首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human Y chromosome contains a group of repeated DNA elements, identified as 3.4-kilobase pair (kb) fragments in Hae III digests of male genomic DNA, which contain both Y-specific and non-Y-specific sequences. We have used these 3.4-kb Hae III Y fragments to explore the organizational properties and chromosomal distribution of the autosomal homologs of the non-Y-specific (NYS) 3.4-kb Hae III Y elements. Three distinct organizations, termed domains, have been identified and shown to have major concentrations on separate chromosomes. We have established that domain K is located on chromosome 15 and domain D on chromosome 16 and suggested that domain R is on chromosome 1. Our findings suggest that each domain is composed of a tandemly arrayed cluster of a regularly repeating unit containing two sets of repeated sequences: one that is homologous to the NYS 3.4-kb Hae III Y sequences and one that does not cross-react with the 3.4-kb Hae III Y repeats. Thus, these autosomal repeated DNA domains, like their Y chromosome counterparts, consist of a complex mixture of repeated DNA elements interspersed among each other in ways that lead to defined periodicities. Although each of the three identified autosomal domains cross-reacts with 3.4-kb Hae III Y fragments purified from genomic DNA, the length periodicities and sequence content of the autosomal domains are chromosome specific. The organizational properties and chromosomal distribution of these NYS 3.4-kb Hae III homologs seem inconsistent with stochastic mechanisms of sequence diffusion between chromosomes.  相似文献   

2.
L M Kunkel  K D Smith  S H Boyer 《Biochemistry》1979,18(15):3343-3353
Fragments of 3.4 kilobases (kb) are released from DNA of human males, but not DNA of human females, by cleavage with restriction endonucleases HaeIII, EcoRI, or EcoRII. Most, if not all, reiterated DNA which is specific for the Y chromosome (it-Y DNA) is present within these male-specific 3.4-kb molecules. Although such 3.4-kb molecules are themselves localized to the Y chromosome, this is not true for all sequences within them. At least two distinguishable types of reiterated sequences are found within each 3.4-kb molecule. One type consists of at least two families which are highly reiterated and are not confined to the Y chromosome. The other type is composed of an estimated minimum of 39 families, each moderately reiterated and localized to the Y chromosome. Y-specific and non-Y-specific sequences are interspersed with one another in the same 3.4-kb molecule. In the average 3.4-kb molecule, three 800 nucleotide lengths of Y-specific sequences alternate with four 250 nucleotide lengths of non-Y-specific sequences. Since the total number of families of Y-specific sequences, calculated on the basis of reiteration frequency and total abundance in a male genome, greatly exceeds the number of Y -specific sequences present in a single 3.4-kb molecule, it necessarily follows that the population of these 3.4-kb molecules is heterogeneous.  相似文献   

3.
By means of renaturation kinetics of DNA of the three avian species Cairina domestica, Gallus domesticus and Columba livia domestica the following major DNA repetition classes were observed: a very fast reannealing fraction comprising about 15% of the DNA, a fast or intermediate reannealing fraction that makes up 10%, and a slow reannealing fraction of about 70%, which apparently renatures with single copy properties. — Comparing the reassociation behaviour of short (0.3 kb) and long (>2 kb) DNA fragments of duck and chicken it becomes apparent that only 12% (duck) and 28% (chicken) of the single copy DNA are interspersed with repetitive elements on 2 to 3 kb long fragments. The lengths of the repetitive sequences were estimated by optical hyperchromicity measurements, by agarose A-50 chromatography of S1 nuclease resistant duplexes and by electron microscopic measurements of the S1 nuclease resistant duplexes. It was found that in the case of the chicken DNA the single copy sequences alternating with middle repetitive ones are at least 2.3 kb long; the interspersed moderate repeats have a length average of at least 1.5 kb. The sequence length of the moderate repeats in duck DNA is smaller. The results show that the duck and the chicken genomes do not follow the short period interspersion pattern of genome organisation, characteristic of the eucaryotic organisms studied so far.  相似文献   

4.
A study of sequence homologies in four satellite DNAs of man.   总被引:4,自引:0,他引:4  
Satellites I, II, III and IV (Corneo et al., 1968,1970,1971) have been purified from human male placental DNA. The sequences present in these four DNA components have been characterized by analytical buoyant density, thermal denaturation, DNA reassociation, DNA hybridization and gel electrophoresis coupled with hybridization following either HaeIII or EcoRI restriction endonuclease digestion. Satellites III and IV were found to be virtually indistinguishable by a variety of criteria. Cross-satellite reassociation showed that 40% of the molecules present in satellite III contain sequences that are homologous to 10% of the molecules of either satellite I or satellite II. Reassociated satellite I melts as a single component, as do the hybrid duplexes between satellite I and satellite III. In contrast, reassociated satellites II, III and IV, and the hybrid duplexes formed between satellites II and III and between satellites II and IV, melt as two distinct components with different thermal stabilities.Digestion of satellite III with HaeIII gives rise to a series of fragments whose sizes are 2, 3, 4, 5, 6, 7, 8 and 11 times the size of the smallest 0.17 × 103 basepair fragment, in addition to a 3.4 × 103 base-pair male-specific fragment (Cooke, 1976) and high molecular weight material. The sequences contained in the fragments of the HaeIII ladder are diverged from each other as well as being non-homologous with those of the 3.4 × 103 base-pair and high molecular weight fragments. The latter contain EcoRI recognition sites. Satellite II has a similar pattern of fragments to satellite III following digestion with HaeIII, although it can be distinguished from satellite III on the basis of the products of EcoRI digestion. Satellite I contains neither HaeIII nor EcoRI recognition sites. The cross-satellite homologies of the sequences present in fragments of differing sizes produced by restriction enzyme digestion have also been studied.  相似文献   

5.
Summary Hae III restriction patterns are reported in three cases with normal-sized but nonfluorescent Y chromosomes (XO/XYnf mosaics). The 3.4- and 2.1-kb fragment classes of reiterated Y chromosomal DNA were not present in the three cases. Mechanisms leading to these findings are discussed.  相似文献   

6.
DNA fragments associated with chromosome scaffolds   总被引:5,自引:1,他引:4       下载免费PDF全文
Following extensive digestion of HeLa metaphase chromosomes with either Hae III endonuclease or micrococcal nuclease, nonhistone protein scaffolds may be isolated. Scaffolds isolated after Hae III digestion have about 1.5% of the chromosomal DNA attached to them. This DNA is heterogeneous in size, ranging from about 0.2 to 20 kbp. It can be cleaved with either Eco RI or Hae III - Eco RI, producing a series of repeated fragments, of which the most abundant is 1.7 kbp in length. The 1.7-kdp fragment is tandemly repeated and is enriched (about 50-fold) in the scaffold-associated DNA. It is located primarily on human chromosome 1 and is probably a component of human satellites II and III. Scaffolds isolated after micrococcal nuclease digestion have about 0.1% of chromosomal DNA attached. This DNA is present in two size classes - fragments larger than 10 kbp and fragments approximately 0.2 kbp long. Restriction enzyme digestion of this DNA gives no prominent repeated fragments. Its reassociation kinetics are similar to those of total DNA, indicating that it is not enriched in either highly repetitive or middle repetitive sequences.  相似文献   

7.
This paper offers a criticism of the common approach to the reassociation kinetics of eukaryotic DNA assuming an independent reassociation of nucleotide sequences with different frequencies of reiteration. The reassociation of randomly sheared DNA containing reiterated sequences interspersed with unique ones is described in terms of the model for randomly sheared DNA proposed by Gavrilov & Mazo (1977). Computations performed for different values of the interspersion parameters demonstrate their influence on the reassociation rate of total DNA and its repeat-enriched fraction. The reassociation rate of repeated sequences increases with their length. In the case of short-period interspersion appreciable differences are observed between the reassociation kinetics computed in terms of the random shearing model and the curves obtained for an admittedly independent reassociation of repeated and single-copy sequences.  相似文献   

8.
Summary A detailed map of the 32 kb mitochondrial genome of Aspergillus nidulans has been obtained by locating the cleavage sites for restriction endonucleases Pst I, Bam H I, Hha I, Pvu II, Hpa II and Hae III relative to the previously determined sites for Eco R I, Hind II and Hind III. The genes for the small and large ribosomal subunit RNAs were mapped by gel transfer hybridization of in vitro labelled rRNA to restriction fragments of mitochondrial DNA and its cloned Eco R I fragment E3, and by electron microscopy of RNA/DNA hybrids.The gene for the large rRNA (2.9 kb) is interrupted by a 1.8 kb insert, and the main segment of this gene (2.4 kb) is separated from the small rRNA gene (1.4 kb) by a spacer sequence of 2.8 kb length.This rRNA gene organization is very similar to that of the two-times larger mitochondrial genome of Neurospora crassa, except that in A. nidulans the spacer and intervening sequences are considerably shorter.  相似文献   

9.
Long and short repetitive sequences of sea urchin DNA were prepared by reassociation of 2000 nucleotide long fragments to Cot 4 and digestion with the single strand specific nuclease S1. The S1 resistant duplexes were separated into long repetitive and short repetitive fractions on Agarose A50. The extent of shared sequences was studied by reassociating a labeled preparation of short repetitive DNA with an excess of unlabeled long repetitive DNA. Less than 10% of the long repetitive DNA preparation was able to reassociate with the short repetitive DNA. Thus the long and short repetitive elements appear to be principally independent sequence classes in sea urchin DNA. Precisely reassociating repetitive DNA was prepared by four successive steps of reassociation and thermal chromatography on hydroxyapatite. This fraction (3% of the genome) was reassociated by itself or with a great excess of total sea urchin DNA. The thermal stability of the products was identical in both cases (Tm=81 degrees C), indicating that precisely repeated sequences do not have many imprecise copies in sea urchin DNA.  相似文献   

10.
The distribution of UV-induced repair replicated DNA sequences among highly reiterated, moderately reiterated, and single copy human DNA has been investigated by molecular reassociation at various UV doses. Results indicate that repair replicated DNA patches are uniformly distributed within highly repeated, moderately repeated, and single copy DNA sequences at every dose of UV radiation.  相似文献   

11.
Although 6 bp-restriction endonucleases infrequently cut DNA, we describe in this paper the banding pattern induced by one of them, StuI (AGGCCT), on fixed human chromosomes. This enzyme is the first 6 bp-restriction endonuclease demonstrated to be able to digest human heterochromatin. It causes the extraction of two families of repeated DNA, the alpha satellite DNA and the 3.4 kb HaeIII family (DYZ1). On the other hand, digestions with StuI and with another two enzymes, HinfI and RsaI, have established the distribution of sequences within the heterochromatic block of chromosome 3.  相似文献   

12.
A Rhizobium trifolii symbiotic plasmid specific gene library was constructed and the physical organisation of regions homologous to nifHDK, nifA and nod genes was determined. These symbiotic gene regions were localised to u 25 kb region on the sym-plasmid, pPN1. In addition four copies of a reiterated sequence were identified on this plasmid, with one copy adjacent to nifH. No rearrangement of these reiterated sequences was observed between R. trifolii bacterial and bacteroid DNA. Analysis of a deletion derivative of pPN1 showed that these sequences were spread over a 110 kb region to the left of nifA.  相似文献   

13.
Summary Streptomycetes are subject to a high degree of genetic instability. One manifestation of this phenomenon is the occurrence of tandemly reiterated DNA stretches within the chromosome. We describe the analysis of ten reiterated sequences observed in various ethidium bromide-treated streptomycin-sensitive and melanin-negative mutant strains of Streptomyces glaucescens. The repeated DNA units were 2.9 to 35 kb in lenght. No two sequences were identical. The amplified sequences occupied up to 45% of the total genomic DNA. Structural analysis of the cloned repeated DNA stretches by means of restriction enzymes and by cross hybridization revealed the presence of two chromosomal areas rich in DNA reiterations. In some cases reiterated regions were accompanied by nearby rearrangements.  相似文献   

14.
The genome of parsley was studied by DNA/DNA reassociation to reveal its spectrum of DNA reiteration frequencies and sequence organization. The reassociation of 300 nucleotide DNA fragments indicates the presence of four classes of DNA differing in repetition frequency. These classes are: highly repetitive sequences, fast intermediate repetitive sequences, slow intermediate repetitive sequences, and unique sequences. The repeated classes are reiterated on average 136,000, 3000, and 42 times respectively. A minor part of the genome is made up of palindromes. — The organization of DNA sequences in the P. sativum genome was determined by the reassociation kinetics of DNA fragments of varying length. Further information was derived from S1 nuclease resistance and from hyperchromicity measurements on DNA fragments reassociated to defined C0t values. — The portion of the genome organized in a short period interspersion pattern amounts to 47%, with the unique sequences on an average 1000 nucleotides long, and most of the repetitive sequences about 300 nucleotides in length, whereas the weight average length may be up to 600 nucleotides. — About 5% unique DNA and 11% slow intermediate repetitive DNA consist of sequences from 103 up to 104 nucleotides long; these are interspersed with repetitive sequences of unknown length. Long repetitive sequences constitute 33% of the genome, 13% are satellite-like organized, and 20% in long stretches of intermediate repetitive DNA in which highly divergent sequences alternate with sequences that show only minimal divergence. — The results presented indicate remarkable similarities with the genomes of most animal species on which information is available. The most intriguing pecularity of the plant genome derives from its high content of repetitive DNA and the presumed organization of the latter.  相似文献   

15.
C Rahuel  L Noel  G Lucotte 《Human heredity》1985,35(6):369-374
The human Y chromosome carries numerous copies of a tandemly repeated Pvu II sequence, 2.4 kb long. These sequences are specific to humans, and are present in a much smaller amount in the DNA of females. They are localized on the long arm of the Y chromosome. We have compared this sequence with the Hae III 2.1 kb Y-specific repeated sequence, already described.  相似文献   

16.
Hyperchromicity, S1 nuclease digestion, and reassociation studies of Syrian hamster repetitive DNA have led to novel conclusions about repetitive sequence organization. Re-evaluation of the hyperchromicity techniques commonly used to determine the average length of genomic repetitive DNA regions indicates that both the extent of reassociation, and the possibility of non-random elution of hyperpolymers from hydroxyapatite can radically affect the observed hyperchromicity. An alternative interpretation of hyperchromicity experiments, presented here, suggests that the average length of repetitive regions in Syrian hamster DNA must be greater than 4000 nucleotides.S1 nuclease digestion of reassociated 3200 nucleotide Syrian hamster repetitive DNA, on the other hand, yields both long (>2000 nucleotides) and short (300 nucleotides) resistant DNA duplexes. Calculations indicate that the observed mass of short nuclease-resistant duplexes (>60%) is too large to have arisen only from independent short repetitive DNA sequences alternating with non-repetitive regions. Reassociation experiments using long and short S1 nuclease-resistant duplexes as driver DNA indicate that all repetitive sequences are present in both fractions at approximately the same concentration. Isolated long S1 nuclease-resistant duplexes, after denaturation, renaturation, and a second S1 nuclease digestion, again produce both long and short DNA duplexes. Reassociation experiments indicate that all repetitive DNA sequences are still present in the “recycled” long S1 nuclease-resistant duplexes. These experiments imply that many of the short S1 nuclease-resistant repetitive DNA duplex regions present in reassociated Syrian hamster DNA were initially present in the genome as part of longer repetitive sequence blocks. This conclusion suggests that the majority of “short” repetitive regions in Syrian hamster DNA are organized into scrambled tandem clusters rather than being individually interspersed with non-repetitive regions.  相似文献   

17.
Fractionation of DNA of healthy and wilt-infected cotton plants has been carried out according to the reassociation kinetics and the content of GC and 5-methylcytosine in the resulting fractions has been studied. The genome of cotton plant was found to be methylated quite unevenly. The GC rich (GC=64.7 mole%) fraction of highly reiterated sequences (C 0 t=0–3.7×10-2) has a high content of 5-methylcytosine (5.8 mole%), whereas the methylation degree of the fraction of unique sequences (C 0 t487) is very low (the 5-methylcytosine content is about 0.5 mole%). In plants being infected with wilt, the 5-methylcytosine content in DNA of cotton leaves decreases two-fold; no other changes in the structure and molecular population of DNA has been found. The sharp change in the 5-methylcytosine content in DNA of infected plants takes place at the expense of the decrease in the 5-methylcytosine content in fractions of highly reiterated sequences. The methylation degree of unique sequences (structural genes) remains unchanged.  相似文献   

18.
Chick embryo fibroblasts in monolayer culture were synchronized by contact inhibition and serum starvation. Nuclear DNA isolated from the [3H] thymidine pulse-labelled cells throughout the period of DNA synthesis (S phase) was analysed by hydroxylapatite chromatography after renaturation at different C0t values. It is shown that repeated sequences having different frequencies of reassociation, replicate differently throughout the S period. In order to study the distribution of the repeated sequences, DNA isolated during the S period was fractionated according to its buoyant density. It is shown that only some of the highly reiterated sequences which are included in the high buoyant density DNA fractions, replicate equally well during the early and the late S periods. By contrast, reiterated sequences of the low buoyant density DNA fractions replicate mainly during the late S period.  相似文献   

19.
A specific family of tandemly repeated DNA sequences was found to diminish in the human genome after serial passage of three strains of diploid fibroblasts. Eco RI restriction fragments of 340 and 680 bp were significantly reduced in quantity at late passage as determined by autoradiography of 14C-DNA and also by ethidium bromide fluorescence. The reduction in these closely related DNA sequences was confirmed by saturation hybridization to excess 14H-RNA transcribed from a homogeneous restriction fragment recleaved from the 340 bp DNA. The maximal fraction of DNA hybridizing to the 3H-RNA probe declined by 33-50% over 21-41 population doublings. Divergence and/or methylation of such sequences could not account for these results since the thermal stability of cRNA:DNA duplexes actually increased by 0.3 degrees C at late passage. Total highly repetitive sequences assayed by reassociation kinetics were also substantially reduced at late passage, implying that depletion may be common to many repeat families in DNA. The denaturation temperature for such rapidly reassociated duplexes again increased slightly at late passage, possibly reflecting the minor decreases in DNA methylation which were detected in two of the cell strains. Karyotype analyses demonstrated that over 95% euploidy was maintained, with no specific chromosome loss and no visible deletions at late passage. The depletion of reiterated sequences during repeated cell division is thus attributed to numerous small DNA deletions, which may arise from unequal recombination coupled with selection or from a nonreciprocal mechanism such as excision.  相似文献   

20.
Tissue specific methylation of human Y chromosomal DNA sequences   总被引:1,自引:0,他引:1  
This report describes two moderately repetitive human Y chromosomal DNA sequences isolated from a flow sorted Y chromosonal library. These sequences are present in XY male and XY female DNAs but absent in XX male and XX female DNAs. Genomic Southern blot analysis against DNAs isolated from different tissues showed tissue specific DNA methylation patterns. In contrast to the 2.1 kb Hae III repeats which are hypomethylated in sperm DNA, the moderately repetitive sequences used in this study are highly methylated in sperm, less methylated in blood and brain and least methylated in placental DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号