首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Ssn6-Tup1 is a general repressor of transcription in yeast.   总被引:108,自引:0,他引:108  
  相似文献   

6.
7.
The Nrg1 and Nrg2 repressors of Saccharomyces cerevisiae have highly similar zinc fingers and closely related functions in the regulation of glucose-repressed genes. We show that NRG1 and NRG2 are differently regulated in response to carbon source at both the RNA and protein levels. Expression of NRG1 RNA is glucose repressed, whereas NRG2 RNA levels are nearly constant. Nrg1 protein levels are elevated in response to glucose limitation or growth in nonfermentable carbon sources, whereas Nrg2 levels are diminished. Chromatin immunoprecipitation assays showed that Nrg1 and Nrg2 bind DNA both in the presence and absence of glucose. In mutant cells lacking the corepressor Ssn6(Cyc8)-Tup1, promoter-bound Nrg1, but not Nrg2, functions as an activator in a reporter assay, providing evidence that the two Nrg proteins have distinct properties. We suggest that the differences in expression and function of these two repressors, in combination with their similar DNA-binding domains, contribute to the complex regulation of the large set of glucose-repressed genes.  相似文献   

8.
9.
10.
11.
The Ssn6-Tup1 repressor forms one of the largest and most important gene-regulatory circuits in budding yeast. This circuit, which appears conserved in flies, worms and mammals, exemplifies how a 'global' repressor (i.e. a repressor that regulates many genes in the cell) can be highly selective in the genes it represses. It also explains how, given the appropriate signal, specific subsets of these genes can be derepressed. Ssn6-Tup1 seems especially robust, bringing about a high level of repression irrespective of its precise placement on DNA or of specific features of the DNA control regions of its target genes. This high degree of repression probably results from several distinct mechanisms acting together.  相似文献   

12.
13.
14.
The Cyc8 (Ssn6)-Tup1 corepressor complex is required for repression in several important regulatory systems in yeast cells, including glucose repression and mating type. Cyc8-Tup1 is recruited to target genes by interaction with diverse repressor proteins that bind directly to DNA. Since the complex has a large apparent molecular mass of 1,200 kDa on nondenaturing gels (F. E. Williams, U. Varanasi, and R. J. Trumbly, Mol. Cell. Biol. 11:3307-3316, 1991), we used a variety of approaches to determine its actual subunit composition. Immunoprecipitation of epitope-tagged complex and reconstitution of the complex from in vitro-translated proteins demonstrated that only the Cyc8 and Tup1 proteins were present in the complex. Hydrodynamic properties showed that these proteins have unusually large Stokes radii, low sedimentation coefficients, and high frictional ratios, all characteristic of asymmetry which partly accounts for the apparent high molecular weight. Calculation of native molecular weights from these properties indicated that the Cyc8-Tup1 complex is composed of one Cyc8 subunit and four Tup1 subunits. This composition was confirmed by reconstitution of the complex from Cyc8 and Tup1 expressed in vitro and analysis by one- and two-dimensional gel electrophoresis.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号