首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Muscleblind-like (MBNL) proteins are critical RNA processing factors in development. MBNL activity is disrupted in the neuromuscular disease myotonic dystrophy type 1 (DM1), due to the instability of a non-coding microsatellite in the DMPK gene and the expression of CUG expansion (CUGexp) RNAs. Pathogenic interactions between MBNL and CUGexp RNA lead to the formation of nuclear complexes termed foci and prevent MBNL function in pre-mRNA processing. The existence of multiple MBNL genes, as well as multiple protein isoforms, raises the question of whether different MBNL proteins possess unique or redundant functions. To address this question, we coexpressed three MBNL paralogs in cells at equivalent levels and characterized both specific and redundant roles of these proteins in alternative splicing and RNA foci dynamics. When coexpressed in the same cells, MBNL1, MBNL2 and MBNL3 bind the same RNA motifs with different affinities. While MBNL1 demonstrated the highest splicing activity, MBNL3 showed the lowest. When forming RNA foci, MBNL1 is the most mobile paralog, while MBNL3 is rather static and the most densely packed on CUGexp RNA. Therefore, our results demonstrate that MBNL paralogs and gene-specific isoforms possess inherent functional differences, an outcome that could be enlisted to improve therapeutic strategies for DM1.  相似文献   

2.
Effective drug discovery and optimization can be accelerated by techniques capable of deconvoluting the complexities often present in targeted biological systems. We report a single-molecule approach to study the binding of an alternative splicing regulator, muscleblind-like 1 protein (MBNL1), to (CUG)n = 4,6 and the effect of small molecules on this interaction. Expanded CUG repeats (CUGexp) are the causative agent of myotonic dystrophy type 1 by sequestering MBNL1. MBNL1 is able to bind to the (CUG)n–inhibitor complex, indicating that the inhibition is not a straightforward competitive process. A simple ligand, highly selective for CUGexp, was used to design a new dimeric ligand that binds to (CUG)n almost 50-fold more tightly and is more effective in destabilizing MBNL1–(CUG)4. The single-molecule method and the analysis framework might be extended to the study of other biomolecular interactions.  相似文献   

3.
4.
The Muscleblind (MBL) protein family is a deeply conserved family of RNA binding proteins that regulate alternative splicing, alternative polyadenylation, RNA stability and RNA localization. Their inactivation due to sequestration by expanded CUG repeats causes symptoms in the neuromuscular disease myotonic dystrophy. MBL zinc fingers are the most highly conserved portion of these proteins, and directly interact with RNA. We identified putative MBL homologs in Ciona intestinalis and Trichoplax adhaerens, and investigated their ability, as well as that of MBL homologs from human/mouse, fly and worm, to regulate alternative splicing. We found that all homologs can regulate alternative splicing in mouse cells, with some regulating over 100 events. The cis-elements through which each homolog exerts its splicing activities are likely to be highly similar to mammalian Muscleblind-like proteins (MBNLs), as suggested by motif analyses and the ability of expanded CUG repeats to inactivate homolog-mediated splicing. While regulation of specific target exons by MBL/MBNL has not been broadly conserved across these species, genes enriched for MBL/MBNL binding sites in their introns may play roles in cell adhesion, ion transport and axon guidance, among other biological pathways, suggesting a specific, conserved role for these proteins across a broad range of metazoan species.  相似文献   

5.
Myotonic dystrophy (DM) is a genetic disorder with multisystemic symptoms that is caused by expression (as RNA) of expanded repeats of CTG or CCTG in the genome. It is hypothesized that the RNA splicing factor muscleblind-like (MBNL) is sequestered to the expanded CUG or CCUG RNAs. Mislocalization of MBNL results in missplicing of a subset of pre-mRNAs that are linked to the symptoms found in DM patients. We demonstrate that MBNL can bind short structured CUG and CCUG repeats with high affinity and specificity. Only 6 base pairs are necessary for MBNL binding: two pyrimidine mismatches and four guanosine-cytosine base pairs in a stem. MBNL also has a preference for pyrimidine mismatches, but many other mismatches are tolerated with decreased affinity. We also demonstrate that MBNL binds the helical region of a stem-loop in the endogenous pre-mRNA target, the cardiac troponin T (cTNT) pre-mRNA. The stem-loop contains two mismatches and resembles both CUG and CCUG repeats. In vivo splicing results indicate that MBNL-regulated splicing is dependent upon the formation of stem-loops recognized by MBNL. These results suggest that MBNL may bind all of its RNA substrates, both normal and pathogenic, as structured stem-loops containing pyrimidine mismatches.  相似文献   

6.
Fuchs endothelial corneal dystrophy (FECD) is an inherited degenerative disease that affects the internal endothelial cell monolayer of the cornea and can result in corneal edema and vision loss in severe cases. FECD affects ∼5% of middle-aged Caucasians in the United States and accounts for >14,000 corneal transplantations annually. Among the several genes and loci associated with FECD, the strongest association is with an intronic (CTG·CAG)n trinucleotide repeat expansion in the TCF4 gene, which is found in the majority of affected patients. Corneal endothelial cells from FECD patients harbor a poly(CUG)n RNA that can be visualized as RNA foci containing this condensed RNA and associated proteins. Similar to myotonic dystrophy type 1, the poly(CUG)n RNA co-localizes with and sequesters the mRNA-splicing factor MBNL1, leading to missplicing of essential MBNL1-regulated mRNAs. Such foci and missplicing are not observed in similar cells from FECD patients who lack the repeat expansion. RNA-Seq splicing data from the corneal endothelia of FECD patients and controls reveal hundreds of differential alternative splicing events. These include events previously characterized in the context of myotonic dystrophy type 1 and epithelial-to-mesenchymal transition, as well as splicing changes in genes related to proposed mechanisms of FECD pathogenesis. We report the first instance of RNA toxicity and missplicing in a common non-neurological/neuromuscular disease associated with a repeat expansion. The FECD patient population with this (CTG·CAG)n trinucleotide repeat expansion exceeds that of the combined number of patients in all other microsatellite expansion disorders.  相似文献   

7.
The genetic basis of myotonic dystrophy type I (DM1) is the expansion of a CTG tract located in the 3′ untranslated region of DMPK. Expression of mutant RNAs encoding expanded CUG repeats plays a central role in the development of cardiac disease in DM1. Expanded CUG tracts form both nuclear and cytoplasmic aggregates, yet the relative significance of such aggregates in eliciting DM1 pathology is unclear. To test the pathophysiology of CUG repeat encoding RNAs, we developed and analyzed mice with cardiac-specific expression of a beta-galactosidase cassette in which a (CTG)400 repeat tract was positioned 3′ of the termination codon and 5′ of the bovine growth hormone polyadenylation signal. In these animals CUG aggregates form exclusively in the cytoplasm of cardiac cells. A key pathological consequence of expanded CUG repeat RNA expression in DM1 is aberrant RNA splicing. Abnormal splicing results from the functional inactivation of MBNL1, which is hypothesized to occur due to MBNL1 sequestration in CUG foci or from elevated levels of CUG-BP1. We therefore tested the ability of cytoplasmic CUG foci to elicit these changes. Aggregation of CUG RNAs within the cytoplasm results both in Mbnl1 sequestration and in approximately a two fold increase in both nuclear and cytoplasmic Cug-bp1 levels. Significantly, despite these changes RNA splice defects were not observed and functional analysis revealed only subtle cardiac dysfunction, characterized by conduction defects that primarily manifest under anesthesia. Using a human myoblast culture system we show that this transgene, when expressed at similar levels to a second transgene, which encodes expanded CTG tracts and facilitates both nuclear focus formation and aberrant splicing, does not elicit aberrant splicing. Thus the lack of toxicity of cytoplasmic CUG foci does not appear to be a consequence of low expression levels. Our results therefore demonstrate that the cellular location of CUG RNA aggregates is an important variable that influences toxicity and support the hypothesis that small molecules that increase the rate of transport of the mutant DMPK RNA from the nucleus into the cytoplasm may significantly improve DM1 pathology.  相似文献   

8.
CUG repeat expansions in the 3′ UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2′-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2′-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecular dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.  相似文献   

9.
10.
Non-coding RNAs play a pivotal role in a number of diseases promoting an aberrant sequestration of nuclear RNA-binding proteins. In the particular case of myotonic dystrophy type 1 (DM1), a multisystemic autosomal dominant disease, the formation of large non-coding CUG repeats set up long-tract hairpins able to bind muscleblind-like proteins (MBNL), which trigger the deregulation of several splicing events such as cardiac troponin T (cTNT) and insulin receptor’s, among others. Evidence suggests that conformational changes in RNA are determinant for the recognition and binding of splicing proteins, molecular modeling simulations can attempt to shed light on the structural diversity of CUG repeats and to understand their pathogenic mechanisms. Molecular dynamics (MD) are widely used to obtain accurate results at atomistic level, despite being very time consuming, and they contrast with fast but simplified coarse-grained methods such as Elastic Network Model (ENM). In this paper, we assess the application of ENM (traditionally applied on proteins) for studying the conformational space of CUG repeats and compare it to conventional and accelerated MD conformational sampling. Overall, the results provided here reveal that ANM can provide useful insights into dynamic rCUG structures at a global level, and that their dynamics depend on both backbone and nucleobase fluctuations. On the other hand, ANM fail to describe local U-U dynamics of the rCUG system, which require more computationally expensive methods such as MD. Given that several limitations are inherent to both methods, we discuss here the usefulness of the current theoretical approaches for studying highly dynamic RNA systems such as CUG trinucleotide repeat overexpansions.  相似文献   

11.
12.

Background  

Muscleblind-like 1 (MBNL1) is an alternative splicing factor containing four CCCH Zinc fingers (ZnFs). The sequestration of MBNL1 by expanded CUG and CCUG repeats is a major component in causing myotonic dystrophy. In addition to binding the structured expanded CUG and CCUG repeats; previous results suggested that MBNL1 binds single-stranded RNAs containing GC dinucleotides.  相似文献   

13.
14.
15.
The splicing of the microtubule-associated protein Tau is regulated during development and is found to be deregulated in a growing number of pathological conditions such as myotonic dystrophy type I (DM1), in which a reduced number of isoforms is expressed in the adult brain. DM1 is caused by a dynamic and unstable CTG repeat expansion in the DMPK gene, resulting in an RNA bearing long CUG repeats (n > 50) that accumulates in nuclear foci and sequesters CUG-binding splicing factors of the muscleblind-like (MBNL) family, involved in the splicing of Tau pre-mRNA among others. However, the precise mechanism leading to Tau mis-splicing and the role of MBNL splicing factors in this process are poorly understood. We therefore used new Tau minigenes that we developed for this purpose to determine how MBNL1 and MBNL2 interact to regulate Tau exon 2 splicing. We demonstrate that an intronic region 250 nucleotides downstream of Tau exon 2 contains cis-regulatory splicing enhancers that are sensitive to MBNL and that bind directly to MBNL1. Both MBNL1 and MBNL2 act as enhancers of Tau exon 2 inclusion. Intriguingly, the interaction of MBNL1 and MBNL2 is required to fully reverse the mis-splicing of Tau exon 2 induced by the trans-dominant effect of long CUG repeats, similar to the DM1 condition. In conclusion, both MBNL1 and MBNL2 are involved in the regulation of Tau exon 2 splicing and the mis-splicing of Tau in DM1 is due to the combined inactivation of both.  相似文献   

16.
17.
18.
19.
To understand the role of the splice regulator muscleblind 1 (MBNL1) in the development of RNA splice defects in myotonic dystrophy I (DM1), we purified RNA-independent MBNL1 complexes from normal human myoblasts and examined the behavior of these complexes in DM1 myoblasts. Antibodies recognizing MBNL1 variants (MBNL1(CUG)), which can sequester in the toxic CUG RNA foci that develop in DM1 nuclei, were used to purify MBNL1(CUG) complexes from normal myoblasts. In normal myoblasts, MBNL1(CUG) bind 10 proteins involved in remodeling ribonucleoprotein complexes including hnRNP H, H2, H3, F, A2/B1, K, L, DDX5, DDX17, and DHX9. Of these proteins, only MBNL1(CUG) colocalizes extensively with DM1 CUG foci (>80% of foci) with its partners being present in <10% of foci. Importantly, the stoichiometry of MBNL1(CUG) complexes is altered in DM1 myoblasts, demonstrating an increase in the steady state levels of nine of its partner proteins. These changes are recapitulated by the expression of expanded CUG repeat RNA in Cos7 cells. Altered stoichiometry of MBNL1(CUG) complexes results from aberrant protein synthesis or stability and is unlinked to PKCα function. Modeling these changes in normal myoblasts demonstrates that increased levels of hnRNP H, H2, H3, F, and DDX5 independently dysregulate splicing in overlapping RNA subsets. Thus expression of expanded CUG repeats alters the stoichiometry of MBNL1(CUG) complexes to allow both the reinforcement and expansion of RNA processing defects.  相似文献   

20.
Myotonic dystrophy type 1 (DM1) is caused by CUG triplet expansions in the 3′ UTR of dystrophia myotonica protein kinase (DMPK) messenger ribonucleic acid (mRNA). The etiology of this multi-systemic disease involves pre-mRNA splicing defects elicited by the ability of the CUG-expanded mRNA to ‘sponge’ splicing factors of the muscleblind family. Although nuclear aggregation of CUG-containing mRNPs in distinct foci is a hallmark of DM1, the mechanisms of their homeostasis have not been completely elucidated. Here we show that a DEAD-box helicase, DDX6, interacts with CUG triplet-repeat mRNA in primary fibroblasts from DM1 patients and with CUG–RNA in vitro. DDX6 overexpression relieves DM1 mis-splicing, and causes a significant reduction in nuclear DMPK-mRNA foci. Conversely, knockdown of endogenous DDX6 leads to a significant increase in DMPK-mRNA foci count and to increased sequestration of MBNL1 in the nucleus. While the level of CUG-expanded mRNA is unaffected by increased DDX6 expression, the mRNA re-localizes to the cytoplasm and its interaction partner MBNL1 becomes dispersed and also partially re-localized to the cytoplasm. Finally, we show that DDX6 unwinds CUG-repeat duplexes in vitro in an adenosinetriphosphate-dependent manner, suggesting that DDX6 can remodel and release nuclear DMPK messenger ribonucleoprotein foci, leading to normalization of pathogenic alternative splicing events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号