lipids averaged 20% and in carbohydrates 12%. The percentage of 14C in proteins and small metabolites ranged from 30% to 50% respectively, with contrary trends. The production rate of protein per generation time was not temperature and light dependent. The changes in percent carbon incorporated into proteins may be due to enhanced metabolite synthesis at high irradiances and/or temperatures above 0° C.  相似文献   

19.
Under nutrient deplete conditions, diatoms accumulate between 15% to 25% of their dry weight as lipids, primarily as triacylglycerols (TAGs). As in most eukaryotes, these organisms produce TAGs via the acyl‐CoA dependent Kennedy pathway. The last step in this pathway is catalyzed by diacylglycerol acyltransferase (DGAT) that acylates diacylglycerol (DAG) to produce TAG. To test our hypothesis that DGAT plays a major role in controlling the flux of carbon towards lipids, we overexpressed a specific type II DGAT gene, DGAT2D, in the model diatom Phaeodactylum tricornutum. The transformants had 50‐ to 100‐fold higher DGAT2D mRNA levels and the abundance of the enzyme increased 30‐ to 50‐fold. More important, these cells had a 2‐fold higher total lipid content and incorporated carbon into lipids more efficiently than the wild type (WT) while growing only 15% slower at light saturation. Based on a flux analysis using 13C as a tracer, we found that the increase in lipids was achieved via increased fluxes through pyruvate and acetyl‐CoA. Our results reveal overexpression of DAGT2D increases the flux of photosynthetically fixed carbon towards lipids, and leads to a higher lipid content than exponentially grown WT cells.  相似文献   

20.
The role of iron and light in controlling photosynthate productionand allocation in phytoplankton populations of the Atlanticsector of the Southern Ocean was investigated in April–May1999. The 14C incorporation into five biochemical pools (glucan,amino acids, proteins, lipids and polysaccharides) was measuredduring iron/light perturbation experiments. The diurnal Chla-specific rates of carbon incorporation into these pools didnot change in response to iron addition, yet were decreasedat 20 µmol photons m–2 s–1, an irradiancecomparable with the one at 20–45 m in situ depth. Thissuggests that the low phytoplankton biomass encountered (0.1–0.6µg Chl a L–1) was mainly caused by light limitationin the deep wind mixed layer (>40 m). Regional differencesin Chl a-specific carbon incorporation rates were not foundin spite of differences in phytoplankton species composition:at the Antarctic Polar Front, biomass was dominated by a diatompopulation of Fragilariopsis kerguelensis, whereas smaller cells,including chrysophytes, were relatively more abundant in theAntarctic Circumpolar Current beyond the influence of frontalsystems. Because mixing was often in excess of 100 m in thelatter region, diatom cells may have been unable to fulfil theircharacteristically high Fe demand at low average light conditions,and thus became co-limited by both resources. Using a modelthat describes the 14C incorporation, the consistency was shownbetween the dynamics in the glucan pool in the field experimentsand in laboratory experiments with an Antarctic diatom, Chaetocerosbrevis. The glucan respiration rate was almost twice as highduring the dark phase as during the light phase, which is consistentwith the role of glucan as a reserve supplying energy and carbonskeletons for continued protein synthesis during the night.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号