首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein phosphatase 1 (PP1) is a key enzyme for Plasmodium development. However, the detailed mechanisms underlying its regulation remain to be deciphered. Here, we report the functional characterization of the Plasmodium berghei leucine-rich repeat protein 1 (PbLRR1), an orthologue of SDS22, one of the most ancient and conserved PP1 interactors. Our study shows that PbLRR1 is expressed during intra-erythrocytic development of the parasite, and up to the zygote stage in mosquitoes. PbLRR1 can be found in complex with PbPP1 in both asexual and sexual stages and inhibits its phosphatase activity. Genetic analysis demonstrates that PbLRR1 depletion adversely affects the development of oocysts. PbLRR1 interactome analysis associated with phospho-proteomics studies identifies several novel putative PbLRR1/PbPP1 partners. Some of these partners have previously been characterized as essential for the parasite sexual development. Interestingly, and for the first time, Inhibitor 3 (I3), a well-known and direct interactant of Plasmodium PP1, was found to be drastically hypophosphorylated in PbLRR1-depleted parasites. These data, along with the detection of I3 with PP1 in the LRR1 interactome, strongly suggest that the phosphorylation status of PbI3 is under the control of the PP1–LRR1 complex and could contribute (in)directly to oocyst development. This study provides new insights into previously unrecognized PbPP1 fine regulation of Plasmodium oocyst development through its interaction with PbLRR1.  相似文献   

2.
Monolayer, cell-line cultures of embryonic bovine trachea, Madin-Darby bovine kidney (MDBK), and monolayers (RK-1) or aggregates of primary rabbit kidney cells were inoculated with merozoites obtained from rabbits that had been inoculated 3 to 5 1/2 days earlier with Eimeria magna. Merozoites obtained from from rabbits 3 days entered cells and underwent only merogony, whereas 3 1/2-5 1/2-day-old merozoites formed gamonts as well as meronts. Merozoites arising from the first or second meront generation in culture formed another meront generation or gamonts. Third-generation merozoites formed only gamonts. Most merozoites remained within the parasitophorous vacuole of the original host cell and transformed into macro- or microgamonts or meronts. Some such macro- and microgamonts then fused with each other to form larger multinucleated bodies. Such microgamonts formed microgametes, but multinucleate macrogamonts did not form oocysts. Mature microgamonts were 34 microns in diameter, and contained several hundred biflagellate microgametes. Mature macrogamonts measured 29.1 x 21.5 microns, unsporulated oocysts were 31.2 x 22 microns, and sporulated oocysts were 32 x 23.1 microns. Oocysts obtained from cell cultures were sporulated and then inoculated by gavage into rabbits, which passed E. magna oocysts 6--10 days later. Sporozoites, obtained from oocysts produced in culture or from rabbits that had been inoculated with the vitro-produced oocysts, developed to first- and second-generation meronts in MDBK or RK-1 cultures.  相似文献   

3.
4.
Human infection by malarial parasites of the genus Plasmodium begins with the bite of an infected Anopheles mosquito. Current estimates place malaria mortality at over 650,000 individuals each year, mostly in African children. Efforts to reduce disease burden can benefit from the development of mathematical models of disease transmission. To date, however, comprehensive modeling of the parameters defining human infectivity to mosquitoes has remained elusive. Here, we describe a mechanistic within-host model of Plasmodium falciparum infection in humans and pathogen transmission to the mosquito vector. Our model incorporates the entire parasite lifecycle, including the intra-erythrocytic asexual forms responsible for disease, the onset of symptoms, the development and maturation of intra-erythrocytic gametocytes that are transmissible to Anopheles mosquitoes, and human-to-mosquito infectivity. These model components were parameterized from malaria therapy data and other studies to simulate individual infections, and the ensemble of outputs was found to reproduce the full range of patient responses to infection. Using this model, we assessed human infectivity over the course of untreated infections and examined the effects in relation to transmission intensity, expressed by the basic reproduction number R0 (defined as the number of secondary cases produced by a single typical infection in a completely susceptible population). Our studies predict that net human-to-mosquito infectivity from a single non-immune individual is on average equal to 32 fully infectious days. This estimate of mean infectivity is equivalent to calculating the human component of malarial R0. We also predict that mean daily infectivity exceeds five percent for approximately 138 days. The mechanistic framework described herein, made available as stand-alone software, will enable investigators to conduct detailed studies into theories of malaria control, including the effects of drug treatment and drug resistance on transmission.  相似文献   

5.
ABSTRACT. Microgamonts and macrogamonts of Eimeria truncata were observed in renal epithelial cells of collecting tubules and ducts and occasionally in macrophages of experimentally infected lesser snow geese (Anser c. caerulescens) beginning 8.5 days post inoculation. Intraparasitophorous vesicles in parasitophorous vacuoles of both types of gamonts appeared to originate in host cell cytoplasm and enter gamonts through micropores by budding of plasmalemma or by pinocytosis. Within the parasite's cytoplasm, the vesicles were broken down in Golgi-associated vacuoles. The surfaces of microgamonts were highly invaginated to facilitate extrusion of numerous microgametes. Formation and maturation of microgametes were similar to those of other eimerian species. Each microgamete had two flagella, a mitochondrion, and a peculiarly shaped electron-dense nucleus that was oval anteriorly in cross section and somewhat dumbbell-shaped posteriorly. A longitudinally arranged inner membrane complex lay between a portion of the mitochondrion and the plasmalemma. About five subpellicular microtubules extended the length of the microgamete body. Macrogametogony differed little from that described in other eimerian species. Type 1 wall-forming bodies (WFB) formed in Golgi complexes early in macrogametogony, and type 2 WFB formed in cisternae of endoplasmic reticulum in intermediate stages of macrogamont development.  相似文献   

6.
The successful navigation of malaria parasites through their life cycle, which alternates between vertebrate hosts and mosquito vectors, requires a complex interplay of metabolite synthesis and salvage pathways. Using the rodent parasite Plasmodium berghei, we have explored the synthesis and scavenging pathways for lipoic acid, a short‐chain fatty acid derivative that regulates the activity of α‐ketoacid dehydrogenases including pyruvate dehydrogenase. In Plasmodium, lipoic acid is either synthesized de novo in the apicoplast or is scavenged from the host into the mitochondrion. Our data show that sporozoites lacking the apicoplast lipoic acid protein ligase LipB are markedly attenuated in their infectivity for mice, and in vitro studies document a very late liver stage arrest shortly before the final phase of intra‐hepaticparasite maturation. LipB‐deficient asexual blood stage parasites show unimpaired rates of growth in normal in vitro or in vivo conditions. However, these parasites showed reduced growth in lipid‐restricted conditions induced by treatment with the lipoic acid analogue 8‐bromo‐octanoate or with the lipid‐reducing agent clofibrate. This finding has implications for understanding Plasmodium pathogenesis in malnourished children that bear the brunt of malarial disease. This study also highlights the potential of exploiting lipid metabolism pathways for the design of genetically attenuated sporozoite vaccines.  相似文献   

7.
A Plasmodium falciparum hexose transporter (PfHT) has previously been shown to be a facilitative glucose and fructose transporter. Its expression in Xenopus laevis oocytes and the use of a glucose analogue inhibitor permitted chemical validation of PfHT as a novel drug target. Following recent re‐annotations of the P. falciparum genome, other putative sugar transporters have been identified. To investigate further if PfHT is the key supplier of hexose to P. falciparum and to extend studies to different stages of Plasmodium spp., we functionally analysed the hexose transporters of both the human parasite P. falciparum and the rodent parasite Plasmodium berghei using gene targeting strategies. We show here the essential function of pfht for the erythrocytic parasite growth as it was not possible to knockout pfht unless the gene was complemented by an episomal construct. Also, we show that parasites are rescued from the toxic effect of a glucose analogue inhibitor when pfht is overexpressed in these transfectants. We found that the rodent malaria parasite orthologue, P. berghei hexose transporter (PbHT) gene, was similarly refractory to knockout attempts. However, using a single cross‐over transfection strategy, we generated transgenic P. berghei parasites expressing a PbHT–GFP fusion protein suggesting that locus is amenable for gene targeting. Analysis of pbht‐gfp transgenic parasites showed that PbHT is constitutively expressed through all the stages in the mosquito host in addition to asexual stages. These results provide genetic support for prioritizing PfHT as a target for novel antimalarials that can inhibit glucose uptake and kill parasites, as well as unveiling the expression of this hexose transporter in mosquito stages of the parasite, where it is also likely to be critical for survival.  相似文献   

8.
《Autophagy》2013,9(2):269-284
Plasmodium parasites successfully colonize different habitats within mammals and mosquitoes, and adaptation to various environments is accompanied by changes in their organelle composition and size. Previously, we observed that during hepatocyte infection, Plasmodium discards organelles involved in invasion and expands those implicated in biosynthetic pathways. We hypothesized that this process is regulated by autophagy. Plasmodium spp. possess a rudimentary set of known autophagy-related proteins that includes the ortholog of yeast Atg8. In this study, we analyzed the activity of the ATG8-conjugation pathway over the course of the lifecycle of Plasmodium falciparum and during the liver stage of Plasmodium berghei. We engineered a transgenic P. falciparum strain expressing mCherry-PfATG8. These transgenic parasites expressed mCherry-PfATG8 in human hepatocytes and erythrocytes, and in the midgut and salivary glands of Anopheles mosquitoes. In all observed stages, mCherry-PfATG8 was localized to tubular structures. Our EM and colocalization studies done in P. berghei showed the association of PbATG8 on the limiting membranes of the endosymbiont-derived plastid-like organelle known as the apicoplast. Interestingly, during parasite replication in hepatocytes, the association of PbATG8 with the apicoplast increases as this organelle expands in size. PbATG3, PbATG7 and PbATG8 are cotranscribed in all parasitic stages. Molecular analysis of PbATG8 and PbATG3 revealed a novel mechanism of interaction compared with that observed for other orthologs. This is further supported by the inability of Plasmodium ATG8 to functionally complement atg8Δ yeast or localize to autophagosomes in starved mammalian cells. Altogether, these data suggests a unique role for the ATG8-conjugation system in Plasmodium parasites.  相似文献   

9.
The endogenous life cycle of Eimeria utahensis is described from experimentally infected kangaroo rats, Dipodomys ordii. The endogenous asexual cycle consisted of 4 generations of meronts. First-generation meronts were concentrated in the anterior third of the small intestine. The succeeding generations of meronts and the sexual stages were concentrated in the middle third of the small intestine. First-generation meronts had a mean diameter of 9.7 micrometer and contained 12 to 16 merozoites. Second-generation meronts had a mean diameter of 8.0 micrometer and contained 12 to 16 merozoites and a residual body. Third-generation meronts had a mean diameter of 12.4 micrometer and contained 4 to 8 merozoites. Fourth-generation meronts had a mean diameter of 8.6 micrometer and contained 16 to 24 merozoites. Young gamonts were located in epithelial cells of the crypts of the small intestine. Shortly after the parasites entered the epithelial cells, the infected cells became displaced into the lamina propria, and most of the mature gamonts were in this location. The nuclei of host cells containing young sexual stages became greatly elongated and flattened. A few young gamonts were seen in cells in which the host cell nuclei were dividing. During development, nuclei of microgamonts became arranged on the periphery of numerous compartments. Only one type of wall-forming body could be distinguished in the macrogamonts.  相似文献   

10.
Background information. The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo‐erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. Results. In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo‐erythrocytic schizogony in vitro, leading to impaired parasite maturation. Conclusions. Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red‐blood‐cell‐infective merozoites.  相似文献   

11.
12.
A single 5-mg/kg oral dose of diclazuril affected both the asexual and sexual development of Eimeria tenella in experimentally inoculated chickens. In second-generation schizonts, early growth and nuclear divisions progressed normally, but a marked inhibition of merozoite formation was observed. Exogenesis of merozoites was largely prevented, whereas production of micronemes, amylopectin granules, and dense bodies and the formation of rhoptries, conoid, and pellicle continued. All these subcellular organelles accumulated, together with differentiated nuclei, within the main cytoplasmic mass. In the end, complete necrosis of the schizonts occurred. In macrogamonts, dilation of the rough endoplasmic reticulum around type II wall-forming bodies, fusion of type II wall-forming body contents, disturbance of the normal parallel arrangement of rough endoplasmic reticulum, and disruption of row formation of amylopectin granules became evident. In the microgamonts, normal evagination of microgametes was prevented; the flagellar complex formed within the main cytoplasmic mass and the differentiated nuclei remained present within the parasite body. The macro- and microgamonts also ended up in a stage of complete necrosis. These data indicate that diclazuril treatment primarily affects the normal differentiation of the respective endogenous stages during parasite development. This leads to complete degeneration of schizonts and gamonts indicating the lethal effect of this new anticoccidial compound.  相似文献   

13.
14.
15.
Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of malaria parasites. Four P. berghei genes (encoding MDR1, 4, 6 and 7) were refractory to deletion, indicating a vital role during blood stage multiplication and validating them as potential targets for antimalarial drugs. Mutants lacking expression of MDR2, MDR3 and MDR5 were generated in both P. berghei and P. falciparum, indicating a dispensable role for blood stage development. Whereas P. berghei mutants lacking MDR3 and MDR5 had a reduced blood stage multiplication in vivo, blood stage growth of P. falciparum mutants in vitro was not significantly different. Oocyst maturation and sporozoite formation in Plasmodium mutants lacking MDR2 or MDR5 was reduced. Sporozoites of these P. berghei mutants were capable of infecting mice and life cycle completion, indicating the absence of vital roles during liver stage development. Our results demonstrate vital and dispensable roles of MDR proteins during blood stages and an important function in sporogony for MDR2 and MDR5 in both Plasmodium species.  相似文献   

16.
The Plasmodium subtilisin‐like serine protease SUB1 is expressed in hepatic and both asexual and sexual blood parasite stages. SUB1 is required for egress of invasive forms of the parasite from both erythrocytes and hepatocytes, but its subcellular localisation, function, and potential substrates in the sexual stages are unknown. Here, we have characterised the expression profile and subcellular localisation of SUB1 in Plasmodium berghei sexual stages. We show that the protease is selectively expressed in mature male gametocytes and localises to secretory organelles known to be involved in gamete egress, called male osmiophilic bodies. We have investigated PbSUB1 function in the sexual stages by generating Pberghei transgenic lines deficient in PbSUB1 expression or enzyme activity in gametocytes. Our results demonstrate that PbSUB1 plays a role in male gamete egress. We also show for the first time that the PbSUB1 substrate PbSERA3 is expressed in gametocytes and processed by PbSUB1 upon gametocyte activation. Taken together, our results strongly suggest that PbSUB1 is not only a promising drug target for asexual stages but could also be an attractive malaria transmission‐blocking target.  相似文献   

17.
18.
19.
SYNOPSIS. The feasibility of applying immunoferritin technics in malarial antibody studies was explored using the asexual erythrocytic stages of Plasmodium berghei. Anti-P. berghei antibodies were induced in rats by repeated infection and in rabbits by immunization with French press- or saponin-prepared antigens. Ferritin tagging was observed in thin sections of some freed and intracellular P. berghei parasites after exposure to ferritin-labeled antibodies. A more extensive localization of ferritin was observed in cells subjected to the indirect versus the direct method of incubation. With formalin as a prefixative as opposed to glutaraldehyde, an increased ferritin tagging and the distribution of ferritin at intracellular sites was evident. These observations are discussed in terms of the damage and associated increase in permeability which often appeared in our formalin-fixed tissue. Controls with normal serum or normal uninfected erythrocytes differed in ferritin localization from their corresponding test materials in only a few trials. The need for antibody preparations as free as possible from reactivity to host components became obvious. The positive results obtained when ferritin alone (especially TC-modified ferritin) was applied in excess indicated a nonspecific binding and the necessity of purifying the conjugates of unbound ferritin was stressed. Native ferritin was found in the large double membranebound host inclusions, small vesicles and residual body of P. berghei.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号