首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
T Fukagawa  C Pendon  J Morris    W Brown 《The EMBO journal》1999,18(15):4196-4209
CENP-C is an evolutionarily conserved centromeric protein. We have used the chicken DT40 cell line to test the idea that CENP-C is sufficient as well as necessary for the formation of a functional centromere. We have compared the effects of disrupting the localization of CENP-C with those of inducibly overexpressing the protein. Removing CENP-C from the centromere causes disassembly of the centromere protein complex and blocks cells at the metaphase-anaphase junction. Overexpressed CENP-C is associated with an increase in errors of chromosome segregation and inhibits the completion of mitosis. However, the excess CENP-C does not disrupt the native centromeres detectably and does not associate with another conserved centromere protein, ZW10. The distribution of the excess CENP-C changes during the cell cycle. In metaphase, the excess CENP-C coats the chromosome arms. At the metaphase-anaphase transition, the excess CENP-C clusters, and during interphase it is present in large bodies which form around pre-existing centromeres which are also clustered. These results indicate that CENP-C is necessary but not sufficient for the formation of a functional centromere and suggest that the structure of CENP-C may be regulated during the cell cycle.  相似文献   

2.
CENP-B: a major human centromere protein located beneath the kinetochore   总被引:21,自引:20,他引:21       下载免费PDF全文
The family of three structurally related autoantigens CENP-A (17 kD), CENP-B (80 kD), and CENP-C (140 kD) are the best characterized components of the human centromere, and they have been widely assumed to be components of the kinetochore. Kinetochore components are currently of great interest since this structure, which has long been known to be the site of microtubule attachment to the chromosome, is now believed to be a site of force production for anaphase chromosome movement. In the present study we have mapped the distribution of CENP-B in mitotic chromosomes by immunoelectron microscopy using two monospecific polyclonal antibodies together with a newly developed series of ultra-small 1-nm colloidal gold probes. We were surprised to find that greater than 95% of CENP-B is distributed throughout the centromeric heterochromatin beneath the kinetochore. This strongly supports other emerging evidence that CENP-B is specifically associated with alpha-satellite heterochromatin. Although in certain instances CENP-B can be seen to be concentrated immediately adjacent to the lower surface of the kinetochore, the outer plate remains virtually unlabeled. Similar analysis with a human autoimmune serum that recognizes all three CENP antigens reveals an additional unsuspected feature of kinetochore structure. In addition to recognizing antigens in the centromeric heterochromatin, the autoantiserum recognizes a concentration of antigens lateral to the kinetochore. This difference in staining pattern may reflect the presence of a "collar" of chromatin rich in CENP-C and/or CENP-A encircling the kinetochore plates.  相似文献   

3.
Centromere protein (CENP) B boxes, recognition sequences of CENP-B, appear at regular intervals in human centromeric alpha-satellite DNA (alphoid DNA). In this study, to determine whether information carried by the primary sequence of alphoid DNA is involved in assembly of functional human centromeres, we created four kinds of synthetic repetitive sequences: modified alphoid DNA with point mutations in all CENP-B boxes, resulting in loss of all CENP-B binding activity; unmodified alphoid DNA containing functional CENP-B boxes; and nonalphoid repetitive DNA sequences with or without functional CENP-B boxes. These four synthetic repetitive DNAs were introduced into cultured human cells (HT1080), and de novo centromere assembly was assessed using the mammalian artificial chromosome (MAC) formation assay. We found that both the CENP-B box and the alphoid DNA sequence are required for de novo MAC formation and assembly of functional centromere components such as CENP-A, CENP-C, and CENP-E. Using the chromatin immunoprecipitation assay, we found that direct assembly of CENP-A and CENP-B in cells with synthetic alphoid DNA required functional CENP-B boxes. To the best of our knowledge, this is the first reported evidence of a functional molecular link between a centromere-specific DNA sequence and centromeric chromatin assembly in humans.  相似文献   

4.
We have isolated a series of overlapping cDNA clones for approximately 95% of the mRNA that encodes CENP-B, the 80-kD human centromere autoantigen recognized by patients with anticentromere antibodies. The cloned sequences encode a polypeptide with an apparent molecular mass appropriate for CENP-B. This polypeptide and CENP-B share three non-overlapping epitopes. The first two are defined by monoclonal antibodies elicited by injection of cloned fusion protein. Epitope 1 corresponds to a major antigenic site recognized by the anticentromere autoantibody used to obtain the original clone. Epitope 2 is a novel one not recognized by the autoantibody. These epitopes were shown to be distinct both by competitive binding experiments and by their presence or absence on different subcloned portions of the fusion protein. The third independent epitope, recognized by a subset of anticentromere-positive patient sera, maps to a region substantially closer to the amino terminus of the fusion protein. DNA and RNA blot analyses indicate that CENP-B is unrelated to CENP-C, a 140-kD centromere antigen also recognized by these antisera. CENP-B is the product of a 2.9-kb mRNA that is encoded by a single genetic locus. This mRNA is far too short to encode a polypeptide the size of CENP-C. The carboxy terminus of CENP-B contains two long domains comprised almost entirely of glutamic and aspartic acid residues. These domains may be responsible for anomalous migration of CENP-B on SDS-polyacrylamide gels, since the true molecular mass of CENP-B is approximately 65 kD, 15 kD less than the apparent molecular mass deduced from gel electrophoresis. Quite unexpectedly, immunofluorescence analysis using antibodies specific for CENP-B reveals that the levels of antigen vary widely between chromosomes.  相似文献   

5.
Recently, human artificial chromosomes featuring functional centromeres have been generated efficiently from naked synthetic alphoid DNA containing CENP-B boxes as a de novo mechanism in a human cultured cell line, but not from the synthetic alphoid DNA only containing mutations within CENP-B boxes, indicating that CENP-B has some functions in assembling centromere/kinetochore components on alphoid DNA. To investigate whether any interactions exist between CENP-B and the other centromere proteins, we screened a cDNA library by yeast two-hybrid analysis. An interaction between CENP-B and CENP-C was detected, and the CENP-C domains required were determined to overlap with three Mif2 homologous regions, which were also revealed to be involved in the CENP-C assembly of centromeres by expression of truncated polypeptides in cultured cells. Overproduction of truncated CENP-B containing no CENP-C interaction domains caused abnormal duplication of CENP-C domains at G2 and cell cycle delay at metaphase. These results suggest that the interaction between CENP-B and CENP-C may be involved in the correct assembly of CENP-C on alphoid DNA. In other words, a possible molecular linkage may exist between one of the kinetochore components and human centromere DNA through CENP-B/CENP-B box interaction.  相似文献   

6.
Evidence that 13 or 14 contiguous tubulin-GTP subunits are sufficient to cap and stabilize a microtubule end and that loss of only one of these subunits results in the transition to rapid disassembly(catastrophe) was obtained using the slowly hydrolyzable GTP analogue guanylyl-(a,b)-methylene-diphosphonate (GMPCPP). The minus end of microtubules assembled with GTP was transiently stabilized against dilution-induced disassembly by reaction with tubulin-GMPCPP subunits for a time sufficient to cap the end with an average 40 subunits. The minimum size of a tubulin-GMPCPP cap sufficient to prevent disassembly was estimated from an observed 25- to 2000-s lifetime of the GMPCPP-stabilized microtubules following dilution with buffer and from the time required for loss of a single tubulin-GMPCPP subunit from the microtubule end (found to be 15 s). Rather than assuming that the 25- to 2000-s dispersion in cap lifetime results from an unlikely 80-fold range in the number of tubulin-GMPCpP subunits added in the 25-s incubation, it is proposed that this results because the minimum stable cap contains 13 to 14 tubulin-GMPCPP subunits. As a consequence, a microtubule capped with 13-14 tubulin-GMPCPP subunits switches to disassembly after only one dissociation event (in about 15 s), whereas the time required for catastrophe of a microtubule with only six times as many subunits (84 subunits) corresponds to 71 dissociation events (84-13). The minimum size of a tubulin-GMPCPP cap sufficient to prevent disassembly was also estimated with microtubules in which a GMPCPP-cap was formed by allowing chance to result in the accumulation of multiple contiguous tubulin-GMPCPP subunits at the end, during the disassembly of microtubules containing both GDP and GMPCPP. Our observation that the disassembly rate was inhibited in proportion to the 13-14th power of the fraction of subunits containing GMPCPP again suggests that a minimum cap contains 13-14 tubulin-GMPCPP subunits. A remeasurement of the rate constant for dissociation of a tubulin-GMPCPP subunit from the plus-end of GMPCPP microtubules, now found to be 0.118 s-1, has allowed a better estimate of the standard free energy for hydrolysis of GMPCPP in a microtubule and release of Pi: this is +0.7 kcal/mol, rather than -0.9 kcal/mol, as previously reported.  相似文献   

7.
8.
Yizhar O  Ashery U 《PloS one》2008,3(7):e2694
In neurons and neuroendocrine cells, docked vesicles need to undergo priming to become fusion competent. Priming is a multi-step process that was shown to be associated with vesicle immobilization. However, it is not known whether vesicle immobilization is sufficient to acquire complete fusion competence. To extend our understanding of the physical manifestation of vesicle priming, we took advantage of tomosyn, a SNARE-related protein that specifically inhibits vesicle priming, and measured its effect on vesicle dynamics in live chromaffin cells using total internal reflection fluorescence microscopy. We show here that while in control cells vesicles undergo immobilization before fusion, vesicle immobilization is attenuated in tomosyn overexpressing cells. This in turn increases the turnover rate of vesicles near the membrane and attenuates the fusion of newcomer vesicles. Moreover, the release probability of immobile vesicles in tomosyn cells is significantly reduced, suggesting that immobilization is an early and necessary step in priming but is insufficient, as further molecular processes are needed to acquire complete fusion competence. Using tomosyn as a molecular tool we provide a mechanistic link between functional docking and priming and suggest that functional docking is the first step in vesicle priming, followed by molecular modifications that do not translate into changes in vesicle mobility.  相似文献   

9.
10.
11.
12.
Previous results have indicated that the herpes simplex virus 1 UL31 and UL34 proteins interact and form a complex at the inner nuclear membranes of infected cells, where both play important roles in the envelopment of nucleocapsids at the inner nuclear membrane. In the work described here, mapping studies using glutathione S-transferase pull-down assays indicated that amino acids 137 to 181 of the UL34 protein are sufficient to mediate an interaction with the UL31 protein. A recombinant virus (v3480) lacking UL34 codons 138 to 181 was constructed. Similar to a UL34 null virus, v3480 failed to replicate on Vero cells and grew to a limited extent on rabbit skin cells. A UL34-expressing cell line restored v3480 growth and plaque formation. Similar to the localization of UL31 protein in cells infected with a UL34 null virus, the UL31 protein was present in the nuclei of Hep2 cells infected with v3480. Hep2 cells infected with v3480 contained the UL34 protein in the cytoplasm, the nucleus, and the nuclear membrane, and this was noted to be similar to the appearance of cells infected with a UL31 null virus. In transient expression assays, the interaction between UL34 amino acids 137 to 181 and the UL31 protein was sufficiently robust to target green fluorescent protein and emerin to intranuclear sites that contained the UL31 protein. These data indicate that amino acids 137 to 181 of the UL34 protein are (i) sufficient to mediate interactions with the UL31 protein in vitro and in vivo, (ii) necessary for the colocalization of UL31 and UL34 in infected cells, and (iii) essential for normal viral replication.  相似文献   

13.
Centromere protein B (CENP-B) is one of the centromere DNA binding proteins constituting centromeric heterochromatin of human chromosomes. This protein was originally identified as the target antigen in autoimmune disease patients (often with scleroderma). In this study, we cloned a human CENP-B cDNA which was longer than the previously isolated one and expressed functional recombinant CENP-B in Escherichia coli. The DNA binding domain was finely located within the N-terminal 134-amino-acid residues covering a predicted helix-loop-helix (HLH) structure, by using a set of recombinant products with stepwise deletions from the C-terminus. From the analysis of their reactivity to anti-centromere sera from autoimmune disease patients, four epitopes were mapped on CENP-B antigen. In addition to two epitopes at the C-terminus, two were found on the HLH region at the N-terminus. In the analysis of the interaction between the antigen and autoantibodies, we found that the DNA binding activity of CENP-B was distorted by the attack of the anti-HLH domain antibodies in in vitro binding reactions. Our results suggest that the direct inhibition of the DNA binding activity by the autoantibodies might be involved in patients' autoimmune reactions in vivo.  相似文献   

14.
15.
Helix 3 is necessary and sufficient for prion protein's anti-Bax function   总被引:1,自引:0,他引:1  
To identify the structural elements of the prion protein (PrP) necessary for its protective function against Bcl-2 associated protein X (Bax), we performed structure–function analyses of the anti-Bax function of cytosolic PrP (CyPrP) in MCF-7 cells. Deletions of 1, 2, or 3 N-terminal Bcl-2 homology domain 2-like octapeptide repeats (BORs), but not deletion of all four BORs, abolish CyPrPs anti-Bax function. Deletion of α-helix 3 (PrP23–199) or further C-terminal deletions of α-helix 1 and 2, and β-strand 1 and 2 (PrP23–172, PrP23–160, PrP23–143, and PrP23–127) eliminates CyPrPs protection against Bax-mediated cell death. The substitution of helix 3 amino acid residues K204, V210, and E219 by proline inhibits the anti-Bax function of CyPrP. The substitution of K204, but not V210 and E219, by alanine residues also prevents CyPrPs anti-Bax function. Expression of PrPs helix 3 displays anti-Bax activity in MCF-7 cells and in human neurons. Together, these results indicate that although the BOR domain has an influence on PrPs anti-Bax function, the helix 3 is necessary and sufficient for the anti-Bax function of CyPrP. Identification of helix 3 as the structural element for the anti-Bax function thus provides a molecular target to modulate PrPs anti-Bax function in cancer and neurodegeneration.  相似文献   

16.
17.
18.
19.
Large triglyceride-rich very low density lipoproteins (VLDL) Sf 60-400 from hypertriglyceridemic (HTG) patients, but not VLDL from normal subjects, bind to the LDL receptor of human skin fibroblasts because they contain apolipoprotein E (apoE) of the correct conformation, accessible both to the LDL receptor and to specific proteolysis by alpha-thrombin. Trypsin treatment of HTG-VLDL Sf 60-400 causes extensive apoB hydrolysis (fragments less than 100,000 mol wt), total degradation of apoE, and thus complete loss of LDL receptor binding. The reincorporation of apoE (1 mol/mol VLDL) into trypsin-treated HTG-VLDL completely restored the ability of HTG-VLDL to interact with the LDL receptor, suggesting that apoE probably does not induce a conformational change in apoB which results in receptor recognition, nor is intact apoB necessary to maintain the appropriate conformation of apoE for LDL receptor binding. As a model of large triglyceride-rich VLDL Sf greater than 60, we fractionated Intralipid by the Lindgren method of cumulative flotation and prepared apoE-Intralipid complexes. Competitive binding studies demonstrated that apoE-Intralipid is at least as effective as LDL for uptake and degradation of 125I-labeled LDL. Control Intralipid complexes containing apoA-I instead of apoE do not compete with iodinated LDL. Since these TG-rich complexes contain no apoB, apoB is, therefore, not only not sufficient for receptor-mediated uptake of large particles, it is not necessary. ApoE of the correct conformation is not only necessary but is sufficient to mediate receptor binding of large triglyceride-rich particles to the LDL receptor.  相似文献   

20.
The neu proto-oncogene encodes a protein highly homologous to the epidermal growth factor receptor. The neu protein (p185) has a molecular weight of 185,000 Daltons and, like the EGF receptor, possesses tyrosine kinase activity. neu is activated in chemically induced rat neuro/glioblastomas by substitution of valine 664 with glutamic acid within the transmembrane domain. The activated neu* protein (p185*) has an elevated tyrosine kinase activity and a higher propensity to dimerize, but the mechanism of this activation is still unknown. We have used site-directed mutagenesis to explore the role of specific amino acids within the transmembrane domain in this activation. We found that the lateral position and rotational orientation of the glutamic acid in the transmembrane domain does not correlate with transformation. However, the primary structure in the vicinity of Glu664 plays a significant role in this activation. Our results suggest that the Glu664 activation involves highly specific interactions in the transmembrane domain of p185.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号