首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional reconstruction of the connector of bacteriophage phi 29 has been obtained from tilt series of negatively stained tetragonal ordered aggregates under low-dose conditions and up to a resolution of (1/1.8) nm-1. These connectors are built up as dodecamers of only one structural polypeptide (p10). Two connectors form the crystal unit cell, each one facing in the opposite direction with respect to the plane of the crystal and partially overlapping. The main features of the two connectors that build the unit cell were essentially the same, although they were negatively stained in slightly different ways, probably due to their situations with respect to the carbon-coated support grid. The main features of the phi 29 connector structure revealed by this three-dimensional reconstruction are: the existence of two clearly defined domains, one with a diameter of around 14 nm and the other narrower (diameter approximately equal to 7.5 nm); an inner hole running all along the structure (around 7 to 8 nm in height) with a cylindrical profile and an average diameter of 4 nm; a general 6-fold symmetry along the whole structure and a 12-fold one in the wider domain; a clockwise twist of the more contrasted regions of both domains from the narrower towards the wider domain (the direction of DNA encapsidation). These features are compatible with an active role for the connector in the process of DNA packaging.  相似文献   

2.
BACKGROUND: Head-tail connectors are viral substructures that are very important in the viral morphogenetic cycle, having roles in the formation of the precursor capsid (prohead), DNA packaging, tail binding to the mature head and in the infection process. Structural information on the connector would, therefore, help us to understand how this structure is related to a multiplicity of functions. RESULTS: Recombinant bacteriophage phi29 connectors have been crystallized in two-dimensional aggregates. An average projection image and a three-dimensional map have been obtained at 8 A and 10 A resolution, respectively, from untilted and tilted images of vitrified specimens of the two-dimensional crystals. The average projection image reveals a central mass surrounding a channel with 12 appendages protruding from the central mass. The three-dimensional map reveals a wide domain surrounded by 12 appendages that interact with the prohead vertex, and a narrow domain that interacts with the bacteriophage tail. At the junction of the two domains, 12 smaller appendages are visualized. A channel runs along the axis of the connector structure and is sufficiently wide to allow a double-stranded DNA molecule to pass through. CONCLUSIONS: The propeller-like structure of the phi29 connector strengthens the notion of the connector rotating during DNA packaging. The groove formed by the two lanes of large and small appendages may act as a rail to prevent the liberation of the connector from the prohead vertex during rotation.  相似文献   

3.
The connector protein of bacteriophage T3, p8, has been overexpressed in Escherichia coli. Purification of the oligomers built by several copies of p8 reveals a mixed population of dodecamers and tridecamers. The percentages of these two types of oligomers differ in every culture growth, indicating that assembly of this protein depends upon the conditions of the expression system. Those cultures that generated a majority of dodecamers allowed, after purification of the connectors, the two-dimensional crystallization of the dodecamers in a tetragonal arrangement, while the tridecamers did not form crystals. The processing and averaging of several images of frozen-hydrated crystals and their internal phase comparison shows that the crystals are arranged in a P42(1)2 space group, with cell unit dimensions of 165 x 165 A. The three-dimensional reconstruction generated with images of crystals ranging from 0 degrees to 60 degrees tilt reveals a wide domain surrounded by 12 protrusions and a narrow domain that serves to interact with the tail of the bacteriophage. A channel runs along the connector wide enough to allow the translocation of a double-stranded DNA molecule into the prohead. The general structure of the T3 connector is very similar to those obtained for other nonrelated bacteriophages and strongly suggests that the shape of this important viral structure is intimately related to its function.  相似文献   

4.
The three-dimensional structure of the bacteriophage T7 head-to-tail connector has been obtained at 8A resolution using cryo-electron microscopy and single-particle analysis from purified recombinant connectors. The general morphology of the T7 connector is that of a 12-folded toroidal homopolymer with a channel that runs along the longitudinal axis of the particle. The structure of the T7 connector reveals many structural similarities with the connectors from other bacteriophages. Docking of the atomic structure of the varphi29 connector into the three-dimensional reconstruction of T7 connector reveals that the narrow, distal region of the two oligomers are almost identical. This region of the varphi29 connector has been suggested to be involved in DNA translocation, and is composed of an alpha-beta-alpha-beta-beta-alpha motif. A search for alpha-helices in the same region of the T7 three-dimensional map has located three alpha-helices in approximately the same position as those of the varphi29 connector. A comparison of the predicted secondary structure of several bacteriophage connectors, including among others T7, varphi29, P22 and SPP1, reveals that, despite the lack of sequence homology, they seem to contain the same alpha-beta-alpha-beta-beta-alpha motif as that present in the varphi29 connector. These results allow us to suggest a common architecture related to a basic component of the DNA translocating machinery for several viruses.  相似文献   

5.
Viral connectors are essential components of the DNA packaging machinery. They interact with nucleic acids and other viral components to translocate DNA inside the viral head. We have attempted to locate the different structural and functional domains of the phage Phi29 connector using a combination of approaches to generate different antigenic probes. Complexes of native connectors with either monoclonal or monospecific antibodies were studied by immunoelectron microscopy and image averaging methods. The data were merged in a model of the connector domain structure at 2-3 nm resolution. This epitope mapping provides a general outline of the folding architecture of the connector polypeptide, following a complicated threading that places the amino and carboxyl-terminals in close alignment in the narrower domain at 2-3 nm from the top of the connector. The appendages are built up by a long and highly immunogenic sequence (amino acid residues 153 to 206). The RNA binding domain forms part of the top of the narrow conical area of the connector, a flexible region that undergoes structural changes during viral morphogenesis. The DNA binding domain is located not far away, 2-3 nm below, in the outer side of the narrow conical part. The precise location of the functional domains of the connector, as well as their relative positions provide the first experimental framework for understanding the connector function.  相似文献   

6.
The bacteriophage T3 connector has been purified from overexpressed protein in Escherichia coli, harboring a plasmid containing the gene encoding p8 protein. The connector, which is composed of 12 copies of p8, has been crystallized in two-dimensional sheets and studied by electron microscopy from negatively stained specimens. A two-dimensional Fourier filtering and averaging procedure was performed with crystalline specimens. In addition, single particle averaging techniques were used with other preparations. The average images obtained from these two approaches gave similar results. A three-dimensional reconstruction from two-dimensional crystals of T3 connectors was obtained by collecting several sets of tilted views and using standard Fourier procedures. The resolution of the three-dimensional map was 1.65 nm. The reconstructed connector shows two main domains: a wider one with 12 small units in the periphery and with an external diameter of 14.9 nm, and a smaller one with 8.5 nm diameter. The height of the reconstructed connector has been determined to be around 8.5 nm. The reconstruction clearly shows an internal open channel running along the longitudinal axis of the particle and having an average diameter of 3.7 nm.  相似文献   

7.
BACKGROUND: The voltage-gated potassium channel Shaker from Drosophila consists of a tetramer of identical subunits, each containing six transmembrane segments. The atomic structure of a bacterial homolog, the potassium channel KcsA, is much smaller than Shaker. It does not have a voltage sensor and other important domains like the N-terminal tetramerization (T1) domain. The structure of these additional elements has to be studied in the more complex voltage-gated channels. RESULTS: We determined the three-dimensional structure of the entire Shaker channel at 2.5 nm resolution using electron microscopy. The four-fold symmetric structure shows a large and a small domain linked by thin 2 nm long connectors. To interpret the structure, we used the crystal structures of the isolated T1 domain and the KcsA channel. A unique density assignment was made based on the symmetry and dimensions of the crystal structures and domains, identifying the smaller domain as the cytoplasmic mass of Shaker containing T1 and the larger domain as embedded in the membrane. CONCLUSIONS: The two-domain architecture of the Shaker channel is consistent with the recently proposed "hanging gondola" model for the T1 domain, putting the T1 domain at a distance from the membrane domain but attached to it by thin connectors. The space between the two domains is sufficient to permit cytoplasmic access of ions and the N-terminal inactivation domain to the pore region. A hanging gondola architecture has also been observed in the nicotinic acetylcholine receptor and the KcsA structure, suggesting that it is a common element of ion channels.  相似文献   

8.
The three-dimensional crystal structure of the bacteriophage phi29 connector has been solved and refined to 2.1A resolution. This 422 kDa oligomeric protein connects the head of the phage to its tail and translocates the DNA into the prohead during packaging. Each monomer has an elongated shape and is composed of a central, mainly alpha-helical domain that includes a three-helix bundle, a distal alpha/beta domain and a proximal six-stranded SH3-like domain. The protomers assemble into a 12-mer, propeller-like, super-structure with a 35 A wide central channel. The surface of the channel is mainly electronegative, but it includes two lysine rings 20 A apart. On the external surface of the particle a hydrophobic belt extends to the concave area below the SH3-like domain, which forms a crown that retains the particle in the head. The lipophilic belt contacts the non-matching symmetry vertex of the capsid and forms a bearing for the connector rotation. The structure suggests a translocation mechanism in which the longitudinal displacement of the DNA along its axis is coupled to connector spinning.  相似文献   

9.
The binding force between a liposome and the C2A domain of synaptotagmin I was determined by an atomic force microscopy (AFM). Liposomes were immobilized on the surface of the L1 sensor chip and the C2A domains, which recognize phosphatidylserine, were chemically conjugated onto a gold-coated cantilever tip. The average interaction force between the C2A domain and the liposome was 306 (±57) pN while the force between untreated cantilever and the liposome was 58 (±16) pN. This work helps understand the physicochemical interactions between proteins and lipid vesicles for the design of high affinity protein probes against the apoptotic cell surface. Revisions requested 13 December 2005; Revisions received 9 January 2006  相似文献   

10.
The symmetry of the phi 29 head-tail connector is controversial: several studies of two-dimensional arrays of the connector have found a 12-fold symmetry, while a recent study of isolated particles has found a 13-fold symmetry. To investigate whether a polymorphism of the structure might explain these different results, electron microscopy and image analysis were used to study both isolated connectors and particles in hexagonally packed arrays. The hexagonally packed arrays have a P1 symmetry, and the connectors displayed 13 subunits both in the arrays and as isolated single particles. While we do not observe a polymorphism between connectors in two-dimensional arrays and as isolated particles, data show that the connectors can exist with either 12 or 13 subunits. A three-dimensional reconstruction of our 13-fold connector was generated by combining an averaged side-view projection with the known symmetry. The structure of rosettes of the connectors formed in the presence of phi 29 prohead RNA (pRNA) was also examined. These rosettes contain five connectors arranged about a single connector in the center, and this arrangement may reflect an essential role of the pRNA in mediating a symmetry mismatch between either a 12- or 13-fold symmetric connector and a putative fivefold symmetric prohead portal vertex into which the connector fits.  相似文献   

11.
The connector of bacteriophage φ29 is involved in DNA packaging during viral morphogenesis and we have studied itsin vitrobinding to DNA using either linear or circular DNA. The protein–DNA complexes have been analyzed by transmission electron microscopy (TEM) and by atomic force microscopy (AFM) of samples directly deposited on mica. TEM showed the presence of a specific binding due to the interaction of the protein with the free ends of the DNA. The study of these samples by AFM showed two major types of morphologies: The interaction of the connector with circular DNA revealed that the strands of DNA that enter and exit the protein complex form an angle with a mean value of 132°. Nevertheless, when the connector was incubated with linear DNA (and later circularized), there was an additional bend angle of about 168°. Further morphological analysis of the latter samples by AFM revealed a structure of the protein–DNA complex consistent with the DNA traversing the connector, probably through the inner channel. On the other hand, images from the samples obtained by incubation of the connector with circular DNA were consistent with an interaction of the DNA with the outer side of the connector.  相似文献   

12.
Double-stranded DNA bacteriophages and their eukaryotic virus counterparts have 12-fold head-tail connector assemblages embedded at a unique capsid vertex. This vertex is the site of assembly of the DNA packaging motor, and the connector has a central channel through which viral DNA passes during genome packaging and subsequent host infection. Crystal structures of connectors from different phages reveal either disordered residues or structured loops that project into the connector channel. Given the proximity to the translocating DNA substrate, these loops have been proposed to play a role in DNA packaging. Previous models have proposed structural motions in either the packaging ATPase or the connector channel loops as the driving force that translocates the DNA into the prohead. Here, we mutate the channel loops of the Bacillus subtilis bacteriophage φ29 connector and show that these loops have no active role in translocation of DNA. Instead, they appear to have an essential function near the end of packaging, acting to retain the packaged DNA in the head in preparation for motor detachment and subsequent tail assembly and virion completion.  相似文献   

13.
Neuronal growth cones are motile sensory structures at the tip of axons, transducing guidance information into directional movements towards target cells. The morphology and dynamics of neuronal growth cones have been well characterized with optical techniques; however, very little quantitative information is available on the three-dimensional structure and mechanical properties of distinct subregions. In the present study, we imaged the large Aplysia growth cones after chemical fixation with the atomic force microscope (AFM) and directly compared our data with images acquired by light microscopy methods. Constant force imaging in contact mode in combination with force-distant measurements revealed an average height of 200 nm for the peripheral (P) domain, 800 nm for the transition (T) zone, and 1200 nm for the central (C) domain, respectively. The AFM images show that the filopodial F-actin bundles are stiffer than surrounding F-actin networks. Enlarged filopodia tips are 60 nm higher than the corresponding shafts. Measurements of the mechanical properties of the specific growth cone regions with the AFM revealed that the T zone is stiffer than the P and the C domain. Direct comparison of AFM and optical data acquired by differential interference contrast and fluorescence microscopy revealed a good correlation between these imaging methods. However, the AFM provides height and volume information at higher resolution than fluorescence methods frequently used to estimate the volume of cellular compartments. These findings suggest that AFM measurements on live growth cones will provide a quantitative understanding of how proteins can move between different growth cone regions.  相似文献   

14.
To bridge the gap between the contractile system in muscle and in vitro motility assay, we have devised an A-band motility assay system. A glycerinated skeletal myofibril was treated with gelsolin to selectively remove the thin filaments and expose a single A-band. A single bead-tailed actin filament trapped by optical tweezers was made to interact with the inside or the outer surface of the A-band, and the displacement of the bead-tailed filament was measured in a physiological ionic condition by phase-contrast and fluorescence microscopy. We observed large back-and-forth displacement of the filament accompanied by a large change in developed force. Despite this large tension fluctuation, we found that the average force was proportional to the overlap inside and outside the A-band up to approximately 150 nm and 300 nm from the end of the A-band, respectively. Consistent with the difference in the density of myosin molecules, the average force per unit length of the overlap inside the A-band (the time-averaged force/myosin head was approximately 1 pN) was approximately twice as large as that outside. Thus, we conclude that the A-band motility assay system described here is suitable for studying force generation on a single actin filament, and its sliding movement within a regular three-dimensional thick filament lattice.  相似文献   

15.
In vitro DNA packaging activity in a defined system derived from bacteriophage phi 29 depends upon the chemical integrity of the connector protein p10. Proteolytic cleavage of p10 rendered the proheads inactive for DNA packaging. A similar treatment on isolated connectors abolished the DNA-binding activity of the native p10, but the general shape and size of the connector was not changed as revealed by electron microscopy. Analytical ultracentrifugation showed that the proteolyzed connectors had a smaller sedimentation coefficient, while amino acid analysis after dialysis of the proteolyzed p10 confirmed the loss of 16 and 19 amino acids from the amino and carboxy termini, respectively. Low angle X-ray scattering revealed that proteolysis was followed by a small decrease in the radius of gyration and a reorganization of the distal domain of the cylindrical inner part of the connector. Characterization of the cleavage sites in the primary sequence allowed us to propose the location of the DNA-binding domain in the connector model.  相似文献   

16.
Mechanical manipulation at the single molecule level of proteins exhibiting mechanical stability poses a technical challenge that has been almost exclusively approached by atomic force microscopy (AFM) techniques. However, due to mechanical drift limitations, AFM techniques are restricted to experimental recordings that last less than a minute in the high-force regime. Here we demonstrate a novel combination of electromagnetic tweezers and evanescent nanometry that readily captures the forced unfolding trajectories of protein L at pulling forces as low as 10 ∼ 15 pN. Using this approach, we monitor unfolding and refolding cycles of the same polyprotein for a period of time longer than 30 min. From such long-lasting recordings, we obtain ensemble averages of unfolding step sizes and rates that are consistent with single-molecule AFM data obtained at higher stretching forces. The unfolding kinetics of protein L at low stretching forces confirms and extends the observations that the mechanical unfolding rate is exponentially dependent on the pulling force within a wide range of stretching forces spanning from 13 pN up to 120 pN. Our experiments demonstrate a novel approach for the mechanical manipulation of single proteins for extended periods of time in the low-force regime.  相似文献   

17.
We have observed three-dimensional crystals of the calcium pump from sarcoplasmic reticulum by atomic force microscopy (AFM). From AFM images of dried crystals, both on graphite and mica, we measured steps in the crystal thickness, corresponding to the unit cell spacing normal to the substrate. It is known from transmission electron microscopy that crystal periodicity in the plane of the substrate is destroyed by drying, and it was therefore not surprising that we were unable to observe this periodicity by AFM. Thus, we were motivated to use the AFM on hydrated crystals. In this case, crystal adsorption appeared to be a limiting factor, and our studies indicate that adsorption is controlled by the composition of the medium and by the physical-chemical properties of the substrate. We used scanning electron microscopy to determine the conditions yielding the highest adsorption of crystals, and, under these conditions, we have obtained AFM images of hydrated crystals with a resolution similar to that observed with dried samples (i.e., relatively poor). In the same preparations, we have observed lipid bilayers with a significantly better resolution, indicating that the poor quality of crystal images was not due to instrumental limitations. Rather, we attribute poor images to the intrinsic flexibility of these multilamellar crystals, which apparently allow movement of one layer relative to another in response to shear forces from the AFM tip. We therefore suggest some general guidelines for future studies of membrane proteins with AFM.  相似文献   

18.
The unbinding force of Zif268-DNA complex has been studied by atomic force microscopy (AFM). DNA and Zif268 were covalently immobilized on the surfaces of an AFM tip and glass substrate, respectively. Confocal microscopy was used to confirm the successful immobilization of DNA. Because of the complexity of the protein-DNA interaction, parallel experiments were designed to discriminate specific interactions. For such experiments, a typical unbinding force of a single Zif268-DNA complex (approx 550 pN at 40 nN/s force loading rate) was evaluated.  相似文献   

19.
Gauldie RW 《Tissue & cell》1999,31(2):138-153
Atomic force microscopy (AFM) of the crystalline ultrastructure of otoliths fromPagrus major(Sparidae),Macruronus novaezelandiae(Merlucciidae),Oncorhynchus tshawytscha(Salmonidae),Sebastes alutus(Scorpaenidae), andHoplostethus atlanticus(Trachichthyidae) showed regular deposition of lamellae in the size range 13-490 nm. The orientation of lamellae in the {010} plane was the same as lamellae in crystals of mineral aragonite. Lamellae in mineral aragonite were in the size range 15-45 nm. Lamellae observed in the otolith ofM. novaezelandiaeby transmission electron microscopy showed a range of widths (25-225 nm) similar to lamellae observed by AFM. The observed lamella widths were in the size range that has been described for sub-daily and daily microincrements in otoliths. Observed lamellae widths were also in the size range of alpha-recoil trajectories of(222)Rn and provide a potential diffusion sink correction for the(222)Rn losses in radionuclide method of ageing otoliths. Comparison of the orientations of lamellae to templates based on the Bragg unit cell structure of twinned aragonite indicated that the lamellae resulted from polysynthetic twinning on the {010} aragonite crystal face. Additional cyclic twinning occurred on the {110} face of the aragonite crystal and sometimes led to pseudohexagonal crystals, whose sizes were orders of magnitude larger than lamellae. The organic matrix of the otolith was visible by atomic force and transmission electron microscopy at the nanometer level of resolution, but the organic matrix was confined to the {110} twinning plane of symmetry of the otolith crystal.  相似文献   

20.
Coordinated group movement (swarming) is a key aspect of Myxococcus xanthus' social behavior. Here we report observation of domain structures formed by multiple cells within large three-dimensional swarming groups grown on amorphous glass substrates, using the atomic force microscope (AFM). Novel analyses revealed that 90% of the wild type swarms displayed some form of preferential cell alignment. In contrast, cells with mutations in the social and adventurous motility systems displayed a distinct lack of cell alignment. Video microscopy observations of domain features of in vivo swarming M. xanthus cells were also consistent with the AFM data. The results presented here reveal that unique domain formation within swarms of wild type cells is a biologically driven process requiring the social and adventurous motility systems and is not a statistical phenomenon or thermodynamic process arising from liquid crystal behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号