首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jason E. Tanner 《Oecologia》2000,122(4):514-520
The influence of environmental variation on the demography of clonal organisms has been poorly studied. I utilise a matrix model of the population dynamics of the intertidal zoanthid Palythoa caesia to examine how density dependence and temporal variation in demographic rates interact in regulating population size. The model produces realistic simulations of population size, with erratic fluctuations between soft lower and upper boundaries of approximately 55 and 90% cover. Cover never exceeds the maximum possible of 100%, and the population never goes to extinction. A sensitivity analysis indicates that the model’s behaviour is driven by density dependence in the fission of large colonies to produce intermediate sized colonies. Importantly, there is no density-dependent mortality in the model, and density dependence in recruitment, while present, is unimportant. Thus it appears that the main demographic processes which are considered to regulate population size in aclonal organisms may not be important for clonal species. Received: 18 August 1999 / Accepted: 29 October 1999  相似文献   

2.
Summary Naturally occurring monocultures of plants and animals are not common, despite recent emphasis on the analysis of density effects in artificial plant monocultures. In natural populations, Membranipora membranacea, an encrusting marine bryozoan, usually forms monospecific, nearly even-aged stands on kelp blades. We experimentally manipulated the density of M. membranacea colonies and monitored the responses of individual colonies on settling panels. Colonies undergo a sub-annual cycle of growth, stasis and reproduction, shrinkage, and death. However, crowding by conspecifics accelerates the transition to stasis, triggers early onset of reproduction, and results in increased stage-specific mortality. Unlike many interactions involving colonial invertebrates, overgrowth rarely occurs at boundaries of M. membranacea colonies. Instead, colonies stop growing when they contact conspecifics; therefore more dense assemblages are populated with smaller individual colonies. At the peak in colony size during August, the mean size among colonies grown at high population densities was 300 mm2 less than colonies grown at low densities or approximately 62% smaller. Mortality was concentrated in small size classes; at the end of the season colonies gradually shrank to the smallest size classes and then died. We summarized the demography of M. membranacea colonies on low- and high-density panels using size-classified transition matrices and used loglinear analysis to examine the effects of density and time on the transition patterns. As the amount of free space on panels declined, so did the frequency of upward size-class transitions. Our analysis revealed that free space declined more rapidly on panels in the high density treatment and that the transitional probabilities were sensitive to density of conspecifics and seasonal change, but only for some size classes and during some time periods.  相似文献   

3.
An improved understanding of population-level consequences of grazing on plants can be facilitated by an assessment of grazing effects on all stages in the life-cycle. In this study, 6 years of demographic data for three populations of the perennial herb Geranium sylvaticum were analysed. We examined the effects of sheep grazing (high sheep density, low sheep density and no sheep) and interannual climatic variability on vital rates and population growth rates (λ). Grazing did not affect survival or flowering rates, but reduced rates of growth and increased rates of clonal reproduction. At the population level, high contributions from retrogression and clonal reproduction buffered reduced rates of growth and stasis, and no consistent differences in λ between populations exposed to different sheep densities were found. Instead, large between-year variability in λ, independent of sheep density, was detected, related to variation in the local summer climate. The results indicated, however, that grazing effects on λ were more severe in unfavourable than in normal years. Our study highlights that increased clonal reproduction rates functioned as a tolerance mechanism towards grazing in this herb, which forms a mechanism to explain how moderate population responses to grazing in some herbs can arise.  相似文献   

4.
Abstract.  1. Previous studies have demonstrated that phenotypic traits of plants have the potential to affect interactions between herbivores and their natural enemies. Consequently, the impact of natural enemies on herbivore vital rates and population dynamics may vary among plant species. This study was designed to investigate the potential for density-dependent parasitism of an aphid herbivore feeding on six different host plant species.
2. Population densities of the aphid Aphis nerii B de F (Homoptera: Aphididae) and its parasitoid Lysiphlebus testaceipes Cresson (Hymenoptera: Braconidae) were recorded within a single growing season on six different species of milkweed in the genus Asclepias L. (Asclepiadaceae). Asclepias species are known to vary in their quality as food for herbivores. Although data on plant quality were not available in this study, population data were analysed to determine the effects of different Asclepias species on rates of parasitism and aphid population growth.
3. Parasitism rates of A. nerii varied among Asclepias species but were temporally density dependent over at least some range of aphid density on all plant species. Aphid population growth rates also varied among Asclepias species, and declined with an increase in the maximum parasitism rates among plant species; however, in no case was density-dependent parasitism sufficient to prevent exponential population growth of aphids within the growing season. The results serve to emphasise that, if natural enemies are to regulate herbivore populations, density-dependent mortality is a necessary, but not sufficient, condition for regulation.  相似文献   

5.
Population regulation is fundamental to the long-term persistence of populations and their responses to harvesting, habitat modification, and exposure to toxic chemicals. In fish and other organisms with complex life histories, regulation may involve density dependence in different life-stages and vital rates. We studied density dependence in body growth and mortality through the life-cycle of laboratory populations of zebrafish Danio rerio. When feed input was held constant at population-level (leading to resource limitation), body growth was strongly density-dependent in the late juvenile and adult phases of the life-cycle. Density dependence in mortality was strong during the early juvenile phase but declined thereafter and virtually ceased prior to maturation. Provision of feed in proportion to individual requirements (easing resource limitation) removed density dependence in growth and substantially reduced density dependence in mortality, thus indicating that 'bottom-up' effects act on growth as well as mortality, but most strongly on growth. Both growth and mortality played an important role in population regulation, with density-dependent growth having the greater impact on population biomass while mortality had the greatest impact on numbers. We demonstrate a clear ontogenic pattern of change in density-dependent processes within populations of a very small (maximum length 5 mm) fish, maintained in constant homogeneous laboratory conditions. The patterns are consistent with those distilled from studies on wild fish populations, indicating the presence of broad ontogenic patterns in density-dependent processes that are invariant to maximum body size and hold in homogeneous laboratory, as well as complex natural environments.  相似文献   

6.
Density-dependent processes may have multiple effects on populations, which among other things include the regulation of population abundance and of the relative distribution of life-cycle stages within populations. The epiphytic habitat is often characterized as highly ephemeral and therefore epiphytic orchid populations may never achieve density-dependent regulation. In this study, we investigated the potential for density-dependent regulation in epiphytic and lithophytic orchids by examining the association between seedlings, juvenile and adult life-history stages in the Caribbean endemic orchid,Lepanthes rupestris in a cross-sectional study of 179 populations surveyed in the Luquillo National Forest along a riparian area where it is locally abundant. Under density-dependent regulation we expected a negative association between the ratio of seedling/adults and juveniles/adults and total population density. Population density was in the range of 140 individuals per m2, however patch sizes were small and mostly limited to less than 0.5 m2 with a maximum of 3 m2. We found no evidence of reduction of the ratio of seedlings or juveniles to adults as population size increased in either tree or boulder populations suggesting negative density dependence for population regulation inL. rupestris is either rare or occurs at even higher densities than those measured here. Moreover, we found positive (although weak) relationship between the ratio of seedlings and juveniles to adults and population size, suggesting that facilitation may be occurring.  相似文献   

7.
Positive interactions can increase size inequality in plant populations   总被引:1,自引:0,他引:1  
1.  Large variation in the size of individuals is a ubiquitous feature of natural plant populations. While the role of competition in generating this variation has been studied extensively, the potential effects of positive interactions among plants, which are common in high-stress environments, have not been investigated.
2.  Using an individual-based 'zone-of-influence' model, we investigate the effects of competition, abiotic stress and facilitation on size inequality in plant monocultures. In the model, stress reduces the growth rate of plants, and facilitation ameliorates the effects of stress. Both facilitation and competition occur in overlapping zones of influence. We tested some of the model's predictions with a field experiment using the clonal grass Elymus nutans in an alpine meadow.
3.  Facilitation increased the size inequality of model populations when there was no density-dependent mortality. This effect decreased with density as competition overwhelmed facilitation. The lowest size inequality was found at intermediate densities both with the model and in the field.
4.  When density-dependent mortality was included in the model, stress delayed its onset and reduced its rate by reducing growth rates, so the number of survivors at any point in time was higher under harsh than under more benign conditions. Facilitation increased size inequality during self-thinning.
5.   Synthesis . Our results demonstrate that facilitation interacts with abiotic stress and competition to influence the degree of size inequality in plant populations. Facilitation increased size inequality at low to intermediate densities and during self-thinning.  相似文献   

8.
Density-dependent mortality can regulate local populations - effectively minimizing the likelihood of local extinctions and unchecked population growth. It is considered particularly important for many marine reef organisms with demographically open populations that lack potential regulatory mechanisms tied to local reproduction. While density-dependent mortality has been documented frequently for reef fishes, few studies have explored how the strength of density-dependence varies with density, or how density-dependence may be modified by numerical effects (i.e., number-dependent mortality). Both issues can have profound effects on spatial patterns of abundance and the regulation of local populations. I address these issues through empirical studies in Moorea, French Polynesia, of the six bar wrasse (Thalassoma hardwicke), a reef fish that settles to isolated patch reefs. Per capita mortality rates of newly settled wrasse increased as a function of density and were well approximated by the Beverton-Holt function for both naturally formed and experimentally generated juvenile cohorts. Average instantaneous mortality rates were a decelerating function of initial densities, indicating the per capita strength of density-dependence decreased with density. Results of a factorial manipulation of density and group size indicate that per capita mortality rates were simultaneously density- and number-dependent; fish at higher densities and/or in groups had higher probabilities of disappearing from patch reefs compared with fish that were solitary and/or at lower densities. Mortality rates were ~30% higher for fish at densities of 0.5 fish/m2 than at 0.25 fish/m2. Similarly, mortality rates increased by ~45% when group size was increased from 1 to 2 individuals per patch, even when density was kept constant. These observations suggest that the number of interacting individuals, independent of patch size (i.e., density-independent effects) can contribute to regulation of local populations. Overall, this work highlights a greater need to consider numerical effects in addition to density effects when exploring sources of population regulation.  相似文献   

9.
1. A population of the Turkey-oak aphid ( Myzocallis boerneri Stroyan) was sampled at approximately weekly intervals on two Turkey-oak trees for 19 years.
2. On one tree (A), the aphids exhibited a distinct seasonal pattern with a spring increase, summer decrease, early autumn increase, and late autumn decline. On the other tree (B) the aphids remained at low densities after the decrease in summer.
3. On tree A, significant undercompensating density dependence occurred during all periods of the seasonal population development, and their strength varied little during the course of the season. On tree B, significant density dependence compensated exactly for increase, but appeared only after the decrease in summer when the population remained at very low densities for the rest of the season.
4. Density-independent weather variables affected the population dynamics very little. Their influence was marginally significant only at very low densities when the aphids were regulated exactly by compensating density-dependent factors.
5. The results suggest a curvilinear density dependence, with strong regulation at low densities, and weak at high densities. That is, this aphid was most regulated not at the peak but at the trough densities.  相似文献   

10.
Howard R. Lasker 《Oecologia》1991,86(4):503-509
Summary A size dependent model of population growth of the Caribbean gorgonian Plexaura A is developed based on observed rates of survival, growth and colony fragmentation at a site in the San Blas Islands, Panama. Sensitivity and elasticity analyses indicate that the fate of large colonies has the greatest effect on population growth. Variables which directly affect the generation of large colonies have the next greatest effect on population growth. These variables include the recruitment of large fragments, and the survivorship of colonies in the next smaller size class. Sexual reproduction has an extremely limited ability to affect population growth. Vegetative reproduction has a greater potential effect on growth rates. Environmental conditions regularly change the matrix of transition probabilities which predicts population growth. This keeps the population from approaching its stable size class distribution. Deviations from the stable size class distribution alter sensitivity and elasticity and in this case have the effect of increasing the importance of survivorship of the smallest colonies. Nonequilibrium conditions alter sensitivity analyses and it is important to assess whether populations are at equilibrium and to determine the effects of such deviations on the sensitivity analysis.  相似文献   

11.
1. By identifying ecological factors specific to functional categories of individuals, it may be possible to understand the mechanisms underlying life-history evolution and population dynamics. While empirical analyses within the field of population biology have focused on changes in population size, theoretical models assuming differential sensitivities of population growth rate or fitness to demographic parameters have mostly been untested, particularly against data on small mammals.
2. Statistical modelling of capture–mark–recapture data on the multimammate rat ( Mastomys natalensis ) from Tanzania shows that: (i) females survive slightly better than males and subadults survive much better than adults; (ii) temporal variation of survival of all individuals is similarly related to the rainfall of the month; (iii) subadults exhibit a strongly density-dependent low persistence rate in the population immediately after their first capture; (iv) subadults survival in later months is, however, positively related to density; and (v) adult survival shows negative density-dependence.
3. Both density-dependent and density-independent factors simultaneously determine stage-dependent survival variation of the multimammate rat. Whereas environmental factors in this population seem to affect survival rates of all individuals in a similar manner, density-dependent relationships are more complex.
4. The patterns of survival variation in small mammals may be different from those observed in large mammals.
5. Further studies of demography in small mammals should aim at understanding how much of the variability in population growth rate is accounted for by the variability of the demographic rates resulting from limiting (density-independent) and regulating (density-dependent) factors, respectively. This study emphasizes the use of robust and accurate statistical methods as well as stage- or age-structured population modelling.  相似文献   

12.
Despite a large body of empirical evidence suggesting that the dispersal rates of many species depend on population density, most metapopulation models assume a density-independent rate of dispersal. Similarly, studies investigating the evolution of dispersal have concentrated almost exclusively on density-independent rates of dispersal. We develop a model that allows density-dependent dispersal strategies to evolve. Our results demonstrate that a density-dependent dispersal strategy almost always evolves and that the form of the relationship depends on reproductive rate, type of competition, size of subpopulation equilibrium densities and cost of dispersal. We suggest that future metapopulation models should account for density-dependent dispersal  相似文献   

13.
Population regulation in trichostrongylids of ruminants   总被引:1,自引:1,他引:0  
Since regulation of population size requires the existence of one or more density-dependent processes affecting parasite numbers, the literature was examined for evidence of density-dependence in establishment, reproduction and mortality of trichostrongylids of ruminants. Because of differences between the two environments required for completion of the trichostrongylid life-cycle, this evidence was sought in processes occurring within the host, rather than in dung-pats or on pasture. Evidence was found of at least one density-dependent population process in several economically important species of the genera Haemonchus, Ostertagia and Trichostrongylus, although further observations on populations derived from continuous infection at several rates of larval intake are required to substantiate much of this evidence. It is suggested that populations of trichostrongylids of ruminants are regulated at the level of the suprapopulation by density-dependent constraints on egg production of constituent infrepopulations; rates of larval intake may play a central role in coordinating regulation within each ecosystem.  相似文献   

14.
Seasonal multiplication and overwinter survival are density-dependent in Heterodera glycines. At low to moderate population densities, the nematode is capable of large population increases on susceptible soybean cultivars and high rates of oversummer or overwinter survival in the absence of a host. To improve estimates of H. glycines multiplication and survival rates, egg densities were monitored for 12 cropping sequences across 10 years. Log-linear regression analysis was used to describe and compare density-dependent relationships. Growing-season change in H. glycines egg densities was density-dependent for all crops (susceptible soybean, resistant soybean, and nonhost), with slope estimates for the density-dependent relationship greater for susceptible soybean compared with a non-host crop. Overwinter population change also was density-dependent, with similar declines in survival rates observed for all crops as population densities increased. Survival was greater following susceptible soybean compared with resistant soybean, with an intermediate rate of survival associated with non-host crops. Survival estimates greater than 100% frequently were obtained at low population densities, despite attempts to account for sampling error. Rates of growing-season multiplication and survival, when standardized for population density, declined with year of the study. Standardized overwinter survival rates were inversely related to average daily minimum temperature and monthly snow cover.  相似文献   

15.
Debate on the control of population dynamics in reef fishes has centred on whether patterns in abundance are determined by the supply of planktonic recruits, or by post-recruitment processes. Recruitment limitation implies little or no regulation of the reef-associated population, and is supported by several experimental studies that failed to detect density dependence. Previous manipulations of population density have, however, focused on juveniles, and there have been no tests for density-dependent interactions among adult reef fishes. I tested for population regulation in Coryphopterus glaucofraenum, a small, short-lived goby that is common in the Caribbean. Adult density was manipulated on artificial reefs and adults were also monitored on reefs where they varied in density naturally. Survival of adult gobies showed a strong inverse relationship with their initial density across a realistic range of densities. Individually marked gobies, however, grew at similar rates across all densities, suggesting that density-dependent survival was not associated with depressed growth, and so may result from predation or parasitism rather than from food shortage. Like adult survival, the accumulation of new recruits on reefs was also much lower at high adult densities than at low densities. Suppression of recruitment by adults may occur because adults cause either reduced larval settlement or reduced early post-settlement survival. In summary, this study has documented a previously unrecorded regulatory mechanism for reef fish populations (density-dependent adult mortality) and provided a particularly strong example of a well-established mechanism (density-dependent recruitment). In combination, these two compensatory mechanisms have the potential to strongly regulate the abundance of this species, and rule out the control of abundance by the supply of recruits.  相似文献   

16.
Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.  相似文献   

17.
Regulation of numbers in the Great tit (Aves: Passeriformes)   总被引:2,自引:0,他引:2  
John R.  Krebs 《Journal of Zoology》1970,162(3):317-333
The census data of the Great tit collected by Perrins (1965) and others in Marley Wood near Oxford are analysed for density-dependence. Clutch size and hatching success are density-dependent and sufficiently so to regulate the population at the observed level (assuming that there is in addition a fairly large density-independent mortality). There may also be some weak density-dependent mortality outside the breeding season. The density-dependent variations in clutch size are probably in the main due to shortage of available food and density-dependent hatching failure is caused by predation. Territorial behaviour has been shown experimentally to determine breeding density, and may produce a density-dependent effect outside the breeding season. These three factors are responsible for regulation of the Great tit population in Marley Wood.  相似文献   

18.
Dynamics of a harvested moose population in a variable environment   总被引:8,自引:1,他引:7  
1. Population size, calves per female, female mean age and adult sex ratio of a moose ( Alces alces ) population in Vefsn, northern Norway were reconstructed from 1967 to 1993 using cohort analysis and catch-at-age data from 96% (6752) of all individuals harvested.
2. The dynamics of the population were influenced mainly by density-dependent harvesting, stochastic variation in climate and intrinsic variation in the age-structure of the female segment of the population.
3. A time delay in the assignment of hunting permits in relation to population size increased fluctuations in population size.
4. Selective harvesting of calves and yearlings increased the mean age of adult females in the population, and, because fecundity in moose is strongly age-specific, the number of calves per female concordantly increased. However, after years with high recruitment, the adult mean age decreased as large cohorts entered the adult age-groups. This age-structure effect generated cycles in the rate of recruitment to the population and fluctuations introduced time-lags in the population dynamics.
5. An inverse relationship between recruitment rate and population density, mediated by a density-dependent decrease in female body condition, could potentially have constituted a regulatory mechanism in the dynamics of the population, but this effect was counteracted by a density-dependent increase in the mean age of adult females.
6. Stochastic variation in winter snow depth and summer temperature had delayed effects on recruitment rate and in turn population growth rate, apparently through effects on female body condition before conception.  相似文献   

19.
Desharnais RA  Costantino RF 《Genetics》1983,105(4):1029-1040
Natural selection was studied in the context of density-dependent population growth using a single locus, continuous time model for the rates of change of population size and allele frequency. The maximization principle of density-dependent selection was applied to a class of fitness expressions with explicit recruitment and mortality terms. Three general results were obtained: First, at low population densities, the genetic basis of selection is the difference between the mean recruitment rate and the mean mortality rate. Second, at densities much higher than the equilibrium population size, selection is expected to act to minimize the mean mortality rate. Third, as the population approaches its equilibrium density, selection is predicted to maximize the ratio of the mean recruitment rate to the mean mortality rate.  相似文献   

20.
1. The population dynamics of an introduced population of Epilachna niponica (Lewis) (Coleoptera: Coccinellidae) was investigated for a 7-year period following its introduction to a site outside of its natural range. A population from Asiu Experimental Forest was introduced to Kyoto University Botanical Garden, 10 km south of its natural distribution.
2. Arthropod predation was much lower in the introduced than in the source population. As a result of the lower predation in the Botanical Garden, larvae reached densities five times higher than in the Asiu Forest and host plants were frequently defoliated. Food shortage caused larval deaths from starvation and increased dispersal.
3. The density of the introduced population was much more variable than that of the source population. The variation in population density in both the introduced and source populations is limited by density-dependent reduction in fecundity and female survival. However, variation in the introduced population's density was increased due to host plant defoliation that resulted in overcompensating density-dependent mortality. In years with high larval density plants were defoliated and this increased adult mortality during the prehibernation period. Besides, the density-dependent regulatory mechanisms that produce population stability were weaker in the introduced population than in the source population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号