首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Trypanosoma cruzi ribosomal P0 protein (TcP0) is part of the ribosomal stalk, which is an elongated lateral protuberance of the large ribosomal subunit involved in the translocation step of protein synthesis. The TcP0 C-terminal peptide is highly antigenic and a major target of the antibody response in patients with systemic lupus erythematosus and patients suffering chronic heart disease produced by Trypanosoma cruzi infection. The structural properties of TcP0 have been explored by circular dichroism, tryptophan fluorescence and limited proteolysis experiments. These studies were complemented by secondary structure consensus prediction analysis. The results suggest that the tertiary structure of TcP0 could be described as a compact, stable, trypsin-resistant, 200 residues long N-terminal domain belonging to the alpha/beta class and a more flexible, degradable, helical, 123 residues long C-terminal domain which could be involved in the formation of an unusual hydrophobic zipper with the ribosomal P1/P2 proteins to form the P0/P1/P2 complex.  相似文献   

2.
Patients with chronic Chagas' heart disease (cChHD) develop a strong IgG response against the C-terminal region of the Trypanosoma cruzi ribosomal P2beta protein (TcP2beta). These antibodies have been shown to exert an in vitro chronotropic effect on cardiocytes through stimulation of the beta1-adrenergic receptor (beta1-AR). Moreover, the presence of antibodies recognizing the TcP2beta C-terminus was associated with cardiac alterations in mice immunized with the corresponding recombinant protein. Here, we demonstrate that DNA immunization could be used to modulate the specificity of the anti-TcP2beta humoral response in order to avoid the production of pathogenic antibodies. After DNA injection, we detected IgG antibodies that were directed only to internal epitopes of the TcP2beta molecule and that did not exert anti-beta1-AR functional activity, measured as an increase in intracellular cAMP levels of transfected COS-7 cells. Accordingly, DNA-immunized mice did not present electrocardiographic alterations. These data demonstrate that anti-TcP2beta antibodies elicited by DNA immunization are completely different in their specificity and functional activity from those produced during T. cruzi infection.  相似文献   

3.
The P0 protein is part of the ribosomal eukaryotic stalk, which is an elongated lateral protuberance of the large ribosomal subunit involved in the translocation step of protein synthesis. P0 is the minimal portion of the stalk that is able to support accurate protein synthesis. The P0 C-terminal peptide is highly antigenic and a major target of the antibody response in patients with systemic lupus erythematosus and patients suffering chronic heart disease produced by the Trypanosoma cruzi parasite. The T. cruzi P0 (TcP0) protein was cloned into the pRSET A vector and expressed in Escherichia coli fused to a His-tag. The identity of the protein was confirmed by immunoblotting. Due to the formation of inclusion bodies the protein was purified using the following steps: (i) differential centrifugation to separate the inclusion bodies from soluble proteins and (ii) affinity chromatography under denaturing conditions. TcP0 showed high tendency to aggregation during refolding assays. However, TcP0 could be efficiently folded in the presence of a low concentration of SDS. The folding of the protein was confirmed using urea gradient electrophoresis, limited proteolysis, circular dichroism, and tryptophan fluorescence. Native electrophoresis showed that the folded TcP0 (and not a folding intermediate) was the cause of aggregation in the absence of SDS. The protocol described here permitted us to obtain large amounts (up to 30 mg per culture liter) of pure and folded TcP0, a very hydrophobic protein with a high tendency to aggregation.  相似文献   

4.
Ribosomal P proteins form a “stalk” complex in the large subunit of the ribosomes. In Trypanosoma cruzi, the etiological agent of Chagas disease, the complex is formed by five P protein members: TcP0, TcP1α, TcP1β, TcP2α and TcP2β. The TcP0 protein has 34 kDa, and TcP1 and TcP2 proteins have 10 kDa. The structure of T. cruzi P0 and the stalk complex TcP0–TcP1α–TcP1β–TcP2α–TcP2β have not been solved to date. In this work, we constructed a three-dimensional molecular model for TcP0 using homology modeling as implemented in the MODELLER 9v12 software. The model was constructed using different templates: the X-ray structures of the protein P0 from Pirococcus horikoshii, a segment from the Danio renio Ca+2/K+ channel and the C-terminal peptide (C13) from T. cruzi ribosomal P2 protein; the Cryo-EM structure of Triticum aestivum P0 protein and the NMR structure of Homo sapiens P1 ribosomal protein. TcP0 has a 200-residue-long N-terminal, which is an α/β globular stable domain, and a flexible C-terminal, 120-residue-long domain. The molecular surface electrostatic potential and hydrophobic surface were calculated. The surface properties are important for the C-terminal's antigenic properties. They are also responsible for P0-specific binding to RNA26S and the binding to the P1–P2 proteins. We explored and identified protein interactions that may be involved in conformational stability. The structure proposed in this work represents a first structural report for the TcP0 protein.  相似文献   

5.
The ribosomal P proteins are located on the stalk of the ribosomal large subunit and play a critical role during the elongation step of protein synthesis. The single chain recombinant antibody C5 (scFv C5) directed against the C-terminal region of the Trypanosoma cruzi P2β protein (TcP2β) recognizes the conserved C-terminal end of all T. cruzi ribosomal P proteins. Although this region is highly conserved among different species, surface plasmon resonance analysis showed that the scFv C5 possesses very low affinity for the corresponding mammalian epitope, despite having only one single amino-acid change. Crystallographic analysis, in silico modelization and NMR assays support the analysis, increasing our understanding on the structural basis of epitope specificity. In vitro protein synthesis experiments showed that scFv C5 was able to specifically block translation by T. cruzi and Crithidia fasciculata ribosomes, but virtually had no effect on Rattus norvegicus ribosomes. Therefore, we used the scFv C5 coding sequence to make inducible intrabodies in Trypanosoma brucei. Transgenic parasites showed a strong decrease in their growth rate after induction. These results strengthen the importance of the P protein C terminal regions for ribosomal translation activity and suggest that trypanosomatid ribosomal P proteins could be a possible target for selective therapeutic agents that could be derived from structural analysis of the scFv C5 antibody paratope.  相似文献   

6.

Background

Endomyocardial Fibrosis (EMF) –is a chronic inflammatory disease of the heart with related pathology to that of late stage Chaga''s disease. Indeed, both diseases are thought to result from auto-immune responses against myocardial tissue. As is the case that molecular mimicry between the acidic termini of Trypanosoma cruzi ribosomal P0, P1 and P2β (or simply TcP0, TcP1, and TcP2β) proteins and myocardial tissue causes Chaga''s disease, excessive exposure to certain infections, toxins including cassava ones, allergy and malnutrition has been suggested as the possible cause for EMF. Recent studies have defined the proteomic characteristics of the T. cruzi ribosomal P protein-C-termini involved in mediating auto-immunity against Beta1-adrenergic receptors of the heart in Chaga''s disease. This study aimed to investigate the similarity of C-termini of TcP0/TcP2β to sequences and molecules of several plants, microbial, viral and chemical elements- most prior thought to be possible causative agents for EMF.

Methods and Principal Findings

Comparative Sequence alignments and phylogeny using the BLAST-P tool at the Swiss Institute of Biotechnology (SIB) revealed homologs of C-termini of TcP0 and TcP2β among related proteins from several eukaryotes including the animals (Homo sapiens, C. elegans, D. melanogaster), plants (Arabidopsis thaliana, Zea mays, Glycina Max, Oryza sativa, Rhizopus oryzae) and protozoa (P. falciparum, T. gondii, Leishmania spp).The chemical formulae of the two T.cruzi ribosomal protein C-terminal peptides were found to be C61H83N13O26S1and C64H87N13O28S1 respectively by Protparam. Both peptides are heavily negatively charged. Constitutively, both auto-antigens predominantly contain Asparagine (D), Glycine (G) and Phenylamine (F), with a balanced Leucine (L) and Methionine (M) percent composition of 7.7%. The afore going composition, found to be non-homologous to all molecules of chemical species in the databases searched, suggests the possible role of a metabolic pathway in the pathogenesis of EMF if aligned with our “molecular mimicry” hypothesis.

Conclusions

Our findings provide a “window” to suggest that cross reactivity of antibodies against C-terminal sequences of several animal, plant and protozoal ribosomal P proteins with heart tissue may mediate EMF in a similar manner as C- termini of T. cruzi do for Chaga''s disease.  相似文献   

7.
In the present work, we have determined the effect of expression vectors and their corresponding host bacteria on the antigenic performance of Trypanosoma cruzi P2beta (TcP2beta) full-length recombinant protein. The gene encoding the TcP2beta ribosomal protein was cloned in pMAL-c2 and pET-32a vectors that allow the expression of high levels of soluble fusion proteins. A panel of 32 positive and 32 negative sera was assayed with the purified proteins expressed using pMal-c2 (TcP2beta-MBP) and pET-32a (TcP2beta-TRX) vectors and with MBP and TRX purified from pMAL-c2 and pET-32a vectors, respectively. The antigenic behavior of each TcP2beta recombinant protein differed in the diagnostic performance in terms of DI(+) (93.7 for TcP2beta-MBP vs 100% for TcP2beta-TRX), in DI(-) (90.5 for TcP2beta-MBP vs 100% for TcP2beta-TRX) and in cross-reaction with negative sera. To determine if the higher reactivity of expressed pMAL-c2 protein was due to folding during protein expression or to a steric effect related to the protein adsorption at the titration plate, the reactivity of sera against soluble proteins was assessed by ELISA inhibition assays. As each soluble protein preserved its level of reactivity, we concluded that differences in reactivity were due to intrinsic characteristics of the proteins and not to differences in patterns of adsorption to the plates.  相似文献   

8.
The large subunit of the eukaryotic ribosome possesses a long and protruding stalk formed by the ribosomal P proteins. This structure is involved in the translation step of protein synthesis through interaction with the elongation factor 2 (EF‐2). The Trypanosoma cruzi stalk complex is composed of four proteins of about 11 kDa, TcP1α, TcP1β, TcP2α, TcP2β and a fifth TcP0 of about 34 kDa. In a previous work, a yeast two‐hybrid (Y2H) protein–protein interaction map of T. cruzi ribosomal P proteins was generated. In order to gain new insight into the assembly of the stalk, a complete interaction map was generated by surface plasmon resonance (SPR) and the kinetics of each interaction was calculated. All previously detected interactions were confirmed and new interacting pairs were found, such as TcP1β–TcP2α and TcP1β–TcP2β. Moreover P2 but not P1 proteins were able to homo‐oligomerize. In addition, the region comprising amino acids 210–270 on TcP0 was identified as the region interacting with P1/P2 proteins, using Y2H and SPR. The interaction domains on TcP2β were also mapped by SPR identifying two distinct regions. The assembly order of the pentameric complex was assessed by SPR showing the existence of a hierarchy in the association of the different P proteins forming the stalk. Finally, the TcEF‐2 gene was identified, cloned, expressed and refolded. Using SPR analysis we showed that TcEF‐2 bound with similar affinity to the four P1/P2 ribosomal P proteins of T. cruzi but with reduced affinity to TcP0. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Given that cardiovascular risk factors (CRF), such as smoking, alcoholism and hypertension, may contribute to the development of heart lesions, chronically Trypanosoma cruzi-infected individuals were studied to explore the relationship between the presence of such CRF, cardiomyopathy and antibodies that have been proposed to play a pathogenetic role in Chagas' disease. The targets of these antibodies were T. cruzi antigens such as cruzipain (Cz), a P ribosomal antigen (P2), and a component of myelin sheaths also present in T. cruzi (sulphatide). Individuals were classified into four groups on the basis of specific serology and presence of CRF: subjects with T. cruzi infection and CRF; those with positive serology and no CRF; seronegatives with CRF; and seronegatives without CRF, were analysed. Seronegatives or seropositives with CRF showed a greater occurrence of heart involvement (chest X-ray and/or electrocardiogram abnormalities). Seropositives with CRF displayed significantly higher levels of antisulphatide antibodies than the three remaining groups and higher levels of antibodies against Cz and P2 compared to the seropositives without CRF. Increased amounts of anti-P2 and antisulphatide antibodies were also found in seropositives with marked heart involvement. The presence of CRF is associated with a different profile of antibody responses and degree of cardiac effects.  相似文献   

10.
Trypanosoma cruzi-specific cytotoxic T-lymphocyte (CTL) responses are critical in the control of parasite growth and will play an important part in therapeutic and prophylactic T. cruzi vaccines. The identification of parasite-specific epitopes that are efficiently recognized by CTLs is the first step in the development of future vaccines. HLA-A2 transgenic mice (HHD) were shown to provide a powerful model for studying the induction of HLA-A*0201-restricted immune responses in vivo, since these mice are endowed with a CTL repertoire representative of HLA-A2.1 individuals. Here, we describe the immunological characterization of T-cell epitopes of the T. cruzi ribosomal P2 protein (TcP2beta) that are recognized by HLA-A*0201-restricted CTLs in HLA-transgenic mice and humans. Epitopes identified in the present study do not share sequence homology with the homologous human or murine counterparts and so they should not induce any autoreactive response. Moreover, HHD mice vaccinated with these peptide epitopes have reduced parasitemia after challenge with a lethal T. cruzi infection. Hence, these epitopes represent potential subunit components of multi-protein vaccines to prevent Chagas' disease.  相似文献   

11.
M P Vazquez  M J Levin 《Gene》1999,239(2):217-225
TcP2beta ribosomal protein genes in Trypanosoma cruzi are encoded by four different loci, H6.4, H1.8, H1.5 and H1.3. All loci have a similar organization, except for H1.8 that harbors two TcP2beta genes arranged in tandem and separated by a short repetitive sequence, named SIRE (short interspersed repetitive element), which is also found upstream of the first gene of the tandem and downstream of the second. In this locus the trans-splicing signal of TcP2beta is located within the SIRE element, while in the other loci it is positioned within the first 50bases upstream of the AUG with an AG acceptor site at position -12 respective to the initiation codon. Transient transfection experiments were used to evaluate the efficiency of these two different trans-splicing regions to drive CAT activity. The region named HX1 located upstream the TcP2beta H1. 8 gene was clearly more efficient than the SIRE sequence contained in the region named HX2. Therefore, we decided to use the HX1 region to ameliorate the performance of the cryptic trans-splicing signal present in the T. cruzi expression vector pRIBOTEX (Martinez-Calvillo, S., López, I., Hernandez, H., 1997. pRIBOTEX expression vector: a pTEX derivative for a rapid selection of Trypanosoma cruzi transfectants. Gene 199, 71-76). By insertion of the region HX1 downstream of the ribosomal promoter of pRIBOTEX, we constructed pRHX1CAT40 that, in stable transfected cells, was able to drive CAT activity 2760 times more efficiently than the control plasmids. Based on this, a novel plasmid vector was conceived, named pTREX-n, which retains the neo gene of pRIBOTEX as a positive selectable marker and replaces the CAT-SV40 cassette in pRHX1CAT40 by a multiple cloning site.  相似文献   

12.
RNA binding proteins (RBP) play essential roles in the highly conserved and coordinated process of ribosome biogenesis. Our laboratory has previously characterized two essential and abundant RBPs, P34 and P37, in Trypanosoma brucei which are required for several critical steps in ribosome biogenesis. The genes for these proteins have only been identified in kinetoplastid organisms but not in the host genome. We have identified a homolog of the TbP34 and TbP37 in a T. cruzi strain (termed TcP37/NRBD). Although the N-terminal APK-rich domain and RNA recognition motifs are conserved, the C-terminal region which contains putative nuclear and nucleolar localization signals in TbP34 and TbP37 is almost entirely missing from TcP37/NRBD. We have shown that TcP37/NRBD is expressed in T. cruzi epimastigotes at the level of mature mRNA and protein. Despite the loss of the C-terminal domain, TcP37/NRBD is present in the nucleus, including the nucleolus, and the cytoplasm. TcP37/NRBD interacts directly with Tc 5S rRNA, but does not associate with polyadenylated RNA. TcP37/NRBD also associates in vivo and in vitro with large ribosomal protein TcL5 and, unlike the case of T. brucei, this association is strongly enhanced by the presence of 5S rRNA, suggesting that the loss of the C-terminal domain of TcP37/NRBD may alter the interactions within the complex. These results indicate that the unique preribosomal complex comprised of L5, 5S rRNA, and the trypanosome-specific TcP37/NRBD or TbP34 and TbP37 is functionally conserved in trypanosomes despite the differences in the C-termini of the trypanosome-specific protein components.  相似文献   

13.
Abstract Infection with Trypanosoma cruzi develops in three phases: acute, indeterminate or asymptomatic, and chronic phase (with cardiac or digestive manifestations). Moreover, transmission may occur from infected mothers to newborn, the so-called congenital form. In the present study, humoral responses against T. cruzi total extract and against the 13 amino acid peptide named R-13 derived from the parasite ribosomal P protein, previously described as a possible marker of chronic Chagas heart disease, were determined pateints and in blood bank donors from endemic areas. While in sera from acute phase, only IgM anti- T.cruzi response was observed, both IgM and IgG anti- T. cruzi antibodies were detected in sera from congenitally infected newborns. The percentage of positive response in sera from blood bank donors was relatively high in endemic regions. Antibodies against the R-13 peptide were present in a large proportion of cardiac chagasic patients but were totally lacking in patients with digestive form of Chagas disease. Furthermore, anti-R-13 positive responses were detected in congenitally infected newborns.  相似文献   

14.
Trypanosoma cruzi is the parasite causing Chagas Disease. Several results already published suggest that T. cruzi ribosomes have remarkable differences with their mammalian counterparts. In the present work, we showed that trypanosomatid (T. cruzi and Crithidia fasciculata) ribosomes are highly resistant to inactivation by trichosanthin (TCS), which is active against mammalian ribosomes. Differential resistance is an intrinsic feature of the ribosomal particles, as demonstrated by using assays where the only variable was the ribosomes source. Because we have recently described that TCS interacts with the acidic C-terminal end of mammalian ribosomal P proteins, we assayed the effect of a TCS variant, which is unable to interact with P proteins, on trypanosomatid ribosomes. This mutant showed similar shifting of IC(50) values on rat, T. cruzi and C. fasciculata ribosomes, suggesting that the resistance mechanism might involve other ribosomal components rather than the C-terminal end of P proteins.  相似文献   

15.
High levels of antibodies (Abs) against the C-terminal end of the Trypanosoma cruzi ribosomal P2β protein, defined by the R13 peptide, are detected in sera from patients with chronic Chagas heart disease (cChHD). These Abs can cross-react with the β1-adrenergic receptor (β1-AR), inducing a functional response in cardiomyocytes. In this study, we report that a monoclonal Ab against the R13 peptide, called mAb 17.2, and its single-chain Fv fragment (scFv), C5, caused apoptosis of murine adult cardiac HL-1 cells, and this effect was inhibited by pre-incubation with the β-blocker, propranolol. In addition, apoptosis induced by mAb 17.2 might involve the mitochondrial pathway evidenced by an increase in pro-apoptotic molecule, Bax/anti-apoptotic molecule, BclXL, mRNA levels. HL-1 cells also underwent apoptosis after incubation with nine of 23 IgGs from cChHD patients (39.1%) that presented reactivity against R13 peptide and β1-AR. The apoptotic effect caused by these IgGs was partially abolished by pre-incubation with R13 peptide or propranolol, suggesting the involvement of the C-terminal end of ribosomal P proteins and the β-adrenergic pathway. Moreover, we observed high rates of cardiomyocyte apoptosis in two tissue samples from cChHD patients by using a TUNEL assay and staining of active caspase-3. Our data demonstrate that Abs developed during T. cruzi infection have a strong cardiomyocyte apoptosis inducing ability, which could contribute to the heart disease developed in patients with cChHD.  相似文献   

16.
Trypanosoma cruzi ribosomes from epimastigote forms were purified as determined by electron microscopy and isoelectrofocusing was used to analyse this purified ribosome fraction. Silver stained gels revealed that acidic proteins are present in at least 10 different isoforms, in accord with previous cloning studies. To detect phosphorylation, in vitro phosphorylation assays using the recombinant protein TcP2beta-mbp were carried out. The results showed that T. cruzi cytosolic fraction possesses protein kinase activity able to phosphorylate the recombinant protein. Purified ribosomes contain protein kinases that could also phosphorylate the recombinant protein TcP2beta-mbp. Labelling parasites with [(32)Pi] in a phosphate free medium demonstrated that ribosome proteins, recognised with a specific mouse antiserum against recombinant TcP2beta proteins, are phosphorylated in vivo. All these results suggest that in vivo phosphorylation of ribosome TcP2beta proteins are mediated by protein kinase(s) not yet identified.  相似文献   

17.
Considerable evidence supports the idea that autoantibody production in human and murine SLE is Ag driven. To determine whether Ag (the ribosomal P proteins) could initiate autoantibody production in lupus mice, 34 MRL/lpr mice were immunized with mouse riboosomal proteins in Freund's adjuvant. Neither intact ribosomes, denatured total mouse ribosomal proteins, nor the purified mouse ribosomal proteins, P1 and P2, induced the production of anti-P autoantibodies in the MRL/lpr mice. In contrast to these negative findings, MRL/lpr mice immunized with Artemia salina ribosomes produced anti-P antibodies as well as anti-P autoantibodies. Although the induced anti-P autoantibodies bound exclusively to the carboxyl terminus, these anti-P antibodies differed from spontaneously occurring anti-P autoantibodies in their predominant binding to mouse P0 on immunoblots and their preferential reactivity against A. salina synthetic peptides by ELISA. Induction of anti-P antibodies required the presence of P1 and P2 on the ribosome because ribosomal cores devoid of P1 and P2 dimers did not induce anti-P. Despite the presence of approximately 80 ribosomal proteins, autoantibodies to other mouse ribosomal proteins were rarely observed. Immunization of MRL/+ mice and a normal H-2-matched strain of mice, C3H, also resulted in anti-P antibodies reactive with the A. salina P proteins and mouse P0. Whereas anti-P levels gradually declined in C3H mice, anti-P levels either remained elevated (MRL/lpr) or showed a secondary rise (MRL/+) at the onset of autoimmunity. These observations indicate that: i) high levels of autologous Ag are not sufficient to drive antiribosomal autoantibody production in MRL mice, ii) multivalency of the P proteins may explain their potent immunogenicity and ability to break tolerance, and iii) immunized MRL mice show an abnormal persistence of high level anti-P production presumably reflecting T cell activation of presensitized B cells.  相似文献   

18.
Anti-Sm and anti-ribosomal P protein antibodies show a high degree of specificity for the disease SLE. To determine whether a relationship between these two autoantibodies existed, the frequency of anti-P was determined in sera with and without anti-Sm activity. Of sera from lupus patients with anti-Sm 18/65 (28%), and 6/55 (11%) of sera without anti-Sm had anti-P as determined by an ELISA using a recombinant P2-beta-galactosidase fusion protein as Ag (p less than 0.05). The levels of anti-P were significantly higher in sera containing anti-Sm (0.37 +/- 0.45) than in sera without anti-Sm antibodies (0.18 +/- 0.20) (p less than 0.01). Similarly, a significantly higher proportion of anti-P positivity was found in autoimmune MRL/Mp-lpr/lpr mice positive for anti-Sm (11/53 = 21%) compared to age- and sex-matched mice without anti-Sm (3/53 = 6%) (p less than 0.05). The IgG subclass distributions for anti-Sm and anti-P antibodies were similar in the MRL mice (IgG2a greater than IgG2b greater than IgG3 greater than IgG1). The association did not reflect polyclonal B cell activation in a proportion of MRL mice because no significant differences were observed in anti-DNA, antichromatin or total serum IgG levels in mice with and without anti-Sm or, in mice positive for both anti-P and anti-Sm compared to mice positive for anti-Sm alone. Cross-inhibition experiments excluded the possibility that the Sm and P protein Ag shared a common epitope. Longitudinal measurement of anti-P and anti-Sm antibody levels by ELISA in three mice indicated that both antibodies first appeared at about 3 to 4 mo of age and fluctuated two- to threefold over 3 to 8 mo with independent peaks of activity. Recent observations regarding a relationship between anti-Sm and autoantibodies to other ribosomal proteins suggest that the association may be explained by an immune response to epitopes coassociated on the ribosome.  相似文献   

19.
Autoantibodies reactive against a shared, conserved epitope on the ribosomal phosphoproteins P0, P1, and P2 occur in approximately 15% of patients with SLE and are relatively specific for this disease. To determine whether anti-P antibodies occur in murine lupus, serum from MRL/lpr and NZB/W F1 mice were analyzed by immunoblotting as well as by ELISA using a synthetic peptide Ag. Of those analyzed, 4 of 35 (11%) MRL/lpr, 0 of 25 NZB/W F1 and 0 of 13 control NIH/Swiss mice had anti-P antibodies. Anti-P specificity was confirmed by immunoblotting of ribosomal proteins separated by two-dimensional gel electrophoresis and by inhibition of anti-P reactivity on immunoblots with the synthetic peptide Ag. These findings indicate a striking similarity in the frequency and fine epitope specificity of anti-P antibodies in humans and MRL/lpr mice with SLE.  相似文献   

20.
Li W  Wang W  Sun S  Sun Y  Pan Y  Wang L  Zhang R  Zhang K  Li J 《PloS one》2011,6(12):e28975

Background

Autoantibodies to the catalytic domain of v-raf murine sarcoma viral oncogene homologue B1 (BRAF) have been recently identified as a new family of autoantibodies involved in rheumatoid arthritis (RA). The objective of this study was to determine antibody responses to the catalytic domain of BRAF in RA and other autoimmune diseases. The association between RA-related clinical indices and these antibodies was also assessed.

Methodology/Principal Findings

The presence of autoantibodies to the catalytic domain of BRAF (anti-BRAF) or to peptide P25 (amino acids 656–675 of the catalytic domain of BRAF; anti-P25) was determined in serum samples from patients with RA, primary Sjögren''s syndrome (pSS), systemic lupus erythematosus (SLE), and healthy controls by using indirect enzyme-linked immunosorbent assays (ELISAs) based on the recombinant catalytic domain of BRAF or a synthesized peptide, respectively. Associations of anti-BRAF or anti-P25 with disease variables of RA patients were also evaluated. Our results show that the BRAF-specific antibodies anti-BRAF and anti-P25 are equally present in RA, pSS, and SLE patients. However, the erythrocyte sedimentation rate (ESR) used to detect inflammation was significantly different between patients with and without BRAF-specific antibodies. The anti-BRAF-positive patients were found to have prolonged disease, and active disease occurred more frequently in anti-P25-positive patients than in anti-P25-negative patients. A weak but significant correlation between anti-P25 levels and ESRs was observed (r = 0.319, p = 0.004).

Conclusions/Significance

The antibody response against the catalytic domain of BRAF is not specific for RA, but the higher titers of BRAF-specific antibodies may be associated with increased inflammation in RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号