首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 606 毫秒
1.
An immunoaffinity chromatographic procedure was developed to purify DNA polymerase-DNA primase complex from crude soluble extracts of yeast cells. The immunoabsorbent column is made of mouse monoclonal antibody to yeast DNA polymerase I covalently linked to Protein A-Sepharose. Purification of the complex involves binding of the complex to the immunoabsorbent column and elution with concentrated MgCl2 solutions. After rebinding to the monoclonal antibody column free primase activity is selectively eluted with a lower concentration of MgCl2. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed the presence of five major peptides, p180, p140, p74, p58, and p48 in the immunoaffinity-purified DNA polymerase-DNA primase complex. Free primase and free polymerase fractions obtained by fractionation on the immunoabsorbent column were analyzed on activity gels and immunoblots. These analyses showed that p180 and p140 are DNA polymerase peptides. Two polypeptides of 58 and 48 kDa co-fractionated with the free yeast DNA primase. From sucrose gradient analysis we estimate a molecular weight of 110 kDa for the native DNA primase.  相似文献   

2.
Purification of a DNA polymerase-DNA primase complex from calf thymus glands   总被引:18,自引:0,他引:18  
An immunoabsorbent column, prepared by covalently linking mouse monoclonal anti-calf thymus DNA polymerase-alpha to Protein A-Sepharose, was used as the primary purification step for rapid isolation of DNA polymerase-alpha from calf thymus-gland extracts. In a 4-step procedure consisting of the removal of nucleic acids by protamine sulfate precipitation, chromatography on the immunoabsorbent column, desalting on Sephadex G-50, and removal of bovine immunoglobulins on Protein A-Sepharose, DNA polymerase-alpha activity was purified about 5000-fold from the crude extract with greater than 40% recovery of total enzyme activity. The antibody column-purified DNA polymerase-alpha fraction contains a DNA primase activity that is efficient in replication of single-stranded DNA and poly(dT) when rNTPs are included in the replication reactions. Synthesis by calf thymus DNA polymerase-primase is totally dependent on added template. Complete replication of circular single-stranded phage DNA is achieved with polymerase-primase producing a nicked circular DNA containing oligoribonucleotide primer in the final product. Primers synthesized with single-stranded phage DNA as template were up to 10 nucleotides long when dNTPs were omitted from the reaction and 8 or less nucleotides long when dNTPs were present. Primers synthesized using poly(dT) consisted of three populations when dATP was absent from the reaction, averaging 20 nucleotides, 10 nucleotides, and 3-4 nucleotides. The 20-nucleotide population was not found when dATP was included in the reaction.  相似文献   

3.
Biochemical fractionation of the yeast Saccharomyces cerevisiae has revealed a novel DNA primase activity that copurifies with the major DNA polymerase activity. In the presence of RNA precursors and single-stranded DNA (poly(dT), M13), the DNA primase synthesizes discrete length oligoribonucleotides (apparent length, 8-12 nucleotides) as well as longer RNA chains that appear to be multiples of a modal length of 11-12 nucleotides. When DNA precursors are also present, the oligoribonucleotides are utilized by the accompanying DNA polymerase as primers for DNA synthesis. Copurification of these two enzymatic activities suggests their association in a physical complex which may function in the synthesis of Okazaki fragments at chromosomal replication forks.  相似文献   

4.
T Yagura  T Kozu  T Seno  S Tanaka 《Biochemistry》1987,26(24):7749-7754
A hybrid cell line (HDR-854-E4) secreting monoclonal antibody (E4 antibody) against a subunit of human DNA polymerase alpha was established by immunizing mice with DNA replicase complex (DNA polymerase alpha-primase complex) prepared from HeLa cells. The E4 antibody immunoprecipitates DNA replicase complex from both human and mouse cells. The E4 antibody neutralizes the primase activity as assessed either by the direct primase assay (incorporation of [alpha-32P]AMP) or by assay of DNA polymerase activity coupled with the primase activity using unprimed poly(dT) as a template. The E4 antibody does not neutralize DNA polymerase alpha activity with the activated calf thymus DNA as a template. Western immunoblotting analysis shows that the E4 antibody binds to a polypeptide of 77 kilodaltons (kDa) which is tightly associated with DNA polymerase alpha. The 77-kDa polypeptide was distinguished from the catalytic subunit (160 and 180 kDa) for DNA synthesis which was detected by another monoclonal antibody, HDR-863-A5. Furthermore, it is unlikely that the 77-kDa peptide is the primase, since we found that the E4 antibody also immunoprecipitates the mouse 7.3S DNA polymerase alpha which has no primase activity, and Western immunoblotting analysis shows that the 77-kDa polypeptide is a subunit of the 7.3S DNA polymerase alpha. Furthermore, after dissociation of the primase from mouse DNA replicase by chromatography on a hydroxyapatite column in the presence of dimethyl sulfoxide and ethylene glycol, the 77-kDa polypeptide is associated with DNA polymerase alpha, and not with the primase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Isolation and characterization of a DNA primase from human mitochondria   总被引:4,自引:0,他引:4  
A family of enzymatic activities isolated from human mitochondria is capable of initiating DNA replication on single-stranded templates. The principal enzymes include at least a primase and DNA polymerase gamma and require that rNTPs as well as dNTPs be present in the reaction mixture. Poly(dC) and poly(dT), as well as M13 phage DNA, are excellent templates for the primase activity. A single-stranded DNA containing the cloned origin of mitochondrial light-strand synthesis can be a more efficient template than M13 phage DNA alone. Primase and DNA polymerase activities were separated from each other by sedimentation in a glycerol density gradient. Using M13 phage DNA as template, these mitochondrial enzymes synthesize RNA primers that are 9 to 12 nucleotides in size and are covalently linked to nascent DNA. The formation of primers appears to be the rate-limiting step in the replication process. Replication of M13 DNA is sensitive to N-ethylmaleimide and dideoxynucleoside triphosphates, but insensitive to rifampicin, alpha-amanitin, and aphidicolin.  相似文献   

6.
Yeast DNA primase and DNA polymerase I can be purified by immunoaffinity chromatography as a multipeptide complex which can then be resolved into its functional components and further reassembled in vitro. Isolated DNA primase synthesizes oligonucleotides of a preferred length of 9-10 nucleotides and multiples thereof on a poly(dT) template. In vitro reconstitution of the DNA primase:DNA polymerase complex allows the synthesis of long DNA chains covalently linked to RNA initiators shorter than those synthesized by DNA primase alone. The SS (single-stranded) circular DNA of phage M13mp9 can also be replicated by the DNA primase:DNA polymerase complex. Priming by DNA primase occurs at multiple sites and the initiators are utilized by the DNA polymerase moiety of the complex, so that almost all the SS template is converted into duplex form. The rate of DNA synthesis catalyzed by isolated yeast DNA polymerase I on the M13mp9 template is not constant and is characterized by distinct pausing sites, which partly correlate with secondary structures on the template DNA. Thus, replication of M13mp9 SS DNA with the native primase:polymerase complex gives rise to a series of DNA chains with significantly uniform termini specified by the primase start sites and the polymerase stop sites.  相似文献   

7.
It has been shown that DNA primase activity is tightly associated with 10S DNA polymerase alpha from calf thymus (Yoshida, S. et al. (1983) Biochim. Biophys. Acta 741, 348-357). In the present study, the primase activity was separated from DNA polymerase alpha by treating purified 10S DNA polymerase alpha with 3.4 M urea followed by a fast column chromatography (Pharmacia FPLC, Mono Q column equilibrated with 2 M urea). Ten to 20 % of the primase activity was separated from 10S DNA polymerase alpha by this procedure but 80-90% remained in the complex. The separated primase activity sedimented at 5.6S through a gradient of glycerol. The separated primase was strongly inhibited by araATP (Ki = 10 microM) and was also sensitive to salts such as KCl (50% inhibition at 30 mM). The primase used poly(dT) or poly(dC) as templates efficiently, but showed little activity with poly(dA) or poly(dI). These properties agree well with those of the primase activity in the DNA polymerase alpha-primase complex (10S DNA polymerase alpha). These results indicate that the calf thymus primase may be a part of the 10S DNA polymerase alpha and its enzymological characters are preserved after separation from the complex.  相似文献   

8.
A DNA primase activity was isolated from pea chloroplasts and examined for its role in replication. The DNA primase activity was separated from the majority of the chloroplast RNA polymerase activity by linear salt gradient elution from a DEAE-cellulose column, and the two enzyme activities were separately purified through heparin-Sepharose columns. The primase activity was not inhibited by tagetitoxin, a specific inhibitor of chloroplast RNA polymerase, or by polyclonal antibodies prepared against purified pea chloroplast RNA polymerase, while the RNA polymerase activity was inhibited completely by either tagetitoxin or the polyclonal antibodies. The DNA primase activity was capable of priming DNA replication on single-stranded templates including poly(dT), poly(dC), M13mp19, and M13mp19_+ 2.1, which contains the AT-rich pea chloroplast origin of replication. The RNA polymerase fraction was incapable of supporting incorporation of 3H-TTP in in vitro replication reactions using any of these single-stranded DNA templates. Glycerol gradient analysis indicated that the pea chloroplast DNA primase (115–120 kDa) separated from the pea chloroplast DNA polymerase (90 kDa), but is much smaller than chloroplast RNA polymerase. Because of these differences in size, template specificity, sensitivity to inhibitors, and elution characteristics, it is clear that the pea chloroplast DNA primase is an distinct enzyme form RNA polymerase. In vitro replication activity using the DNA primase fraction required all four rNTPs for optimum activity. The chloroplast DNA primase was capable of priming DNA replication activity on any single-stranded M13 template, but shows a strong preference for M13mp19+2.1. Primers synthesized using M13mp19+2.1 are resistant to DNase I, and range in size from 4 to about 60 nucleotides.  相似文献   

9.
Four monoclonal antibodies against chicken DNA polymerase alpha were obtained from mouse hybridomas (see ref. 1). Two of them, 4-2D and 4-8H, recognized different epitopes of the DNA polymerase alpha-DNA primase complex as determined by a competitive enzyme-linked immunosorbent assay. Antibody 4-8H partially (about 30%) neutralized the combined activity of primase-DNA polymerase alpha as well as the DNA polymerase alpha activity. In contrast, antibody 4-2D did not neutralize DNA polymerase alpha activity, but neutralized the primase-DNA polymerase alpha activity extensively (up to 80%). Furthermore, although an immunoaffinity column made with 4-8H antibody retained virtually all of the DNA polymerase alpha with and without associated primase, a column made with 4-2D antibody did not bind DNA polymerase alpha without the primase, but retained the enzyme associated with the primase. These results indicate that 4-8H monoclonal antibody is specific for DNA polymerase alpha and 4-2D monoclonal antibody is specific for the primase or a special structure present in the primase-DNA polymerase alpha complex.  相似文献   

10.
DNA primase activity has been resolved from a purified DNA primase-polymerase alpha complex of HeLa cells by hydrophobic affinity chromatography on phenylSepharose followed by chromatography on hexylagarose. This procedure provides a good yield (55%) of DNA primase that is free from polymerase alpha. The free DNA primase activity was purified to near homogeneity and its properties characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the purified free DNA primase showed a major protein staining band of Mr 70,000. The native enzyme in velocity sedimentation has an S20'W of 5. DNA primase synthesizes RNA oligomers with single-stranded M-13 DNA, poly(dT) and poly(dC) templates that are elongated by the DNA polymerase alpha in a manner that has already been described for several purified eukaryotic DNA primase-polymerase alpha complexes. The purified free DNA primase activity is resistant to neutralizing anti-human DNA polymerase alpha antibodies, BuPdGTP and aphidicolin that specifically inhibit the free DNA polymerase alpha and also DNA polymerase alpha complexed with the primase. The free primase activity is more sensitive to monovalent salt concentrations and is more labile than polymerase alpha. Taken together these results indicate that the DNA primase and polymerase alpha activities of the DNA primase-polymerase alpha complex reside on separate polypeptides that associate tightly through hydrophobic interactions.  相似文献   

11.
A very highly purified fraction of KB cell DNA polymerase-alpha, prepared with a monoclonal antibody, contains DNA primase activity. The primase synthesizes oligonucleotide chains initiated with ATP in a reaction that is resistant to alpha-amanitin and strictly dependent on added template and ribonucleoside triphosphates (rNTPs). In the presence of added dNTPs and M13 DNA template, the primase produces a uniform population of oligoribonucleotides, predominantly hexamers to decamers, that are extended by polymerase-alpha into DNA chains up to 3000 nucleotides long. There is no evidence for nucleotide preferences at RNA/DNA junctions. In the absence of added dNTPs, the oligomeric products are heterogeneous in size and composition and susceptible to cleavage by pancreatic DNase I due to their content of short oligodeoxynucleotide tracts synthesized by primase from trace contaminant dNTPs in the rNTP substrates. The primase and polymerase-alpha activities are distinguishable by several physical and chemical criteria, and the primase reaction is only partially sensitive to two potent, independent monoclonal antibodies that neutralize polymerase-alpha. Although the presence of both primase and polymerase-alpha activities in a highly purified immune complex prepared with a monoclonal antibody argues for their tight physical association, the chemical, physical, and immunological discriminations indicate the two catalytic entities are functionally and structurally distinct.  相似文献   

12.
A primase activity which permits DNA synthesis by yeast DNA polymerase I on a single-stranded circular phi X174 or M13 DNA or on poly(dT)n has been extensively purified by fractionation of a yeast enzyme extract which supports in vitro replication of the yeast 2-microns plasmid DNA (Kojo, H., Greenberg, B. D., and Sugino, A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 7261-7265). Most of this DNA primase activity was separated from DNA polymerase activity, although a small amount remained associated with DNA polymerase I. The primase, active as a monomer, has a molecular weight of about 60,000. The primase synthesizes oligoribonucleotides of discrete size, mainly eight or nine nucleotides, in the presence of single-stranded template DNA and ribonucleoside 5'-triphosphates; it utilizes deoxyribonucleoside 5'-triphosphates as substrate with 10-fold lower efficiency. Product size, chromatographic properties, alpha-amanitin resistance, and molecular weight of the primase activity distinguish it from RNA polymerases I, II, and III. The DNA products synthesized by both primase and DNA polymerase I on a single-stranded DNA template were 200-500 nucleotides long and covalently linked to oligoribonucleotides at their 5'-ends. Addition of yeast single-stranded DNA-binding protein (Arendes, J., Kim, K. C., and Sugino, A. (1983) Proc. Natl. Acad. Sci. U.S. A. 80, 673-677) stimulated the DNA synthesis 2-3-fold.  相似文献   

13.
A DNA primase from yeast. Purification and partial characterization   总被引:5,自引:0,他引:5  
A DNA primase activity has been purified from the budding yeast Saccharomyces. The resulting preparation was nearly homogeneous and was devoid of DNA and RNA polymerase activities. The primase activity cofractionated with a Mr 65,000 polypeptide in sedimentation and chromatography procedures, and the native molecular weight of the enzyme corresponded closely to this value suggesting that the primase or an active proteolytic fragment of the protein exists as a monomer. Both heat-denatured calf thymus DNA and poly(dT) could be utilized by the enzyme as templates. Primase exhibited an absolute requirement for divalent cations and for rATP on a poly(dT) template. Although it required the ribonucleotide to initiate primer chains, the enzyme could incorporate the deoxynucleotide into primers. The product of the primase-catalyzed reaction was an oligonucleotide of discrete length (11-13 nucleotides), and oligonucleotides that were apparently dimers of this unit length were also observed. Primers that were synthesized were virtually identical in size in both the presence and absence of dATP incorporation. Although the bulk of DNA primase activity was isolated as a "free" enzyme, a portion of cellular primase activity co-chromatographed with DNA polymerase suggesting an association between these enzymes similar to that found in several higher eukaryotes.  相似文献   

14.
We have utilized immunoaffinity chromatography as a means of efficiently isolating a stable yeast DNA primase from the DNA primase-DNA polymerase complex, allowing identification of the polypeptides associated with this DNA primase activity and comparison of its enzymatic properties with those of the larger protein complex. A mouse monoclonal antibody specifically recognizing the DNA polymerase subunit was used to purify the complex. Stable DNA primase was subsequently separated from the complex in high yield. The highly purified protein fraction which bound to the DNA polymerase antibody column consisted of polypeptides with apparent molecular masses of 180, 86, 70, 58, 49, and 47 kDa. DNA primase activity eluted with a fraction containing only the 58-, 49-, and 47-kDa polypeptides. Partial chemical cleavage analysis of these three proteins demonstrated that the 49- and 47-kDa polypeptides are structurally related while the 58-kDa protein is unrelated to the other two. A DNA primase inhibitory monoclonal antibody was able to inhibit the activity of the purified DNA primase as well as the activity of the enzyme in the larger complex. In immunoprecipitation experiments, all three polypeptides were found in the immune complex. Thus, these three polypeptides are sufficient for DNA primase activity. In reactions using ribonucleotide substrates and natural as well as synthetic DNA templates, the purified DNA primase exhibited the same precise synthesis of unit length oligomers as did the larger protein complex and was able to extend these RNA oligomers by one additional unit length. An examination of the effects of deoxynucleotides on these DNA primase-catalyzed reactions revealed that the yeast DNA primase is an RNA-polymerizing enzyme and lacks significant DNA-polymerizing activity under the conditions tested.  相似文献   

15.
A primase activity associated to DNA polymerase alpha from rat liver is described. Both activities were absent in normal adult rat liver but were concomitantly induced after partial hepatectomy. As previously shown for polymerase alpha and DNA topoisomerase II, primase activity reached a maximum value 40-43 h after the partial removal of the liver. Primase activity was shown to catalyze dNMP incorporation on unprimed single-stranded DNA template (M13 DNA) in the presence of rNTP. The activity was not detectable on poly(dA) or poly(dG) but was efficient on poly(dT) or poly(dC). However, the reliability of the primase assay in the presence of poly(dC) was dependent upon the degree of purification of the enzyme. The ribo primers were about 10 nucleotides long, and the reaction was completely independent of alpha-amanitin, a strong inhibitor of RNA polymerases II and III. Primase and polymerase were found tightly associated. A cosedimentation on a 5-20% sucrose gradient was always obtained, independent of the ionic strength. There was also a close coincidence between alpha-polymerase and primase activities during phosphocellulose, hydroxylapatite, and single-stranded DNA Ultrogel chromatography. It has been previously demonstrated by us and others that primase and alpha-polymerase are on separated polypeptides. The association of two activities in the replication complex and the conditions allowing their separation are discussed.  相似文献   

16.
A protein that stimulates DNA polymerase alpha/primase many-fold on unprimed poly(dT) was purified to homogeneity from extracts of cultured mouse cells. The protein contains polypeptides of approximately 132 and 44 kDa, and the total molecular mass of 150 kDa calculated from Stokes radius (54 A) and sedimentation coefficient (6.7 S) indicates that it contains one each of the two subunits. The purified "alpha accessory factor" (AAF) also stimulates DNA polymerase alpha/primase in the self-primed reaction with unprimed single-stranded DNA. In addition to these effects on the coordinate activities of DNA polymerase alpha and DNA primase, stimulatory effects were also demonstrated separately on both the polymerase and primase activities of the enzyme complex. However, there was no stimulation with DNase-treated ("activated") DNA under normal conditions for assay of DNA polymerase alpha. The stimulatory activity of mouse AAF is highly specific for DNA polymerase alpha/primase; no effect was observed with mouse DNA polymerases beta, gamma, or delta, nor with retroviral, bacteriophage, or bacterial DNA polymerases. Mouse AAF stimulated human DNA polymerase alpha/primase with several different templates, similar to results with the mouse enzyme. However, it had very little effect on the DNA polymerase/primase from either Drosophila embryo or from yeast.  相似文献   

17.
It has been shown that DNA primase activity is tightly associated with 10S DNA polymerase alpha from calf thymus and that the ribonucleotide-dependent DNA synthesis is more sensitive to araCTP than DNA-primed DNA synthesis (Yoshida, S., et al. (1983) Biochim. Biophys. Acta 741, 348-357). Here we measured DNA primase activity using poly(dT) template or M13 bacteriophage single-stranded DNA template and primer RNA synthesis was coupled to the reaction by Escherichia coli DNA polymerase I Klenow fragment. By this method, the primer RNA synthesis can be measured independently of the associating DNA polymerase alpha. Using poly(dT) template, it was found that arabinosyladenine 5'-triphosphate (araATP) strongly inhibited DNA primase in competition with rATP. The apparent Ki for araATP was 21 microM and the ratio of Ki/Km (for rATP) was as low as 0.015. With poly(dI, dT) or M13 DNA, it was shown that araCTP also inhibited DNA primase in the similar manner. Product analysis using [alpha-32P]rATP showed that araATP inhibited the elongation of primer RNA. However, it is not likely that arabinosylnucleotides act as chain-terminators, since incubation of primer RNA with araATP did not abolish its priming activity. From these results, it is suggested that arabinosylnucleotide inhibits the initiation as well as elongation of Okazaki fragments in mammalian cells.  相似文献   

18.
The baculovirus replication factors LEF-1 and LEF-2 of the Autographa californica multinucleocapsid nucleopolyhedrovirus were overexpressed as fusions containing a hemagglutinin (HA) epitope and a HIS(6) tag using recombinant baculoviruses. LEF-1 was purified to near homogeneity and found to have primase activity in an indirect assay employing Escherichia coli DNA polymerase I (Klenow enzyme) and poly(dT) template. The LEF-1 primase products were also directly characterized by electrophoresis in 20% polyacrylamide-8 M urea gels and agarose gels. Primer synthesis was time dependent, and products of several hundred nucleotides or more were observed from the M13 single-stranded DNA (ssDNA) template. The LEF-1 primase was absolutely dependent on divalent cations (Mg(2+)), and optimal activity was supported by 10 mM MgCl(2). An alkaline pH (8.8 to 9.4) was optimal, whereas monovalent salt (KCl) was inhibitory. Mutation of an invariant aspartic acid in a putative primase domain caused LEF-1 activity to be abolished. Upon ultracentrifugation in glycerol gradients, LEF-1 was found to have a sedimentation coefficient of 3S that is consistent with its being present as a monomer. Elution profiles of LEF-1 and LEF-2 from ssDNA-cellulose and DEAE resin suggested that LEF-2 may bind to both DNA and LEF-1.  相似文献   

19.
We previously reported on the purification and characterization of a functional multi‐protein DNA replication complex (the DNA synthesome) from human cells and tissues. The synthesome is fully competent to carry‐out all phases of the DNA replication process in vitro. In this study, DNA primase, a component of the synthesome, is examined to determine its activity and processivity in the in vitro synthesis and extension of RNA primers. Our results show that primase activity in the P4 fraction of the synthesome is 30‐fold higher than that of crude cell extracts. The synthesome synthesizes RNA primers that are 7–10 ribonucleotides long and DNA primers that are 20–40 deoxyribonucleotides long using a poly(dT) template of exogenous single‐stranded DNA. The synthesome‐catalyzed RNA primers can be elongated by E. coli DNA polymerase I to form the complementary DNA strands on the poly(dT) template. In addition, the synthesome also supports the synthesis of native RNA primers in vitro using an endogenous supercoiled double‐stranded DNA template. Gel analysis demonstrates that native RNA primers are oligoribonucleotides of 10–20 nt in length and the primers are covalently link to DNA to form RNA‐primed nascent DNA of 100–200 nt. Our study reveals that the synthesome model is capable of priming and continuing DNA replication. The ability of the synthesome to synthesize and extend RNA primers in vitro elucidates the organizational and functional properties of the synthesome as a potentially useful replication apparatus to study the function of primase and the interaction of primase with other replication proteins. J. Cell. Biochem. 106: 798–811, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Cell-cycle-dependent expression of DNA primase activity   总被引:1,自引:0,他引:1  
Protein extracts were prepared at various times after serum stimulation of growth-arrested mouse 3T3 fibroblasts. The extracts were fractionated by sucrose gradient centrifugation and used to determine the activities of DNA polymerase alpha and DNA primase. We found that polymerase and primase appeared in close association in one homogeneous 8.2-S peak. Neither polymerase, free of associated primase, nor primase, free of polymerase, could be detected at any time after serum stimulation. The activities of both enzymes started to increase concomitantly at the beginning of the DNA replication phase of the cell cycle. We found five to six times more DNA primase activity in replicating than in resting 3T3 cells. Besides DNA primase, a second additional priming activity could be detected. This activity sedimented at 12.5 S and corresponded most probably to RNA polymerase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号