首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The late genes of SV40 are not expressed at significant levels until after the onset of viral DNA replication. We previously identified two hormone response elements (HREs) in the late promoter that contribute to this delay. Mutants defective in these HREs overexpress late RNA at early, but not late, times after transfection of CV-1PD cells. Overexpression of nuclear receptors (NRs) that recognize these HREs leads to repression of the late promoter in a sequence-specific and titratable manner, resulting in a delay in late gene expression. These observations led to a model in which the late promoter is repressed at early times after infection by NRs, with this repression being relieved by titration of these repressors through simian virus 40 (SV40) genome replication to high copy number. Here, we tested this model in the context of the viral life cycle. SV40 genomes containing mutations in either or both HREs that significantly reduce NR binding without altering the coding of any proteins were constructed. Competition for replication between mutant and wild-type viruses in low-multiplicity coinfections indicated that the +1 HRE offered a significant selective advantage to the virus within a few cycles of infection in African green monkey kidney cell lines CV-1, CV-1P, TC-7, MA-134, and Vero but not in CV-1PD' cells. Interestingly, the +55 HRE offered a selective disadvantage in MA-134 cells but had no effect in CV-1, CV-1P, TC-7, Vero, and CV-1PD' cells. Thus, we conclude that these HREs are biologically important to the virus, but in a cell type-specific manner.  相似文献   

3.
4.
M Hartl  T Willnow    E Fanning 《Journal of virology》1990,64(6):2884-2894
Simian virus 40 (SV40)-containing DNA was rescued after the fusion of SV40-transformed VLM cells with permissive COS1 monkey cells and cloned, and prototype plasmid clones were characterized. A 2-kilobase mouse DNA fragment fused with the rescued SV40 DNA, and derived from mouse DNA flanking the single insert of SV40 DNA in VLM cells, was sequenced. Insertion of the intact rescued mouse sequence, or two nonoverlapping fragments of it, into wild-type SV40 plasmid DNA suppressed replication of the plasmid in TC7 monkey cells, although the plasmids expressed replication-competent T antigen. Rat cells were transformed with linearized wild-type SV40 plasmid DNA with or without fragments of the mouse DNA in cis. Although all of the rat cell lines expressed approximately equal amounts of T antigen and p53, transformants carrying SV40 DNA linked to either of the same two replication suppressor fragments produced significantly less free SV40 DNA after fusion with permissive cells than those transformed by SV40 DNA without a cellular insert or with a cellular insert lacking suppressor activity. The results suggest that two independent segments of cellular DNA act in cis to suppress SV40 replication in vivo, either as a plasmid or integrated in chromosomal DNA.  相似文献   

5.
The two sequences that define the self-cleaving elements from the genomic and antigenomic RNA of hepatitis delta virus were folded into secondary structures with similar features. Evidence in support of the two models was obtained from limited ribonuclease digestion of genomic and antigenomic RNA fragments containing the sequence 3' of the cleavage site. Under conditions where the rates of self-cleavage are enhanced by addition of 5 M urea (2-10 mM Mg2+ at 37 degrees C), ribonucleases T1, U2, A and V1 generated digestion patterns consistent with the proposed RNA structures. The evidence for a relatively stable structure in urea when Mg2+ is present suggests that denaturant-enhanced rates of self-cleavage could result from destabilization of competing inactive structures.  相似文献   

6.
7.
8.
9.
10.
Genomes and antigenomes of many positive-strand RNA viruses contain 3′-poly(A) and 5′-poly(U) tracts, respectively, serving as mutual templates. Mechanism(s) controlling the length of these homopolymeric stretches are not well understood. Here, we show that in coxsackievirus B3 (CVB3) and three other enteroviruses the poly(A) tract is ~80–90 and the poly(U) tract is ~20 nt-long. Mutagenesis analysis indicate that the length of the CVB3 3′-poly(A) is determined by the oriR, a cis-element in the 3′-noncoding region of viral RNA. In contrast, while mutations of the oriR inhibit initiation of (−) RNA synthesis, they do not affect the 5′-poly(U) length. Poly(A)-lacking genomes are able to acquire genetically unstable AU-rich poly(A)-terminated 3′-tails, which may be generated by a mechanism distinct from the cognate viral RNA polyadenylation. The aberrant tails ensure only inefficient replication. The possibility of RNA replication independent of oriR and poly(A) demonstrate that highly debilitated viruses are able to survive by utilizing ‘emergence’, perhaps atavistic, mechanisms.  相似文献   

11.
In the budding yeast Saccharomyces cerevisiae, the telomerase enzyme is composed of a 1.3-kb TLC1 RNA that forms a complex with Est2 (the catalytic subunit) and two regulatory proteins, Est1 and Est3. Previous work has identified a conserved 5-nt bulge, present in a long helical arm of TLC1, which mediates binding of Est1 to TLC1. However, increased expression of Est1 can bypass the consequences of removal of this RNA bulge, indicating that there are additional binding site(s) for Est1 on TLC1. We report here that a conserved single-stranded internal loop immediately adjacent to the bulge is also required for the Est1-RNA interaction; furthermore, a TLC1 variant that lacks this internal loop but retains the bulge cannot be suppressed by Est1 overexpression, arguing that the internal loop may be a more critical element for Est1 binding. An additional structural feature consisting of a single-stranded region at the base of the helix containing the bulge and internal loop also contributes to recognition of TLC1 by Est1, potentially by providing flexibility to this helical arm. Association of Est1 with each of these TLC1 motifs was assessed using a highly sensitive biochemical assay that simultaneously monitors the relative levels of the Est1 and Est2 proteins in the telomerase complex. The identification of three elements of TLC1 that are required for Est1 association provides a detailed view of this particular protein-RNA interaction.  相似文献   

12.
13.
Song BH  Yun SI  Choi YJ  Kim JM  Lee CH  Lee YM 《RNA (New York, N.Y.)》2008,14(9):1791-1813
Tertiary or higher-order RNA motifs that regulate replication of positive-strand RNA viruses are as yet poorly understood. Using Japanese encephalitis virus (JEV), we now show that a key element in JEV RNA replication is a complex RNA motif that includes a string of three discontinuous complementary sequences (TDCS). The TDCS consists of three 5-nt-long strands, the left (L) strand upstream of the translation initiator AUG adjacent to the 5′-end of the genome, and the middle (M) and right (R) strands corresponding to the base of the Flavivirus-conserved 3′ stem–loop structure near the 3′-end of the RNA. The three strands are arranged in an antiparallel configuration, with two sets of base-pairing interactions creating L-M and M-R duplexes. Disrupting either or both of these duplex regions of TDCS completely abolished RNA replication, whereas reconstructing both duplex regions, albeit with mutated sequences, fully restored RNA replication. Modeling of replication-competent genomes recovered from a large pool of pseudorevertants originating from six replication-incompetent TDCS mutants suggests that both duplex base-pairing potentials of TDCS are required for RNA replication. In all cases, acquisition of novel sequences within the 3′M-R duplex facilitated a long-range RNA–RNA interaction of its 3′M strand with either the authentic 5′L strand or its alternative (invariably located upstream of the 5′ initiator), thereby restoring replicability. We also found that a TDCS homolog is conserved in other flaviviruses. These data suggest that two duplex base-pairings defined by the TDCS play an essential regulatory role in a key step(s) of Flavivirus RNA replication.  相似文献   

14.
15.
The initiation of simian virus 40 (SV40) replication requires recognition of the viral origin of replication (ori) by SV40 T antigen, followed by denaturation of ori in a reaction dependent upon human replication protein A (hRPA). To understand how origin denaturation is achieved, we constructed a 48-bp SV40 "pseudo-origin" with a central 8-nucleotide (nt) bubble flanked by viral sequences, mimicking a DNA structure found within the SV40 T antigen-ori complex. hRPA bound the pseudo-origin with similar stoichiometry and an approximately fivefold reduced affinity compared to the binding of a 48-nt single-stranded DNA molecule. The presence of hRPA not only distorted the duplex DNA flanking the bubble but also resulted in denaturation of the pseudo-origin substrate in an ATP-independent reaction. Pseudo-origin denaturation occurred in 7 mM MgCl2, distinguishing this reaction from Mg2+-independent DNA-unwinding activities previously reported for hRPA. Tests of other single-stranded DNA-binding proteins (SSBs) revealed that pseudo-origin binding correlates with the known ability of these SSBs to support the T-antigen-dependent origin unwinding activity. Our results suggest that hRPA binding to the T antigen-ori complex induces the denaturation of ori including T-antigen recognition sequences, thus releasing T antigen from ori to unwind the viral DNA. The denaturation activity of hRPA has the potential to play a significant role in other aspects of DNA metabolism, including DNA repair.  相似文献   

16.
Aichi virus is a member of the family Picornaviridae. It has already been shown that three stem-loop structures (SL-A, SL-B, and SL-C, from the 5' end) formed at the 5' end of the genome are critical elements for viral RNA replication. In this study, we further characterized the 5'-terminal cis-acting replication elements. We found that an additional structural element, a pseudoknot structure, is formed through base-pairing interaction between the loop segment of SL-B (nucleotides [nt] 57 to 60) and a sequence downstream of SL-C (nt 112 to 115) and showed that the formation of this pseudoknot is critical for viral RNA replication. Mapping of the 5'-terminal sequence of the Aichi virus genome required for RNA replication using a series of Aichi virus-encephalomyocarditis virus chimera replicons indicated that the 5'-end 115 nucleotides including the pseudoknot structure are the minimum requirement for RNA replication. Using the cell-free translation-replication system, we examined the abilities of viral RNAs with a lethal mutation in the 5'-terminal structural elements to synthesize negative- and positive-strand RNAs. The results showed that the formation of three stem-loops and the pseudoknot structure at the 5' end of the genome is required for negative-strand RNA synthesis. In addition, specific nucleotide sequences in the stem of SL-A or its complementary sequences at the 3' end of the negative-strand were shown to be critical for the initiation of positive-strand RNA synthesis but not for that of negative-strand synthesis. Thus, the 5' end of the Aichi virus genome encodes elements important for not only negative-strand synthesis but also positive-strand synthesis.  相似文献   

17.
18.
Pestiviruses, such as bovine viral diarrhea virus (BVDV), share many similarities with hepatitis C virus (HCV) yet are more amenable to virologic and genetic analysis. For both BVDV and HCV, translation is initiated via an internal ribosome entry site (IRES). Besides IRES function, the viral 5' nontranslated regions (NTRs) may also contain cis-acting RNA elements important for viral replication. A series of chimeric RNAs were used to examine the function of the BVDV 5' NTR. Our results show that: (1) the HCV and the encephalomyocarditis virus (EMCV) IRES element can functionally replace that of BVDV; (2) two 5' terminal hairpins in BVDV genomic RNA are important for efficient replication; (3) replacement of the entire BVDV 5' NTR with those of HCV or EMCV leads to severely impaired replication; (4) such replacement chimeras are unstable and efficiently replicating pseudorevertants arise; (5) pseudorevertant mutations involve deletion of 5' sequences and/or acquisition of novel 5' sequences such that the 5' terminal 3-4 bases of BVDV genome RNA are restored. Besides providing new insight into functional elements in the BVDV 5' NTR, these chimeras may prove useful as pestivirus vaccines and for screening and evaluation of anti-HCV IRES antivirals.  相似文献   

19.
The organization of 5S ribosomal RNA genes (rDNA) was examined for threeJapanese Laminaria species, L. japonica, L.religiosa and L. ochotensis. The linkage of 5SrDNA with the 18S-5.8S-25S rDNAs unit known in the brown algaScytosiphon lomentaria could not be detected inLaminaria. Instead, the tandem repeats of 5S rDNA were notassociated with the 18S-5.8S-25S rDNAs unit. The nucleotide sequence of 5S rDNAwas completely identical among these three species and its length was 118bp. However, a difference of nucleotide arrangement was detectedinthe spacer region of the tandemly repeated 5S rDNAs. Several nucleotideinsertion / deletions and substitutions were confirmed between differentindividuals of L. japonica, which were collected from notonly disjunct localities, but also the same locality. The lengths of the spacerregion of L. japonica, L. religiosaand L. ochotensis were 247–252 bp, 232bp and 252 bp, respectively.  相似文献   

20.
The 5 S DNA units from 15 grasses in theTriticeae were analysed at the DNA sequence level. Four units carried duplications near the 3-end of the 5 S RNA gene with 3 of the duplications centred on the same base pairs as a duplication previously reported byGerlach & Dyer. The fourth duplication was located 3 downstream from the gene, in the spacer region. Apparent deletions were very frequent when units of the different grasses were compared and it was clear that these deletions did not extend into a 75 bp spacer region upstream from the 5 S RNA gene. This 75 bp region also tended to be more conserved between the grasses as compared to the high level of sequence change in the rest of the spacer region. — Phenetic relationships were established between the grasses using the sequence data. The relationships were generally consistent with the data from other parameters and, in addition, showed that two Australian grasses were closely related to the other Northern hemisphere genera examined. The data concerning the Australian grasses is discussed in relation to the isolated nature of Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号