首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Additional evidence is presented that both the phage T4D-induced thymidylate synthetase (gp td) and the T4D-induced dihydrofolate reductase (gp frd) are baseplate structural components. With regard to phage td it has been found that: (i) low levels of thymidylate synthetase activity were present in highly purified preparations of T4D ghost particles produced after infection with td+, whereas particles produced after infection with td had no measurable enzymatic activity; (ii) a mutation of the T4D td gene from tdts to td+ simultaneously produced a heat-stable thymidylate synthetase enzyme and heat-stable phage particles (it should be noted that the phage baseplate structure determines heat lability); (iii) a recombinant of two T4D mutants constructed containing both tdts and frdts genes produced particles whose physical properties indicate that these two molecules physically interact in the baseplate. With regard to phage frd it has been found that two spontaneous revertants each of two different T4D frdts mutants to frd+ not only produced altered dihydrofolate reductases but also formed phage particles with heat sensitivities different from their parents. Properties of T4D particles produced after infection with parental T4D mutants presumed to have a deletion of the td gene and/or the frd gene indicate that these particles still retain some characteristics associated with the presence of both the td and the frd molecules. Furthermore, the particles produced by the deletion mutants have been found to be physically different from the parent particles.  相似文献   

2.
Thymidylate synthetase, which appears after infection of Escherichia coli with bacteriophage T4, has been partially purified. The phage enzyme is immunologically distinct from the host enzyme and has a molecular weight of 50,000 in comparison to 68,000 for the host enzyme. A system has been developed to characterize T4 td mutants previously known to have impaired expression of phage thymidylate synthetase. For this system, an E. coli host lacking thymidylate synthetase was isolated. Known genetic suppressors were transduced into this host. The resulting isogenic hosts were infected with phage T4 td mutants. The specific activities and amounts of cross-reacting material induced by several different types of phage mutants under conditions of suppression or non-suppression have been examined. The results show that the phage carries the structural gene specifying the thymidylate synthetase which appears after phage infection, and that the combination of plaque morphology, enzyme activity assays, and an assay for immunologically cross-reacting material provides a means for identifying true amber mutants of the phage gene.  相似文献   

3.
We have studied the aberrant tubular polyheads of bacteriophages T4D and T2L as a model system for capsid maturation. Six different types of polyhead surface lattice morphology, and the corresponding protein compositions are reported and discussed. Using in vitro systems to induce transformations between particular polyhead types, we have deduced that the structural classes represent successive points in a transitional pathway. In the first step, coarse polyheads (analogous to the prohead τ-particle) are proteolytically cleaved by a phagecoded protease, a fragment of the gene 21 product. This cleavage of P23 to P231 induces a co-operative lattice transformation in the protein of the surface shell, to a conformation equivalent to that of T2L giant phage capsids. These polyheads (derived either from T4 or T2L lysates) can accept further T4-coded proteins. In doing so, they pass through intermediate structural states, eventually reaching an end point whose unit cell morphology is indistinguishable from that of the giant T4 capsids. At least one protein (called soc (Ishii & Yanagida, 1975)) is bound stoichiometrically to P231 in the end-state conformation. The simulation of several aspects of capsid maturation (cleavage of P23 to P231, stabilization, and lattice expansion) in the polyhead pathway suggest that it parallels the major events of phage T-even capsid maturation, decoupled from any involvement of DNA packaging.  相似文献   

4.
The td group I intron interrupting the thymidylate synthase (TS) gene of phage T4 is a mobile intron that encodes the homing endonuclease I‐TevI. Efficient RNA splicing of the intron is required to restore function of the TS gene, while expression of I‐TevI from within the intron is required to initiate intron mobility. Three distinct layers of regulation temporally limit I‐TevI expression to late in the T4 infective cycle, yet the biological rationale for stringent regulation has not been tested. Here, we deleted key control elements to deregulate I‐TevI expression at early and middle times post T4 infection. Strikingly, we found that deregulation of I‐TevI, or of a catalytically inactive variant, generated a thymidine‐dependent phenotype that is caused by a reduction in td intron splicing. Prematurely terminating I‐TevI translation restores td splicing, full‐length TS synthesis, and rescues the thymidine‐dependent phenotype. We suggest that stringent translational control of I‐TevI evolved to prevent the ribosome from disrupting key structural elements of the td intron that are required for splicing and TS function at early and middle times post T4 infection. Analogous translational regulatory mechanisms in unrelated intron‐open reading frame arrangements may also function to limit deleterious consequences on splicing and host gene function.  相似文献   

5.
Summary derivatives including the thymidylate synthetase (td) gene of T4 were selected by their ability to substitute for the thyA gene of E. coli. Two HindIII fragments of T4 DNA, but only one EcoRI fragment, are required for a functional td gene; one of the HindIII fragments includes a functional frd gene. The organisation of the EcoRI and HindIII fragments in the td region and their orientation with respect to the T4 genome have been deduced from genetic, physical, and functional evidence. The T4 genes can be transcribed from phage promoters and the T4td derivatives include genes specifying five T4 polypeptides. Three of these are identified as the products of the frd, td, and nrdA genes; two, neither of which appears to be the nrdB gene product, remain to be identified. Some td phages yield lysogens of thyA bacteria which are thymine-independent and some frd phages yield trimethoprim-resistant lysogens, indicating that the td and frd genes can be transcribed from included T4 DNA sequences. EcoRI fragments of DNA from the td and lig regions, used as probes, identified a single large HindIII fragment that joins the HindIII fragment carrying the DNA ligase gene to that carrying the td gene. Since this fragment, which must include genes coding for RNA ligase and polynucleotide kinase, could not be recovered in either phage or plasmid vectors, a derivative of it was used to identify the EcoRI fragments located between the td and DNA ligase genes. The order of these fragments within the T4 genome was deduced and all but one of them cloned in a vector. As none of these recombinants rescued T4 phage having mutations within the RNA ligase gene, the missing fragment may include this gene. Three adjacent EcoRI fragments, each of which has been cloned, are missing in a mutant of T4 deleted for the polynucleotide kinase gene.  相似文献   

6.
The thyA gene of Escherichia coli, which directs the synthesis of the enzyme thymidylate synthetase, has been subcloned from a recombinant λ phage (Hickson et al., 1982) into the multicopy plasmid pBR325 to give the plasmid pPE245. To identify the thyA gene product, the transposon Tn1000 was inserted into pPE245 and derivative plasmids isolated that were no longer able to complement thyA mutations. When proteins synthesised by these plasmids and by pPE245 were labelled and analysed on SDS-polyacrylamide gels a protein of 33000 Mr, presumably the thyA+ gene product was absent whenever the thyA gene was inactivated. On assaying cell extracts prepared from cells harbouring pPE245 for thymidylate synthetase, the level of this enzyme was found to be elevated by a factor of at least 25.  相似文献   

7.
The detailed distribution and characterization of 51 hydroxylamine (HA)-induced and 59 nitrous acid (NA)-induced mutations in the intron-containing bacteriophage T4 thymidylate synthase (td) gene is reported here. Mutations were mapped in 10 regions of thetd gene by recombinational marker rescue using plasmid or M13 subclones of thetd gene. Phage crosses using deletion mutants with known breakpoints in the 3′ end of thetd intron subdivided HA and NA mutations which mapped in this region. At least 31 of the mutations map within the 1-kb group I self-splicing intron. Intron mutations mapped only in the 5′ and 3′ ends of the intron sequence, in accordance with the hypothesis that the 5′ and 3′ domains of the T4td intron are essential for correct RNA splicing. RNA sequence analysis of a number of mappedtd mutations has identified two intron nucleotides and one exon nucleotide where both HA- and NA-induced mutations commonly occur. These three loci are characterized by a GC dinucleotide, with the mutations occurring at the cytosine residue. Thus, these data indicate at least three potential sites of both HA- and NA-induced mutagenic hotspot activity within thetd gene.  相似文献   

8.
L M Kozloff  L K Crosby    M Lute 《Journal of virology》1975,16(6):1409-1419
Two T4D thymidylate synthetase (td) temperature-sensitive mutants have been isolated and characterized. Both mutants produce heat-labile phage particles. This observation supports the view that this viral-induced protein is a phage structural component. Further, antiserum to td has been shown to block a specific step in tail plate morphogenesis. The results indicated that the td protein is largely covered by the T4D tail plate gene 11 protein. Since the phageinduced dihydrofolate reductase (dfr) also is partially covered by the gene 11 protein, it appears that td was adjacent to the tail plate dfr. This location has been confirmed by constructing a T4D mutant which is dfrtstdts and showing that these two tail plate constituents interact and give altered physical properties to the phage particles produced. A structural relationship for the tail plate folate, dfr, and td has been reported.  相似文献   

9.
We have introduced the T4 thymidylate synthetase gene, resident in a 2.7-kilobase EcoRI restriction fragment, into an amplification plasmid, pKC30. By regulating expression of this gene from the phage lambda pL promoter within pKC30 in a thyA host containing a temperature-sensitive lambda repressor, the T4 synthetase could be amplified about 200-fold over that after T4 infection. At this stage, a 20-fold purification was required to obtain homogeneous enzyme, mainly by an affinity column procedure. The purified plasmid-amplified T4 synthetase appeared to be identical with the T2 phage synthetase purified from phage-infected Escherichia coli in molecular weight, amino end group analysis, and immunochemical reactivity. The individual nature of the phage and host proteins was revealed by the fact that neither the T2 nor the T4 enzyme reacted with antibody to the E. coli synthetase, nor did antibody to the phage enzymes react with the E. coli synthetase. These differences were corroborated by DNA hybridization experiments, which revealed the absence of apparent homology between the T4 and E. coli synthetase genes. The techniques and genetic constructions described support the feasibility of employing similar amplification methods to prepare highly purified thymidylate synthetases from other sources.  相似文献   

10.
A mutation (byp24) affecting the N-terminal region of p23 will suppress the lethal effects of am and ts mutations in gene 24. In the presence of normal p24, the byp24 alteration causes a delay in the cleavage of capsid proteins and the assembly of a high percentage of isometric, short-headed particles; therefore, the byp24 mutation can affect the length of the T4 capsid. In the absence of p24, 24?byp24 double mutants show a reduced rate of cleavage of capsid precursor proteins, and a reduced rate of virus assembly.Iminunoprecipitation with anti-p24 serum has shown the presence of both p24 and p24c in wild-type phage particles. The 24?byp24 particles contain no p24 or p24c, as determined by immunoprecipitation, urea/acrylamide gel electrophoresis, and two-dimensional isoelectric focusing, urea/acrylamide gradient gel electrophoresis. They have a normal electron microscopic appearance, pH stability, and heat stability; but they are more resistant to osmotic shock than wild-type T4. We suggest that p24 normally functions in the initiation of phage T4 capsid protein cleavage reactions.  相似文献   

11.
We have found that two different temperature-sensitive mutations in gene 22, tsA74 and ts22-2, produce high frequencies (up to 85%) of petite phage particles when grown at a permissive or intermediate temperature. Moreover, the ratio of petite to normal particles in a lysate depends upon the temperature at which the phage are grown. These petite phage particles appear to have approximately isometric heads when viewed in the electron microscope, and can be distinguished from normal particles by their sedimentation coefficient and by their buoyant density in CsCl. They are biologically active as detected by their ability to complement a co-infecting amber helper phage. Lysates of both mutants grown at a permissive temperature reveal not only a significant number of petite phage particles in the electron microscope, but also sizeable classes of wider-than-normal particles, particles having abnormally attached tails, and others having more than one tail.Striking protein differences exist between the purified phage particles of tsA74 or ts22-2 and wild-type T4. B11, a 61,000 molecular weight head protein, is completely absent from the phage particles of both mutants, and the internal protein IPIII1 is present in reduced amounts as compared to wild type. The precursor to B11 is present in the lysates, but these mutations appear to prevent its incorporation into heads, so it does not become cleaved.The product of gene 22 (P22) is known to be the major protein of the morphogenetic core of the T4 head. Besides the mutations reported here, several mutations which affect head length have been found in gene 23, which codes for the major capsid protein (Doermann et al., 1973b). We suggest a model in which head length is determined by an interaction between the core (P22 and IPIII) and the outer shell (P23).  相似文献   

12.
The role of bacteriophage T4 gene 46 in recombination between non-replicating chromosomes was examined. DNA was extracted from Escherichia coli B infected with a mixture of [3H]thymidine-labeled and (13C, 15N)-labeled T4 multiple mutants under non-permissive conditions. The densities of extracted, purified DNAs were determined by neutral cesium sulfate density-gradient centrifugation. When the phage was a double mutant defective in both DNA ligase and DNA polymerase genes, a considerable portion of the 3H label was found at a hybrid density. By contrast, when phage had a third mutation in gene 46, the amount of 3H label found at the hybrid position was greatly reduced. These findings indicate that hybrid molecule formation requires the function of gene 46.  相似文献   

13.
Control of bacteriophage T4 DNA polymerase synthesis   总被引:13,自引:0,他引:13  
Analysis of sodium dodecyl sulphate/acrylamide gels of 14C-labelled proteins from phage-infected bacteria suggests the existence of a self-regulatory control mechanism in bacteriophage T4.Infection of Escherichia coli with phage T4 carrying a mutation in gene 43 (which codes for the phage DNA polymerase) results in a greatly increased rate of synthesis of the gene 43 protein. Such overproduction of defective polymerase occurs in restrictive infections with all gene 43 amber and most gene 43 temperature-sensitive mutants tested. Gene 43 protein synthesis in gene 43+ infections or increased synthesis in gene 43? infections appears to require no additional function of other phage proteins essential for DNA synthesis. Functional gene 43 protein is needed continuously to keep its own levels down to normal.  相似文献   

14.
《Gene》1997,195(2):303-311
A method was developed to clone linear DNAs by overexpressing T4 phage DNA ligase in vivo, based upon recombination deficient E. coli derivatives that carry a plasmid containing an inducible T4 DNA ligase gene. Integration of this ligase-plasmid into the chromosome of such E. coli allows standard plasmid isolation following linear DNA transformation of the strains containing high levels of T4 DNA ligase. Intramolecular ligation allows high efficiency recircularization of cohesive and blunt-end terminated linear plasmid DNAs following transformation. Recombinant plasmids could be constructed in vivo by co-transformation with linearized vector plus insert DNAs, followed by intermolecular ligation in the T4 ligase strains to yield clones without deletions or rearrangements. Thus, in vitro packaged lox-site terminated plasmid DNAs injected from phage T4 were recircularized by T4 ligase in vivo with an efficiency comparable to CRE recombinase. Clones that expressed a capsid-binding 14-aa N-terminal peptide extension derivative of the HOC (highly antigenic outer capsid) protein for T4 phage hoc gene display were constructed by co-transformation with a linearized vector and a PCR-synthesized hoc gene. Therefore, the T4 DNA ligase strains are useful for cloning linear DNAs in vivo by transformation or transduction of DNAs with nonsequence-specific but compatible DNA ends.  相似文献   

15.
TheNeurospora crassamitochondrial tyrosyl-tRNA synthetase, the CYT-18 protein, functions in splicing group I introns by promoting the formation of the catalytically active structure of the intron RNA. The group I intron catalytic core is thought to consist of two extended helical domains, one formed by coaxial stacking of P5, P4, P6, and P6a (P4-P6 domain) and the other consisting of P8, P3, P7, and P9 (P3-P9 domain). To investigate how CYT-18 stabilizes the active RNA structure, we used anEscherichia coligenetic assay based on the phage T4tdintron to systematically test the ability of CYT-18 to compensate for structural defects in three key regions of the catalytic core: J3/4 and J6/7, connecting regions that form parts of the triple-helical-scaffold structure with the P4-P6 domain, and P7, a long- range base-pairing interaction that forms the guanosine-binding site and is part of the P3-P9 domain. Our results show that CYT-18 can suppress numerous mutations that disrupt the J3/4 and J6/7 nucleotide-triple interactions, as well as mutations that disrupt base-pairing in P7. CYT-18 suppressed mutations of phylogenetically conserved nucleotide residues at all positions tested, except for the universally conserved G-residue at the guanosine-binding site. Structure mapping experiments with selected mutant introns showed that the CYT-18-suppressible J3/4 mutations primarily impaired folding of the P4-P6 domain, while the J6/7 mutations impaired folding of both the P4-P6 and P3-P9 domains to various degrees. The P7 mutations impaired the formation of both P7 and P3, thereby grossly disrupting the P3-P9 domain. The finding that the P7 mutations also impaired formation of P3 provides evidence that the formation of these two long-range pairings is interdependent in thetdintron. Considered together with previous work, the nature of mutations suppressed by CYT-18 supports a model in which CYT-18 helps assemble the P4-P6 domain and then stabilizes the two major helical domains of the catalytic core in the correct relative orientation to form the intron's active site.  相似文献   

16.
It has previously been shown that the product of gene 22 (P22) disappears completely from lysates of T4-infected bacteria during head formation and is not found in the finished phage. We show here that P22, as part of a phage head precursor, is subject to proteolysis in vivo. The only identifiable surviving fragments of this proteolysis may be the internal peptides, which are found inside the finished phage head.We further show that in vitro, head-defective lysates contain a protease activity highly specific for P22. The activity is dependent on the presence of wild-type gene 21 protein (P21). The protease is itself inactivated during the protein cleavages that accomplish capsid formation. The proteolytic activity is found associated with the defective heads produced by temperature-sensitive mutants in gene 23, but not in finished normal capsids.We have characterized this P21-dependent protease activity as it is exhibited in vitro.  相似文献   

17.
The T4D bacteriophage gene 28 product is a component of the central plug of the tail baseplate, as shown by the following two independent lines of evidence. (i) A highly sensitive method for radioactive labeling of only tail baseplate plug components was developed. These labeled plug components were incorporated by a complementation procedure into new phage particles and were analyzed by radioautography after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three new structural proteins were found in addition to the three known tail plug proteins (i.e., gP29, gP27, and gP5). One of the three newly identified components had a molecular weight of 24,000 to 25,000 and appeared to be a product of T4D gene 28. (ii) Characterization of mutants of Escherichia coli bacteriophage T4D which produced altered gene 28 products also indicated that the gene 28 product was a viral tail component. T4D 28ts phage particles produced at the permissive temperature had altered heat labilities compared with parent T4D particles. We isolated a single-step temperature revertant of T4D 28ts and found that it produced phage particles which phenotypically resembled the original T4D particles. Since the properties of the phage baseplate components usually determine heat lability, these two changes in physical stability after two sequential single mutations in gene 28 supported the other evidence that the gene 28 product was a viral baseplate component. Also, compared with parent T4D particles, T4D 28ts and T4D 28am viral particles adsorbed at different rates to various types of host cells. In addition, T4D 28ts particles exhibited a different host range than parent T4D particles. This T4D mutant formed plaques with an extremely low efficiency on all E. coli K-12 strains tested. We found that although T4D 28ts particles adsorbed rapidly and irreversibly to the E. coli K-12 strains, as judged by gene rescue experiments, these particles were not able to inject their DNA into the E. coli K-12 strains. On the other hand, the T4D 28ts revertant had a plating efficiency on E. coli K-12 strains that was quite similar to the plating efficiency of the original parent, T4D. These properties of phage particles containing an altered gene 28 product supported the analytical finding that the gene 28 product is a structural component of the central plug of the T4D tail baseplate. They also indicated that this component plays a role in both host cell recognition and viral DNA injection.  相似文献   

18.
Marine Synechococcus spp and marine Prochlorococcus spp are numerically dominant photoautotrophs in the open oceans and contributors to the global carbon cycle. Syn5 is a short-tailed cyanophage isolated from the Sargasso Sea on Synechococcus strain WH8109. Syn5 has been grown in WH8109 to high titer in the laboratory and purified and concentrated retaining infectivity. Genome sequencing and annotation of Syn5 revealed that the linear genome is 46,214 bp with a 237 bp terminal direct repeat. Sixty-one open reading frames (ORFs) were identified. Based on genomic organization and sequence similarity to known protein sequences within GenBank, Syn5 shares features with T7-like phages. The presence of a putative integrase suggests access to a temperate life cycle. Assignment of 11 ORFs to structural proteins found within the phage virion was confirmed by mass-spectrometry and N-terminal sequencing. Eight of these identified structural proteins exhibited amino acid sequence similarity to enteric phage proteins. The remaining three virion proteins did not resemble any known phage sequences in GenBank as of August 2006. Cryo-electron micrographs of purified Syn5 virions revealed that the capsid has a single “horn”, a novel fibrous structure protruding from the opposing end of the capsid from the tail of the virion. The tail appendage displayed an apparent 3-fold rather than 6-fold symmetry. An 18 Å resolution icosahedral reconstruction of the capsid revealed a T = 7 lattice, but with an unusual pattern of surface knobs. This phage/host system should allow detailed investigation of the physiology and biochemistry of phage propagation in marine photosynthetic bacteria.  相似文献   

19.
Proteins with RNA chaperone activity are able to promote folding of RNA molecules by loosening their structure. This RNA unfolding activity is beneficial when resolving misfolded RNA conformations, but could be detrimental to RNAs with low thermodynamic stability. In order to test this idea, we constructed various RNAs with different structural stabilities derived from the thymidylate synthase (td) group I intron and measured the effect of StpA, an Escherichia coli protein with RNA chaperone activity, on their splicing activity in vivo and in vitro. While StpA promotes splicing of the wild-type td intron and of mutants with wild-type-like stability, splicing of mutants with a lower structural stability is reduced in the presence of StpA. In contrast, splicing of an intron mutant, which is not destabilized but which displays a reduced population of correctly folded RNAs, is promoted by StpA. The sensitivity of an RNA towards StpA correlates with its structural stability. By lowering the temperature to 25°C, a temperature at which the structure of these mutants becomes more stable, StpA is again able to stimulate splicing. These observations clearly suggest that the structural stability of an RNA determines whether the RNA chaperone activity of StpA is beneficial to folding.  相似文献   

20.
Bacteriophages isolated on Mycobacterium smegmatis mc2155 represent many distinct genomes sharing little or no DNA sequence similarity. The genomes are architecturally mosaic and are replete with genes of unknown function. A new group of genomes sharing substantial nucleotide sequences constitute Cluster J. The six mycobacteriophages forming Cluster J are morphologically members of the Siphoviridae, but have unusually long genomes ranging from 106.3 to 117 kbp. Reconstruction of the capsid by cryo-electron microscopy of mycobacteriophage BAKA reveals an icosahedral structure with a triangulation number of 13. All six phages are temperate and homoimmune, and prophage establishment involves integration into a tRNA-Leu gene not previously identified as a mycobacterial attB site for phage integration. The Cluster J genomes provide two examples of intron splicing within the virion structural genes, one in a major capsid subunit gene, and one in a tail gene. These genomes also contain numerous free-standing HNH homing endonuclease, and comparative analysis reveals how these could contribute to genome mosaicism. The unusual Cluster J genomes provide new insights into phage genome architecture, gene function, capsid structure, gene mobility, intron splicing, and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号