共查询到20条相似文献,搜索用时 7 毫秒
1.
Studies on lipid peroxidation in normal and tumour tissues. The Yoshida rat liver tumour. 总被引:2,自引:0,他引:2 下载免费PDF全文
K H Cheeseman S Emery S P Maddix T F Slater G W Burton K U Ingold 《The Biochemical journal》1988,250(1):247-252
Reduced rates of lipid peroxidation have been observed in Yoshida hepatoma cells and microsomes when compared with appropriate control tissue (normal rat liver) under the same pro-oxidant conditions. The pro-oxidant conditions used were incubation with NADPH+ADP+iron or ascorbate+iron or exposure to gamma-irradiation. As previously shown with the Novikoff hepatoma, the relative concentrations of alpha-tocopherol and polyunsaturated fatty acids are important in conferring resistance to lipid peroxidation in the Yoshida hepatoma. Furthermore, NADPH-cytochrome c reductase and the NADPH-cytochrome P-450 electron transport chain, which are involved in the initiation and propagation of certain types of lipid peroxidation, are found at very much reduced levels in the Yoshida hepatoma. The relative importance of these aberrations are discussed. 相似文献
2.
3.
《The International journal of biochemistry》1981,13(4):489-493
- 1.1. Copper deficiency in rats results in a 2-fold increase in the level of lipid hydroperoxides in liver mitochondria and microsomes.
- 2.2. The specific activity of cupro-zinc Superoxide dismutase decreases up to 30% while that of the mangano-enzyme is not changed.
- 3.3. Glutathione peroxidase activity as well as catalase activity are suppressed in both cytosol and mitochondrial fractions from copper-deficient rat liver.
4.
Non-enzymatic and enzymatically-driven lipid peroxidation processes were studied in rat liver nuclei and isolated nuclear membranes, by evaluating the formation of thiobarbituric acid-chromophore, free malondialdehyde, lipofuscin-like pigments, and the degradation of polyunsaturated fatty acids of the nuclear membrane lipids. The results obtained show that: (1) both non-enzymatic and enzymatically driven lipid peroxidation processes are operative in cell nuclei and isolated nuclear membranes; (2) only for isolated nuclear membranes, a good qualitative and up to a great extent quantitative correlation between malondialdehyde and lipofuscin-like pigment formation was obtained; (3) there is a qualitative but not quantitative correlation between malondialdehyde formation and polyunsaturated fatty acid degradation; (4) lipid peroxidation processes in isolated nuclear membranes and intact nuclei have an essentially identical kinetic behaviour. No statistical differences in the relative increases in the concentrations of malondialdehyde and lipofuscin-like pigments or in the degradation of polyunsaturated fatty acids were obtained, when the two systems were compared, except in the presence of NADPH-ADP-Fe3+, which induced a significantly larger degradation of polyunsaturated fatty acids in isolated nuclear membranes than in intact nuclei, and (5) no malondialdehyde-DNA fluorescent adduct formation was observed in any of the experimental groups studied, as inferred from the characteristics of the fluorescent spectra of lipofuscin-like pigments extracted from incubated nuclear preparations. 相似文献
5.
The aim of this study was to set up a simple procedure for assessing lipid peroxidation (L.P.) and testing the activity of antioxidant compounds. L. P. was determined in rat brain homogenates by measuring the endogenous and stimulated accumulation of malonaldehyde (MDA). MDA was assayed by an HPLC method. Homogenates spontaneously formed appreciable amounts of MDA. The addition of increasing concentrations of FeCl2 resulted in a linear accumulation of MDA, up to 16.6-fold at 50 M. An organic form of iron (Fe-saccharate) was less active on MDA formation (11.4-fold increase at 100 M). The addition of xanthine-xanthine oxidase resulted in only a 2.4-fold increase in MDA formation. Various antioxidant or chelating compounds effectively inhibited L.P., with IC50 between 0.1 M (phenoxazine) and 4–50 M (-tocopherol). Their potencies depended on the iron concentration and time of preincubation with the homogenates. In conclusion, this is a simple and reliable procedure for studying L.P. and inhibiting agents, provided that the experimental conditions are carefully assessed. 相似文献
6.
Julian Swierczynski Doris Mayer 《The Journal of steroid biochemistry and molecular biology》1996,58(5-6):599-603
Administration of dehydroepiandrosterone (DHEA), a steroid hormone of the adrenal cortex which acts as a peroxisome proliferator and hepatocarcinogen in the rat, caused an increase in NADPH-dependent lipid peroxidation in mitochondria isolated from the liver, kidney and heart, but not from the brain. The effect of DHEA on rat liver mitochondrial lipid peroxidation became discernible after feeding steroid-containing diet (0.6% w/w) for 3 days, and reached maximal levels between 1 and 2 weeks. DHEA in the concentration range 0.001–0.02% did not significantly increase lipid peroxidation compared to the control. Lipid peroxidation was significantly enhanced in animals given a diet containing ≥ 0.05% DHEA. The addition of DHEA in the concentration range 0.1–100 μM to mitochondria isolated from control rats had no effect on lipid peroxidation. It seems, therefore, that the steroid effect is mediated by an intracellular process. Our data indicate that induction of mitochondrial membrane lipid peroxidation is an early effect of DHEA administration at pharmacological doses. 相似文献
7.
8.
Dihydroxyfumaric acid induced lipid peroxidation in rat liver microsomes. This reaction was heat-insensitive contrary to the mitochondrial peroxidation reported in the previous paper, and was enhanced by p-chloromercuribenzoate. Additions of Fe2+ and Fe3+ stimulated both the lipid peroxidation and the disappearance of dihydroxyfumaric acid. On the other hand, addition of Mn2+ or Cu2+, which stimulated the disappearance of dihydroxyfumaric acid, inhibited the lipid peroxidation. Hydroxyl radical scavengers, superoxide dismutase and catalase had no effect on this lipid peroxidation and dihydroxyfumaric acid disappearance. The cytochrome p-450 content decreased about 70 % in parallel with the lipid peroxidation. 相似文献
9.
The stimulatory effects of asbestos on NADPH-dependent lipid peroxidation in rat liver microsomes. 下载免费PDF全文
Lipid peroxidation in rat liver microsomes induced by asbestos fibres, crocidolite and chrysotile, is greatly increased in the presence of NADPH, leading to malondialdehyde levels comparable with those induced by CCl4, a very strong inducer of lipid peroxidation. This synergic effect only occurs during the first minutes and could be explained by an increase or a regeneration of the ferrous active sites of asbestos by NADPH, which in turn could rapidly be prevented by the adsorption of microsomal proteins on the surface of the fibres. It is not inhibited by superoxide dismutase, catalase and mannitol, indicating that oxygen radicals are not involved in the reaction. It is also not inhibited by desferrioxamine, indicating that it is not due to a release of free iron ions in solution from the fibres. Lipid peroxidation in NADPH-supplemented microsomes is also greatly increased upon addition of magnetite. This could be linked to the presence of ferrous ions in this solid iron oxide, since the ferric oxides haematite and goethite are completely inactive. 相似文献
10.
V E Kagan E A Serbinova A Safadi J D Catudioc L Packer 《Biochemical and biophysical research communications》1992,186(1):74-80
Microsomal NADPH-driven electron transport is known to initiate lipid peroxidation by activating oxygen in the presence of iron. This pro-oxidant effect can mask an antioxidant function of NADPH-driven electron transport in microsomes via vitamin E recycling from its phenoxyl radicals formed in the course of peroxidation. To test this hypothesis we studied the effects of NADPH on the endogenous vitamin E content and lipid peroxidation induced in liver microsomes by an oxidation system independent of iron: an azo-initiator of peroxyl radicals, 2,2'-azobis (2,4-dimethylvaleronitrile), (AMVN), in the presence of an iron chelator deferoxamine. We found that under conditions NADPH: (i) inhibited lipid peroxidation; (ii) this inhibitory effect was less pronounced in microsomes from vitamin E-deficient rats than in microsomes from normal rats; (iii) protected vitamin E from oxidative destruction; (iv) reduced chromanoxyl radicals of vitamin E homologue with a 6-carbon side-chain, chromanol-alpha-C-6. Thus NADPH-driven electron transport may function both to initiate and/or inhibit lipid peroxidation in microsomes depending on the availability of transition metal catalysts. 相似文献
11.
Pregnancy-associated decrease in lipid peroxidation in rat liver 总被引:1,自引:0,他引:1
A significant decrease in the hepatic malonaldehyde content and lipid peroxidation, induced by ascorbate, NADPH and cumene hydroperoxide, was observed during gestation in the rat. Lipid peroxidation tends to reach normal levels 3 days post partum. While a significant decrease in the lipid peroxidation of hepatic mitochondria was observed with ascorbate and NADPH, that of microsomes was affected by ascorbate and cumene hydroperoxide. The observed decrease in lipid peroxidation during pregnancy seems to be due to lesser phospholipid content, a lower degree of unsaturation in lipids, and an increase in the level of antioxidants. 相似文献
12.
Rat and rabbit liver microsomes catalyze an NADPH-cytochrome P-450 reductase-dependent peroxidation of endogenous lipid in the presence of the chelate, ADP-Fe3+. Although liver microsomes from both species contain comparable levels of NADPH-cytochrome P-450 reductase and cytochrome P-450, the rate of lipid peroxidation (assayed by malondialdehyde and lipid hydroperoxide formation) catalyzed by rabbit liver microsomes is only about 40% of that catalyzed by rat liver microsomes. Microsomal lipid peroxidation was reconstituted with liposomes made from extracted microsomal lipid and purified protease-solubilized NADPH-cytochrome P-450 reductase from both rat and rabbit liver microsomes. The results demonstrated that the lower rates of lipid peroxidation catalyzed by rabbit liver microsomes could not be attributed to the specific activity of the reductase. Microsomal lipid from rabbit liver was found to be much less susceptible to lipid peroxidation. This was due to the lower polyunsaturated fatty acid content rather than the presence of antioxidants in rabbit liver microsomal lipid. Gas-liquid chromatographic analysis of fatty acids lost during microsomal lipid peroxidation revealed that the degree of fatty acid unsaturation correlated well with rates of lipid peroxidation. 相似文献
13.
In this work, we studied the influence of wholebody gamma irradiation (800 rads) upon malonaldehyde (MDA) content in plasma, erythrocyte, brain, heart, lung, kidney, spleen, liver, thymus and bone marrow. MDA levels were increased in all studied samples, except lung; the highest increases were observed in the most radiosensitive organs (bone marrow, thymus, spleen) and not in those continuously exposed to high concentrations of molecular oxygen (lungs, erythrocytes). Comparison of the variations of MDA levels in plasma, kidneys and spleen to those in the other tissues lead to the hypothesis that MDA is released from tissues in plasma and trapped from plasma in kidney and spleen. The variations in plasma and erythrocyte were found not to be related to each other. 相似文献
14.
T J Player D J Mills A A Horton 《Biochemical and biophysical research communications》1977,78(4):1397-1402
Purified outer membrane proteins O-8 and O-9 were able to bind to the peptidoglycan sacculi in sodium dodecyl sulfate solution. Binding was stimulated by lipopolysaccharide, that of protein O-9 being stimulated more remarkably. Proteins which had been heated in sodium dodecyl sulfate solution did not bind to the peptidoglycan sacculi even in the presence of lipopolysaccharide, while heated lipopolysaccharide stimulated the binding of non-heated proteins. The removal by pronase of the lipoprotein covalently bound to the peptidoglycan sacculi did not change the protein binding ability of the sacculi. 相似文献
15.
Effect of thiols on lipid peroxidation in rat liver microsomes 总被引:1,自引:0,他引:1
The stimulatory or inhibitory effects of various thiol compounds on in vitro lipid peroxidation by iron-ascorbate in rat liver microsomes were determined. Glutathione had no measurable pro-oxidant capacity, in contrast, it protected against lipid peroxidation. N-Acetyl l-cysteine and S-methyl-glutathione had no effect on in vitro lipid peroxidation. l-Cysteine stimulated lipid peroxidation and also of d-penicillamine and dl-dithiothreitol the pre-oxidant capacity predominated the anti-oxidant capacity. Cysteamine afforded a pronounced protection against in vitro lipid peroxidation. In contrast to the labile character of the glutathione dependent protection, the protection by cysteamine was not affected by heat-pretreatment of the liver microsomes or alkylating protein sulfhydryl groups by N-ethyl maleimide. Again in contrast to glutathione, the protection against in vitro microsomal lipid peroxidation by cysteamine was not reduced after in vivo lipid peroxidation induced by CC14. This suggests that even after the process of lipid peroxidation has been started, administration of cysteamine might still be beneficial. 相似文献
16.
17.
In the presence of Fe-3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1, 3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. The results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe-3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe-2+ by oxygen. 相似文献
18.
Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes 总被引:6,自引:0,他引:6
Polyunsaturated fatty acids (PUFA) are vulnerable to peroxidative attack. Protecting PUFA from peroxidation is essential to utilize their beneficial effects in health and in preventing disease. The antioxidants vitamin E, t-butylhydroxy toluene (BHT) and t-butylhydroxy anisole (BHA) inhibited ascorbate/Fe2+-induced lipid peroxidation in rat liver microsomes. In addition, a number of spice principles, for example, curcumin (5–50 µM) from turmeric, eugenol (25–150 µM) from cloves and capsaicin (25–150 µM) from red chillies inhibited lipid peroxidation in a dose-dependent manner. Zingerone from ginger inhibited lipid peroxidation at high concentrations (> 150 µM) whereas linalool (coriander), piperine (black pepper) and cuminaldehyde (cumin) had only marginal inhibitory effects even at high concentrations (600 µM). The inhibition of lipid peroxidation by curcumin and eugenol was reversed by adding high concentrations of Fe2+. 相似文献
19.
Microsomes and mitochondria isolated from Morris hepatomas 3924A (fast-growing) and 44 (slow-growing) and Ehrlich ascites tumour cells exhibit a NADPH-dependent peroxidation of endogenous lipids lower than that of the corresponding fractions from rat liver. Moreover, the O2- and ascorbate-dependent lipid peroxidations are decreased in microsomes from the two Morris hepatomas. The peroxidative activity appears to be inversely related to the growth rate of the tumours. It is suggested that the low susceptibility of tumour membranes to peroxidative agents may be a factor responsible for the high mitotic activity of this tissue. 相似文献