首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roots of 19 Apocynaceae species were studied anatomically with respect to their symbiosis with VAM-fungi. In plants collected from the field, VAM-fungi were established in the root cortex. Also, inoculations with different Glomus species on the cultured plants are very successful in the infection and colonization of the root cortex. After penetration of the rhizodermis, the special exodermal short cells become colonized by winding hyphae. Then, in the root cortex of many Apocynaceae species, the VAM-fungi produce intercellular running hyphae which leads to extensive colonization of the root. Arbuscules develop on intracellular running hyphae, whereas vesicles develop mainly on intercellular hyphae. Except for some special details, this is the most common type of colonization of VAM fungi in flowering plants. But in Amsonia tabernaemontana, Nerium oleander, and Thevetia peruviana, another type of colonization could be observed. In these species, the colonization of the hyphae within the root cortex is only possible by intracellular growth. Intercellular running hyphae in the root are lacking. Therefore, after penetration the colonization in the cortex is cluster-like and strictly limited. Only by additional penetrations from hyphae in the soil, will roots show heavy infestations. This type of growth of the VAM fungi in the root is well known from the Gentianaceae and was explained as a structural incompatibility. In Catharanthus roseus, Pachypodium lamerei, and Trachelospermum jasminoides, intermediate stages of both types of colonization could be described. The results are discussed in the search for possible stimulants for structural incompatibility.  相似文献   

2.
The central cylinder of the root of Voynet tenella consists of up to ten central, non-lignified, tracheidal xylem elements surrounded by some parenchymatic tissue and 5–7 groups of phloem. A pericycle could not be discerned. Even though the endodermis carries a faint suberin lamella it cannot be discerned anatomically without special staining. The cells of the 1–3 cortex layers next to the endodermis are elongated longitudinally, the subsequent cortex parenchyma is multi-layered and consists of isodiametric cells. The cells of the 2–3 layered outer dermal tissue are smaller than those of the adjacent cortex, their walls carry a suberin lamella and the outermost of them constantly scale off. The dermal tissue is interpreted as a multilayered exodermis. The fungal colonization in roots of Voyria tenella remarkably differs from any known mycorrhizal pattern. After having penetrated the dermal tissue, the always intracellularly-growing hyphae head straight towards the inner cortex layers, where they spread along the central cylinder. Ramifications from these inner-spreading hyphae then colonize the cortex parenchyma from the inside and they develop dense hyphal coils. Eventually, the coiled hyphae swell and collapse, resulting in amorphous clumps of fungal material. This mycorrhizal pattern is referred to as an intraradical fungus garden. Arguments are given to call the mycorrhiza in Voyria tenella a specialized arbuscular mycorrhiza. Phylogenetic and ecological implications of the observations and the results are discussed.  相似文献   

3.
The interaction between mycorrhiza and leaf endophytes (Neotyphodium sp.) was studied in three Poa bonariensis populations, a native grass, differing significantly in endophyte infection. The association between endophytes and mycorrhizal fungi colonisation was assessed by analysing plant roots collected from the field. We found that roots from endophyte-infected populations showed a significantly higher frequency of colonisation by mycorrhizal fungi and that soil parameters were not related to endophyte infection or mycorrhiza colonization. In addition, we did not observe significant differences in the number of AM propagules in soils of the three populations sites. We also report the simultaneous development of Paris-type and Arum-type mycorrhiza morphology within the same root systems of P. bonariensis. The co-occurrence of both colonisation types in one and the same root system found in the three populations, which differed in Neotyphodium infection, suggests that foliar endophytes do not determine AM morphology. The percentage of root length colonised by different types of fungal structures (coils, arbuscules, longitudinal hyphae and vesicles) showed significant and positive differences in arbuscular frequency associated with endophyte infection, whereas the much smaller amounts of vesicles and hyphal coils did not differ significantly.  相似文献   

4.
Tomato plants pre-colonised by the arbuscular mycorrhizal fungusGlomus mosseae showed decreased root damage by the pathogenPhytophthora nicotianae var.parasitica. In analyses of the cellular bases of their bioprotective effect, a prerequisite for cytological investigations of tissue interactions betweenG. mosseae andP. nicotianae v.parasitica was to discriminate between the hyphae of the two fungi within root tissues. We report the use of antibodies as useful tools, in the absence of an appropriate stain for distinguishing hyphae ofP. nicotianae v.parasitica from those ofG. mosseae inside roots, and present observations on the colonisation patterns by the pathogenic fungus alone or during interactions in mycorrhizal roots. Infection intensity of the pathogen, estimated using an immunoenzyme labelling technique on whole root fragments, was lower in mycorrhizal roots. Immunogold labelling ofP. nicotianae v.parasitica on cross-sections of infected tomato roots showed that inter or intracellular hyphae developed mainly in the cortex, and their presence induced necrosis of host cells, the wall and contents of which showed a strong autofluorescence in reaction to the pathogen. In dual fungal infections of tomato root systems, hyphae of the symbiont and the pathogen were in most cases in different root regions, but they could also be observed in the same root tissues. The number ofP. nicotianae v.parasitica hyphae growing in the root cortex was greatly reduced in mycorrhizal root systems, and in mycorrhizal tissues infected by the pathogen, arbuscule-containing cells surrounded by intercellularP. nicotianae v.parasitica hyphae did not necrose and only a weak autofluorescence was associated with the host cells. Results are discussed in relation to possible processes involved in the phenomenon of bioprotection in arbuscular mycorrhizal plants.  相似文献   

5.
 Structures present within field-collected Tricholoma matsutake/Pinus densiflora ectomycorrhizas and in vitro infections of P. densiflora roots by T. matsutake were observed by clearing, bleaching and staining whole lateral roots and mycorrhizas. Field mycorrhizas were characterized by a lack of root hairs, by the presence of a sparse discontinuous mantle composed of irregularly darkly staining hyphae over the root surface, primarily behind the root cap, and by the presence of Hartig net mycelium within the root cortex. Hartig net 'palmettis' were classified into three basic structures, each with distinctive morphologies. Aerial hyphae, bearing terminal swellings, were observed emanating from the mantle. Cleared, bleached and stained in vitro-infected roots possessed multibranched hyphal structures within the host root cortex and aerial hyphae bearing terminal swellings were observed arising from the mycelium colonizing the root surface. T. matsutake on P. densiflora conforms to the accepted morphology of an ectomycorrhiza. This staining protocol is particularly suited to the study of Matsutake mycorrhizal roots and gives rapid, clear, high-contrast images using standard light microscopy while conserving spatial relationships between hyphal elements and host tissues. Accepted: 26 August 1999  相似文献   

6.
Roots of Voyria truncata retain the primary root structure even though they can grow as thick as 2 mm in diameter. These root diameters are due to a retained capability for cell division in the cortex parenchyma. This is explained as a vital adaptation to its life form. Based on the extraradical mycelium, the mode of penetration, the structurally incompatible intraradical phase, the presence of intercellular vesicles in the root cortex, and the occurrence of immediate hyphal bridges from arbuscular mycorrhizal roots of neighbouring plants, the mycorrhiza of V. truncata is described as an arbuscular mycorrhiza (AM), although the characteristic arbuscles are missing. Special features of the AM in V. truncata are interpreted as an improved efficiency in taking advantage of the mycorrhiza. Root connections with roots of neighbouring plants are common and preferred locations for fungal infections. An evolutionary tendency towards parasitism of higher plants is discussed.  相似文献   

7.
An endophytic fungus, F-23, was isolated from the roots of Dendrobium officinale Kimura et Migo, an endangered Chinese medicinal plant. The sequence of the ITS region indicated that the isolate belongs to the genus Mycena. After 4 months of inoculation, the root systems of D. officinale that were inoculated with F-23 fungus were much larger than the control’s root systems. We also observed that the hyphae of F-23 penetrated the epidermal cells within the host’s roots and spread from cell to cell. A large number of pelotons existed in the root cortical cells of D. officinale inoculated with F-23 fungus. Intracellular hyphae crossing through the host walls were also observed using SEM (scanning electron microscopy). In contrast, light microscopy and SEM showed that the transverse sections of the roots of control plants remained uncolonized. Therefore, the F-23 fungus can form mycorrhizal associations with the roots of its host plant, D. officinale, and enhance the growth of seedlings and roots. In brief, Mycena sp. was identified and shown to be a mycorrhizal fungus of the epiphytic orchid, D. officinale. This might be of potential use to the mass cultivation of D. officinale under artificial conditions.  相似文献   

8.
9.
The influence of nodal rooting on branching was studied in three evolutionarily and morphologically diverse species of prostrate clonal herbs: Tradescantia fluminensis (a monocotyledonous extreme ‘phalanx’ species), Calystegia silvatica (a dicotyledonous extreme ‘guerrilla’ species) and Trifolium repens (a dicotyledonous intermediate species). In all three, branch development from axillary buds is regulated by a positive signal produced by roots together with inhibitory influences from both pre-existing branches and shoot apical buds (apical dominance). Responses to nodal roots are cumulative and increased root activity leads to more vigorous bud outgrowth. In the absence of nodal roots, a single basal root system is unable to maintain continued extension growth of the shoot. We suggest that as individual nodal roots and stem internodes are both short-lived in these nodally-rooting clonal species, the plants’ investment in them is minimal. Thus, in contrast to perennial species lacking nodal roots, individual root systems in prostrate clonal herbs are small and stems have little secondary thickening and development of long-distance transport tissues. Hence the decline in extension growth of the shoot in the absence of nodal roots could be linked to the weak development of long-distance transport tissues in their relatively thin horizontal stems and to resource sharing between primary stems and lateral branches (as suggested by the greater retardation of primary stem growth in the more profusely branched ‘phalanx’ species (Trifolium and Tradescantia) than in the weakly branched ‘guerrilla’ species, Calystegia). These findings are consistent with the view that the long-term persistence of genotypes of nodally-rooting prostrate species is dependent upon them encountering the moist conditions required to facilitate the continual development of new young nodal root systems.  相似文献   

10.
Summary Experiments were carried out to assess the potential for reassociation of modified strains of the mycorrhizal fungus Rhizopogon sp., capable of acetylene reduction activity in vitro, with the roots of its host plant (Pinus radiata). Reassociation was effected and acetylene reduction assays indicated that nitrogenase activity was present in the reassociated whole plants. Those host plants symbiotic with the modified strains had higher levels of nitrogen than those associated with the wild type fungus under nitrogen deprived conditions. Uptake of phosphate was unimpaired in the modified mycorrhiza. Electron microscopy showed that hyphae of the modified strains as well as lying in the intercellular spaces were often found within the cells of the root cortex. This was in contrast with the wild type strains where no such intracellular growth was found. One strain was sound to be pathogenic to seedlings of Pinus radiata. re]19760603  相似文献   

11.
Structure and fungal identities were examined in the mycorrhizal roots of Schizocodon soldanelloides var. magnus (Diapensiaceae) to determine the mycorrhizal category. Previous studies had suggested the mycorrhizae of Diapensiaceae could be categorized as ericoid, but the mycorrhizal fungi have never been identified. The diameter of the fine lateral roots, in which coiled hyphae were found in epidermal cells, was mostly less than 100 μm. Molecular analyses identified the fungal isolates to be Helotiales and Oidiodendron. From the structure and fungal identities, we confirmed that the mycorrhiza of S. soldanelloides is an ericoid mycorrhiza.  相似文献   

12.
All members of the Monotropoideae (Ericaceae), including the species, Allotropa virgata and Pleuricospora fimbriolata, are mycoheterotrophs dependent on associated symbiotic fungi and autotrophic plants for their carbon needs. Although the fungal symbionts have been identified for A. virgata and P. fimbriolata, structural details of the fungal–root interactions are lacking. The objective of this study was, therefore, to determine the structural features of these plant root–fungus associations. Root systems of these two species did not develop dense clusters of mycorrhizal roots typical of some monotropoid species, but rather, the underground system was composed of elongated rhizomes with first- and second-order mycorrhizal adventitious roots. Both species developed mantle features typical of monotropoid mycorrhizas, although for A. virgata, mantle development was intermittent along the length of each root. Hartig net hyphae were restricted to the host epidermal cell layer, and fungal pegs formed either along the tangential walls (P. fimbriolata) or radial walls (A. virgata) of epidermal cells. Plant-derived wall ingrowths were associated with each fungal peg, and these resembled transfer cells found in other systems. Although the diffuse nature of the roots of these two plants differs from some members in the Monotropoideae, the structural features place them along with other members of the Monotropoideae in the “monotropoid” category of mycorrhizas.  相似文献   

13.
Wu L  Guo S 《Mycorrhiza》2008,18(2):79-85
A dark-septate endophytic (DSE) fungus EF-M was isolated from the roots of an alpine plant Saussurea involucrata Kar. et Kir. ex Maxim. The fungus was identified by sequencing the PCR-amplified rDNA 5.8S gene and ITS regions. The sequence was compared with similar sequences in the GenBank, and results showed that EF-M was congeneric to Leptodontidium. Resynthesis study was conducted to clarify the relationship between the root endophyte EF-M and the host plant S. involucrata using the material grown in sterile culture bottle. In roots recovered 6 weeks after inoculation, epidermal cells were colonized by intercellular and intracellular hyphae and “microsclerotia” formed within individual cells in the epidermis layers. However, hyphae did not invade the cortex and the stele. There were no profound effects of endophyte EF-M on plant root development, but significant differences were detected in plant height and shoot dry weight between the treatments. The present study is the first report hitherto on DSE fungi in S. involucrata.  相似文献   

14.
Mycorrhizas ofEntoloma clypeatum f.hybridum onRosa multiflora in the field in Japan were studied by stereo, light and electron microscopy. In most mycorrhizas, the root cap, meristem, and apical region of the cortex disappeared, but in a few mycorrhizas, these tissues remained. Fungal hyphae of the mycorrhizas invaded root tissues and branched palmately. Hyphae in contact with cortical cells were larger than those far from the root cells and contained many mitochondria, cisternae of endoplasmic reticulum and transitional vesicles. Invading hyphae were undulate in the apical part of the mycorrhiza, and some of them lacked distinct organelles. Electron-dense granules accumulated in the root cells adjacent to the fungal hyphae. Both the remnants of the plant cells and the fungal hyphae were included in the amorphous materials on the tip of the stele. These observations suggest the destructive infection by fungal hyphae of the root cells and their collapse near the tip of the stele.  相似文献   

15.
During the establishment of vesicular-arbuscular mycorrhizas, fungal hyphae contact the root surface, form appressoria and initiate the internal colonization phase. Structural changes occur in the cell wall, the cytoplasm and the nucleus as the fungus progresses from a presymbiotic to a symbiotic phase. Nuclei in spores are in G1 whereas in intraradical hyphae they are in G1 and G2. Changes in nuclear organization are evident in various stages in the colonization process. Dramatic changes in both symbionts occur as the nutrient exchange interface is established between arbuscules and root cortical cells. An interfacial matrix, consisting of molecules common to the primary wall of the cortical cell, separates the cortical cell plasma membrane from the fungal cell wall. Ectomycorrhizas are characterized structurally by the presence of a mantle of fungal hyphae enclosing the root and usually an Hartig net of intercellular hyphae characterized by labyrinthine branching. As hyphae contact the root surface, they may respond by increasing their diameter and switching from apical growth to precocious branching. The site of initial contact of hyphae may be either the root cap or the ‘mycorrhiza infection zone’. The mantle varies considerably in structure depending on both the plant and fungus genome. In some ectomycorrhizas, the mantle may be a barrier to apoplastic transport, and in most it may store polyphosphate, glycogen, lipids and perhaps protein.  相似文献   

16.
Several stages of the infection process by the vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatus, were compared in roots of sudangrass (Sorghum vulgare) grow in phosphorus-deficient or phosphorus-amended soil. Germination of fungal spores in soil and morphology of the fungus within the root were not affected by phosphorus amendment. There were no significant differences between phosphorus treatments in the percent of root infected or total length of root infected by the fungus until 25 days after inoculation. Between 25 and 35 days after inoculation, the percent of root infected increased 5-fold, and the total length of infected root increased nearly 30-fold in the phosphorus-deficient plants. Neither percent nor total length of infected root increased significantly over the same time period in the phosphorus amended plants. The increase in mycorrhiza formation in the phosphorus-deficient plants was associated with an increase in the number of penetrations into the root by the fungus, but not with an increase in the size of individual infections. Proliferation of external hyphae was greater in phosphorus-deficient than phosphorus-amended plants 25 days after inoculation. These data suggest that phosphorus nutrition of the host does not affect prepenetration stages of mycorrhiza formation by G. fasciculatus. However, external hyphal growth following initial penetration of the host is reduced with phosphorus amendment. The subsequent ability of the fungus to form secondary penetrations is thus decreased, ultimately resulting in the overall decrease in mycorrhiza formation commonly observed in plants receiving high levels of phosphorus.  相似文献   

17.
 In the present paper we report a mycorrhizal association between the hypogeous white truffle Terfezia terfezioides and the black locust (Robinia pseudoacacia) growing at various sites in Hungary. The mycorrhiza can be considered as being of the endo- or ectendo-type, since both mantle and Hartig net are absent. Morphological features of the septate hyphae colonizing cortical root cells were investigated by light microscopy on cryosections and on ultra-thin sections studied by transmission electron microscopy. Artificial infection of micropropagated black locust plantlets with the mycelium of the fungus was successful and had the same characteristics as naturally occurring associations. Accepted: 8 March 1996  相似文献   

18.
Mycorrhization helper bacteria (MHB), isolated from phylogenetically distinct ectomycorrhizal symbioses involving Lactarius rufus, Laccaria bicolor or Suillus luteus, were tested for fungus specificity to enhance L. rufus–Pinus sylvestris or L. bicolor–P. sylvestris mycorrhiza formation. As MHB isolated from the L. rufus and S. luteus mycorrhiza were originally characterised using a microcosm system, we assessed their ability to enhance mycorrhiza formation in a glasshouse system in order to determine the extent to which MHB are system-specific. Paenibacillus sp. EJP73, an MHB for L. rufus in the microcosm, significantly enhanced L. bicolor mycorrhiza formation in the glasshouse, demonstrating that the MHB effect of this bacterium is neither fungus-specific nor limited to the original experimental system. Although the five MHB strains studied were unable to significantly enhance L. rufus mycorrhiza formation, two of them did have a significant effect on dichotomous short root branching by L. rufus. The effect was specific to Paenibacillus sp. EJP73 and Burkholderia sp. EJP67, the two strains isolated from L. rufus mycorrhiza, and was not associated with auxin production. Altered mycorrhiza architecture rather than absolute number of mycorrhizal roots may be an important previously overlooked parameter for defining MHB effects.  相似文献   

19.
We examined the roots of 27 epiphytic and terrestrial species of Piperaceae collected in primary and secondary habitats in Monteverde, Costa Rica. Terrestrial roots of only two of the nine Peperomia species, two of eight Piper species, and of Pothomorphe umbellatum contained internal vesicles and/or arbuscules. We did not find internal vesicles and/or arbuscules in 3024 cm of fine roots of epiphytic Piperaceae, even though 15% of these root segments had associated external typical glomalean hyphae. Glomus and Acaulospora spores, and Gigaspora auxiliary cells occurred in both canopy and terrestrial habitats. After inoculation of a low nutrient substrate, the facultatively epiphytic Peperomia costaricensis averaged 23% mycorrhizal root length. Relatively high atmospheric inputs of dissolved inorganic nutrients that alleviate the requirement for mycorrhizae, and heterogeneity of mycorrhiza inocula in the canopy may explain the absence of mycorrhizae from epiphytic Piperaceae. We suggest that the Piperaceae comprises predominantly facultatively mycotrophic species, and that facultative mycotrophism facilitates their radiation to the canopy.  相似文献   

20.
P. A. McGee 《Plant and Soil》1987,101(2):227-233
Addition of MnSO4 or MnCl2 to a fine sandy soil from South Australia had a negative effect on shoot growth and root elongation ofSolanum opacum in the absence of significant presence of vesicular-arbuscular mycorrhiza (VAM). VAM ameliorated the reduction of plant growth by Mn, even though mycorrhizal development was decreased. Mn inhibited infection of roots by a fine endophyte less than that by some coarse endophytes. High concentrations of available Mn inhibited growth of hyphae of VAM fungi from dried root pieces, a significant source of infection by mycorrhizal fungi in the soil used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号