首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mesangial cell hexokinase (HK) activity is increased by a diverse array of factors that share both an association with pathological conditions and a common requirement for classic MAPK pathway activation. To better understand the relationship between glucose (Glc) metabolism and injury and to indirectly test the hypothesis that these changes constitute a general adaptive response to insult, we have sought to identify and characterize injury-associated factors that couple to mesangial cell HK regulation. Proinflammatory interleukin-1 (IL-1) cytokines activate the MAPK pathway and have known salutary effects in this cell type. We therefore examined their ability to influence mesangial cell HK activity, Glc utilization, MAPK pathway activation, and individual HK isoform abundance. IL-1beta increased HK activity in both a time- and concentration-dependent manner: activity increased maximally by approximately 50% between 12 and 24 h with an apparent EC(50) of 3 pM. IL-1alpha mimicked, but did not augment, the effects of IL-1beta. Specific IL-1 receptor antagonism and selective MAPK/ERK kinase or upstream Ras inhibition prevented these increases, whereas PKC inhibition did not. Changes in HK activity were associated with both increased Glc metabolism and selective increases in HKII isoform abundance. We conclude that IL-1 cytokines can regulate cellular Glc phosphorylating capacity via an IL-1 receptor-, Ras-, and classic MAPK pathway-mediated increase in HKII abundance. These findings suggest a novel, previously undescribed mechanism whereby metabolism may be coupled to inflammation and injury.  相似文献   

3.
Sugar Repression of Mannitol Dehydrogenase Activity in Celery Cells   总被引:4,自引:1,他引:3       下载免费PDF全文
We present evidence that the activity of the mannitol-catabolizing enzyme mannitol dehydrogenase (MTD) is repressed by sugars in cultured celery (Apium graveolens L.) cells. Furthermore, this sugar repression appears to be mediated by hexokinases (HKs) in a manner comparable to the reported sugar repression of photosynthetic genes. Glucose (Glc)-grown cell cultures expressed little MTD activity during active growth, but underwent a marked increase in MTD activity, protein, and RNA upon Glc starvation. Replenishment of Glc in the medium resulted in decreased MTD activity, protein, and RNA within 12 h. Addition of mannoheptulose, a competitive inhibitor of HK, derepressed MTD activity in Glc-grown cultures. In contrast, the addition of the sugar analog 2-deoxyglucose, which is phosphorylated by HK but not further metabolized, repressed MTD activity in mannitol-grown cultures. Collectively, these data suggest that HK and sugar phosphorylation are involved in signaling MTD repression. In vivo repression of MTD activity by galactose (Gal), which is not a substrate of HK, appeared to be an exception to this hypothesis. Further analyses, however, showed that the products of Gal catabolism, Glc and fructose, rather than Gal itself, were correlated with MTD repression.  相似文献   

4.
Solventogenesis and sporulation of clostridia are the main responsive adaptations to the acidic environment during acetone–butanol–ethanol (ABE) fermentation. It was hypothesized that five orphan histidine kinases (HKs) including Cac3319, Cac0323, Cac0903, Cac2730, and Cac0437 determined the cell fates between sporulation and solventogenesis. In this study, the comparative genomic analysis revealed that a mutation in cac0437 appeared to contribute to the nonsporulating feature of ATCC 55025. Hence, the individual and interactive roles of five HKs in regulating cell growth, metabolism, and sporulation were investigated. The fermentation results of mutants with different HK expression levels suggested that cac3319 and cac0437 played critical roles in regulating sporulation and acids and butanol biosynthesis. Morphological analysis revealed that cac3319 knockout abolished sporulation (Stage 0) whereas cac3319 overexpression promoted spore development (Stage VII), and cac0437 knockout initiated but blocked sporulation before Stage II, indicating the progression of sporulation was altered through engineering HKs. By combinatorial HKs knockout, the interactive effects between two different HKs were investigated. This study elucidated the regulatory roles of HKs in clostridial differentiation and demonstrated that HK engineering can be effectively used to control sporulation and enhance butanol biosynthesis.  相似文献   

5.
6.
After epithelial disruption by tissue injury, keratinocytes migrate from the wound edge into a provisional matrix. This process is stimulated by growth factors that signal through epidermal growth factor (EGF) receptor, including EGF, heparin-binding EGF-like growth factor (HB-EGF) and transforming growth factor-alpha (TGF-alpha), and by for example keratinocyte growth factor (KGF) and TGF-beta1 that function through different receptors. We have previously shown that keratinocyte migration induced by EGF or staurosporine is dependent on the activity of glycogen synthase kinase-3 (GSK-3). In the present study, we show that keratinocyte migration induced by TGF-beta1, KGF, EGF, TGF-alpha and staurosporine depends on EGFR signaling, involves autocrine HB-EGF expression and is potently blocked by GSK-3 inhibitors SB-415286 and LiCl. Inhibition of GSK-3 also retards wound reepithelialization in vivo in mice. Moreover, inhibition of GSK-3 activity prevented cell rounding that is an early event in EGFR-mediated keratinocyte migration. Isoform-specific GSK-3alpha and GSK-3beta knockdown and overexpression experiments with siRNAs and adenoviral constructs, respectively, revealed that GSK-3alpha is required for keratinocyte migration, whereas excessive activity of GSK-3beta is inhibitory. Thus, induction of keratinocyte migration is conveyed through EGFR, promoted by endogenous HB-EGF and requires GSK-3alpha activity.  相似文献   

7.
Alterations in glucose metabolism have been demonstrated for diverse disorders ranging from heart disease to cancer. The first step in glucose metabolism is carried out by the hexokinase (HK) family of enzymes. HKI and II can bind to mitochondria through their N-terminal hydrophobic regions, and their overexpression in tissue culture protects against cell death. In order to determine the relative contributions of mitochondrial binding and glucose-phosphorylating activities of HKs to their overall protective effects, we expressed full-length HKI and HKII, their truncated proteins lacking the mitochondrial binding domains, and catalytically inactive proteins in tissue culture. The overexpression of full-length proteins resulted in protection against cell death, decreased levels of reactive oxygen species, and possibly inhibited mitochondrial permeability transition in response to H2O2. However, the truncated and mutant proteins exerted only partial effects. Similar results were obtained with primary neonatal rat cardiomyocytes. The HK proteins also resulted in an increase in the phosphorylation of voltage-dependent anion channel (VDAC) through a protein kinase C (PKC)-dependent pathway. These results suggest that both glucose phosphorylation and mitochondrial binding contribute to the protective effects of HKI and HKII, possibly through VDAC phosphorylation by PKC.  相似文献   

8.
We previously presented evidence that the hexose‐regulated repression of the mannitol catabolic enzyme mannitol dehydrogenase (MTD) in celery (Apium graveolens L.) may be mediated by hexokinase (EC 2.7.1.1) (HK) [Prata et al. (1997) Plant Physiol 114: 307–314]. To see if differential regulation of HK forms might be involved in the sugar‐regulated repression of MTD we characterized two forms of HK with respect to their expression in various plant organs as well as in celery suspension cell cultures. We found that the vast majority of HK activity was membrane‐associated, whereas fructokinase (EC 2.7.1.4) was found largely in the soluble cell fraction. Gel filtration chromatography further revealed the differential expression of two molecular size classes of HK. One HK (HK‐L) chromatographed at 68 kDa, a typical size for a plant HK, while the second (HK‐H) chromatographed at 280 kDa. This unique 280 kDa HK was shown to be composed of a 50 kDa HK protein, possibly complexed with other, as yet unidentified, components. The HK‐L was present in all cells and organs analyzed, and thus may be a likely candidate for mediation of sugar repression. In contrast, the presence of the HK‐H complex was specific to certain organs and cells grown under certain conditions. Our analyses here showed no correlation between the presence of the HK‐H and MTD repression or derepression in celery cells. Instead, the HK‐H complex was present exclusively in rapidly growing organs and cells, but not in non‐growing celery storage tissues or in carbon‐depleted celery suspension‐cultured cells. Furthermore, the HK‐H complex was present when Glc in the growth media was replaced with 2‐deoxy Glc, a HK substrate that does not provide energy for growth and metabolism. These results imply that the HK‐H complex may have a potentially unique role in the metabolism of rapidly growing celery cells, in particular, in hexose phosphorylation. We also found that mitochondria prepared from Glc‐grown celery suspension‐cultured cells contained substantial HK activity, and that oxygen uptake of these mitochondria was stimulated by Glc. These results are consistent with the hypothesis that mitochondrial localization of celery HK may play a role in rapid recycling of adenylate.  相似文献   

9.
Primary bovine mammary epithelial cells (BMEC) were cultured in media containing varying concentrations of glucose, to determine the effects of glucose availability on glucose transport and its mechanism in bovine mammary gland. The BMEC incubated with 10 and 20 mM glucose had twofold greater glucose uptake than that with 2.5 mM glucose (P < 0.05). Increased glucose availability enhanced the cell proliferation (P < 0.05). As the glucose uptake is mediated by facilitative glucose transporters (GLUTs), the expression of GLUT mRNA was investigated. Compared with the control (2.5 mM), 5 and 10 mM glucose did not influence the abundance of GLUT1 mRNA (P < 0.05), whereas 20 mM glucose decreased the GLUT1 mRNA expression in the BMEC (P < 0.05). The expression of GLUT8 mRNA was not affected by any concentration of glucose (P > 0.05). As GLUTs are coupled with hexokinases (HKs) in regulating glucose uptake, the expression of HKs and their activities were also studied. The HK activity was greater in 5, 10 and 20 mM glucose than that in 2.5 mM glucose (P < 0.05). The expression of HK2 mRNA rather than HK1 mRNA was detected in the BMEC; however, the abundance of HK2 mRNA was not elevated by any concentrations of glucose compared with control (P > 0.05). Furthermore, addition of 3-bromopyruvate (30, 50 or 70 μM), an inhibitor of HK2, resulted in the decrease of glucose uptake and cell proliferation at both 2.5 and 10 mM glucose (P < 0.05). Therefore, the glucose concentrations may affect glucose uptake partly by altering the activity of HKs, and HK2 may play an important role in the regulation of glucose uptake in the BMEC.  相似文献   

10.
Loss of cell-matrix adhesion is often associated with acute epithelial injury, suggesting that "anoikis" may be an important contributor to cell death. Resistance against anoikis is a key characteristic of transformed cells. When nontransformed epithelia are injured, activation of the epidermal growth factor (EGF) receptor (EGFR) by paracrine/autocrine release of soluble ligands can induce a prosurvival program, but there is generally evidence for concomitant dedifferentiation. The EGFR ligand, heparin-binding EGF-like growth factor (HB-EGF), is synthesized as a membrane-anchored precursor that can activate the EGFR via juxtacrine signaling or can be released and act as a soluble growth factor. In Madin-Darby canine kidney cells, expression of membrane-anchored HB-EGF increases cell-cell and cell-matrix adhesion. Therefore, these studies were designed to test the effects of juxtacrine HB-EGF signaling upon cell survival and epithelial integrity when cells are denied proper cell-matrix interactions. Cells expressing a noncleavable mutated form of membrane-anchored HB-EGF demonstrated increased survival from anoikis, formed larger cell aggregates, and maintained epithelial characteristics even following prolonged detachment from the substratum. Physical association between membrane-anchored HB-EGF and EGFR was observed. Signaling studies indicated synergistic effects of EGFR activation and phosphatidylinositol 3-kinase signaling to regulate apoptotic and survival pathways. In contrast, although administration of exogenous EGF partially suppressed anoikis in wild type cells, it also led to an increased expression of mesenchymal markers, suggesting dedifferentiation. Taken together, we propose a novel role for membrane-anchored HB-EGF in the cytoprotection of epithelial cells.  相似文献   

11.
Heparin binding epidermal growth factor-like growth factor (HB-EGF) is an EGF-related peptide with prominent effects on cell growth and migration. We explored potentially unique characteristics of HB-EGF in the intestinal epithelial cell line RIE-1. HB-EGF stimulated [(3)H]thymidine incorporation to a level equivalent to transforming growth factor alpha (TGFalpha). HB-EGF also rapidly activated MAPK and induced cyclin D1 in mid-G1 with kinetics similar to TGFalpha. Unlike TGFalpha, HB-EGF mRNA was induced within 1 h by a variety of stimuli, including TGFbeta1. Maximal induction by TGFbeta (7-fold) occurred within 2 h of treatment. Actinomycin D decay curves showed that TGFbeta1 had no effect on HB-EGF mRNA half-life (T(1/2) 20 min). Induction of HB-EGF by TGFbeta1 was not affected by pretreatment with the MEK inhibitor PD-98059 while inhibition of protein kinase C either partially (calphostin C) or completely (staurosporin) blocked induction. Our results suggest that major differences exist in the regulation of the closely related EGF family members TGFalpha and HB-EGF. TGFbeta and HB-EGF, structurally unrelated peptides with potent effects on wound healing, may function coordinately to mediate responses to wounding or cell injury in the intestinal epithelium.  相似文献   

12.
p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis, and preserves barrier function by transactivation of the EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study is to determine the mechanisms by which p40 transactivates the EGFR in intestinal epithelial cells. Here we show that p40-conditioned medium activates EGFR in young adult mouse colon epithelial cells and human colonic epithelial cell line, T84 cells. p40 up-regulates a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) catalytic activity, and broad spectrum metalloproteinase inhibitors block EGFR transactivation by p40 in these two cell lines. In ADAM17-deficient mouse colonic epithelial (ADAM17−/− MCE) cells, p40 transactivation of EGFR is blocked, but can be rescued by re-expression with WT ADAM17. Furthermore, p40 stimulates release of heparin binding (HB)-EGF, but not transforming growth factor (TGF)α or amphiregulin, in young adult mouse colon cells and ADAM17−/− MCE cells overexpressing WT ADAM17. Knockdown of HB-EGF expression by siRNA suppresses p40 effects on transactivating EGFR and Akt, preventing apoptosis, and preserving tight junction function. The effects of p40 on HB-EGF release and ADAM17 activation in vivo are examined after administration of p40-containing pectin/zein hydrogel beads to mice. p40 stimulates ADAM17 activity and EGFR activation in colonic epithelial cells and increases HB-EGF levels in blood from WT mice, but not from mice with intestinal epithelial cell-specific ADAM17 deletion. Thus, these data define a mechanism of a probiotic-derived soluble protein in modulating intestinal epithelial cell homeostasis through ADAM17-mediated HB-EGF release, leading to transactivation of EGFR.  相似文献   

13.
Isozymes of plant hexokinase: occurrence, properties and functions   总被引:1,自引:0,他引:1  
Hexokinase (HK) occurs in all phyla, as an enzyme of the glycolytic pathway. Its importance in plant metabolism has emerged with compelling evidence that its preferential substrate, glucose, is both a nutrient and a signal molecule that controls development and expression of different classes of genes. A variety of plant tissues and organs have been shown to express multiple HK isoforms with different kinetic properties and subcellular localizations. Although plant HK is known to fulfill a catalytic function and act as a glucose sensor, the physiological relevance of plural isoforms and their contribution to either function are still poorly understood. We review here the current knowledge and hypotheses on the physiological roles of plant HK isoforms that have been identified and characterized. Recent findings provide hints on how the expression patterns, biochemical properties and subcellular localizations of HK isoforms may relate to their modes of action. Special attention is devoted to kinetic, mutant and transgenic data on HKs from Arabidopsis thaliana and the Solanaceae potato, tobacco, and tomato, as well as HK gene expression data from Arabidopsis public DNA microarray resources. Similarities and differences to known properties of animal and yeast HKs are also discussed as they may help to gain further insight into the functional adaptations of plant HKs.  相似文献   

14.
15.
8-Oxoguanine DNA glycosylase (Ogg1) repairs 8-oxo-7,8-dihydroxyguanine (8-oxoG), one of the most abundant DNA adducts caused by oxidative stress. In the mitochondria, Ogg1 is thought to prevent activation of the intrinsic apoptotic pathway in response to oxidative stress by augmenting DNA repair. However, the predominance of the β-Ogg1 isoform, which lacks 8-oxoG DNA glycosylase activity, suggests that mitochondrial Ogg1 functions in a role independent of DNA repair. We report here that overexpression of mitochondria-targeted human α-hOgg1 (mt-hOgg1) in human lung adenocarcinoma cells with some alveolar epithelial cell characteristics (A549 cells) prevents oxidant-induced mitochondrial dysfunction and apoptosis by preserving mitochondrial aconitase. Importantly, mitochondrial α-hOgg1 mutants lacking 8-oxoG DNA repair activity were as effective as wild-type mt-hOgg1 in preventing oxidant-induced caspase-9 activation, reductions in mitochondrial aconitase, and apoptosis, suggesting that the protective effects of mt-hOgg1 occur independent of DNA repair. Notably, wild-type and mutant mt-hOgg1 coprecipitate with mitochondrial aconitase. Furthermore, overexpression of mitochondrial aconitase abolishes oxidant-induced apoptosis whereas hOgg1 silencing using shRNA reduces mitochondrial aconitase and augments apoptosis. These findings suggest a novel mechanism that mt-hOgg1 acts as a mitochondrial aconitase chaperone protein to prevent oxidant-mediated mitochondrial dysfunction and apoptosis that might be important in the molecular events underlying oxidant-induced toxicity.  相似文献   

16.
17.
There is accumulating evidence that cell survival and metabolism are inexorably linked. As a majormediator of both the metabolic and anti-apoptotic effects of growth factors, the serine/threonine kinaseAkt (also known as protein kinase B or PKB) is particularly well-suited to coordinate the regulation ofthese interrelated processes. Recent demonstrations that growth factors and Akt require glucose (Glc) toprevent apoptosis and promote cell survival are compatible with this contention, as is a positivecorrelation between Akt-regulated mitochondrial hexokinase (mtHK) association and apoptoticresistance. From a phylogenetic perspective, the ability of Akt to regulate cellular metabolismapparently preceded the capacity to control cell survival, suggesting an evolutionary basis for the Glcdependent anti-apoptotic effects of Akt. We speculate that, somewhere in the course of evolution, themetabolic regulatory function of Akt evolved into an adaptive sensing system involving mtHK thatensures mitochondrial homeostasis, thereby coupling metabolism to cell survival. We also propose thatthis “guardian” function of mtHK may be specifically exploited for therapeutic purposes.  相似文献   

18.
Hexokinases (HKs) catalyze the first step of glucose metabolism, phosphorylating glucose to glucose 6-phosphate (G6P). HK2/hexokinase-II is a predominant isoform in insulin-sensitive tissues such as heart, skeletal muscle, and adipose tissues and is also upregulated in many types of tumors associated with enhanced aerobic glycolysis (the Warburg effect). Accumulating evidence indicates that HK2 plays an important role not only in glycolysis but also in cell survival. Although there is increasing recognition that cellular metabolism and cell survival are closely related, the molecular link between metabolism and autophagic pathways has not been fully elucidated. We recently discovered that HK2 facilitates autophagy in response to glucose deprivation (HK substrate deprivation) to protect cardiomyocytes, and suggest that HK2 functions as a molecular switch from glycolysis to autophagy to ensure cellular energy homeostasis under starvation conditions.  相似文献   

19.
20.
Disruption of intestinal epithelial homeostasis, including enhanced apoptosis, is a hallmark of inflammatory bowel disease (IBD). We have recently shown that tumor necrosis factor (TNF) increases the kinase activity of ErbB4, a member of the epidermal growth factor receptor family that is elevated in mucosa of IBD patients and that promotes colon epithelial cell survival. In this study, we tested the hypothesis that TNF transactivates ErbB4 through TNF-α converting enzyme (TACE)-mediated ligand release and that this transactivation is necessary to protect colonic epithelial cells from cytokine-induced apoptosis. Using neutralizing antibodies, we show that heparin-binding EGF-like growth factor (HB-EGF) is required for ErbB4 phosphorylation in response to TNF. Pharmacological or genetic inhibition of the metalloprotease TACE, which mediates HB-EGF release from cells, blocked TNF-induced ErbB4 activation. MEK, but not Src or p38, was also required for transactivation. TACE activity and ligand binding were required for ErbB4-mediated antiapoptotic signaling; whereas mouse colon epithelial cells expressing ErbB4 were resistant to TNF-induced apoptosis, TACE inhibition or blockade of ErbB4 ligand binding reversed the survival advantage. We conclude that TNF transactivates ErbB4 through TACE-dependent HB-EGF release, thus protecting colon epithelial cells from cytokine-induced apoptosis. These findings have important implications for understanding how ErbB4 protects the colon from apoptosis-induced tissue injury in inflammatory conditions such as IBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号