共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Effect of reciprocal allogeneic renal transplantation between Dalmatian and non-dalmatian dogs on urinary excretion of uric acid 总被引:1,自引:0,他引:1
R M Appleman G A Hallenbeck R G Shorter 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1966,121(4):1094-1097
3.
A potential utilization of dietary intervention for reducing hyperuricemia was tested by managing food materials. Within the framework of the Japanese Government's health promotion program, we made recipes that consisted of more protein-rich and less vegetable/fruit-rich materials for the acidic diet and others composed of less protein-rich and more vegetable/fruit-rich materials for the alkaline diet. We have shown that urine alkalization facilitates uric acid excretion. In this study, it has been clarified with simultaneous measurements of both serum and urine uric acid concentration that acidic diets increase serum uric acid together with a decrease of uric acid excretion. The ratio (R) of uric acid clearance/creatinine clearance was calculated. On the third experimental day, the relative R, referring to that of the first day for the acidic diet, became smaller than that for the alkaline diet, indicating that in acidic urine, uric acid excretion is limited by more active reabsorption, compared with that in alkaline urine. Taken together, we tentatively conclude that dietary intervention may well be the safest and the most economical way for the prevention of hyperuricemia. 相似文献
4.
5.
Stibůrková B Pospísilová E Kmoch S Sebesta I 《Nucleosides, nucleotides & nucleic acids》2006,25(9-11):1301-1304
Excretion fraction of uric acid (EFUA), is one of the most important hallmarks for diagnosis of familial juvenile hyperuricemic nephropathy (FJHN) and hereditary renal hypouricemia. EFUA was measured in 20 patients with FJHN. However, low excretion fraction (<6%) was found also in healthy FJHN family members and healthy controls (ref. ranges EFUA: men 6-12%, women 6-20%). Similar finding of low EFUA was reported recently. Distribution of EFUA was further studied in 2,416 healthy controls, which were selected from 6,000 samples and divided according to age. In conclusion, finding of low EFUA in family members is a risk factor for renal damage and indication for purine metabolic investigations with subsequent molecular biology analysis. As EFUA could be found also in healthy controls--it should be interpreted with care and other features of FJHN (such as hyperuricemia, progressive renal disease in family) should be taken to account. 相似文献
6.
7.
Naidoo V Swan GE 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2009,149(3):269-274
Diclofenac (DF), a non-steroidal anti-inflammatory drug (NSAID), is largely regarded as one of the most devastating environmental toxicant in recent times, after accidental exposure via their food-chain lead to massive mortalities in three vulture species on the Asian subcontinent. Although the use of diclofenac was recently banned on the Indian subcontinent, following the favourable safety profile of meloxicam, its mechanism of toxicity remains unknown. In an attempt to establish this mechanism, we test three hypotheses using models established from either the domestic chicken (Gallus domesticus) or the African White-backed vulture (Gyps africanus). We demonstrate that both DF and meloxicam are toxic to renal tubular epithelial (RTE) cells following 12 h of exposure, due to an increase in production of reactive oxygen species (ROS), which could be temporarily ameliorated by pre-incubation with uric acid (UA). When cultures were incubated with either drug for only 2 h, meloxicam showed no toxicity in contrast to diclofenac. In both cases no increase in ROS production was evident. In addition, diclofenac decreased the transport of uric acid, by interfering with the p-amino-hippuric acid (PAH) channel. We conclude that vulture susceptibility to diclofenac results from a combination of an increased ROS, interference with UA transport and the duration of exposure. 相似文献
8.
9.
10.
11.
12.
13.
14.
15.
In order to determine whether exercise-induced profuse sweating could reduce urinary uric acid excretion, we simulated badminton players training and measured their uric acid in urine, sweat and blood during the training period. Thirteen male volunteers who were well-trained badminton players were recruited in this study. On the first 2 days and the last 2 days of the study period none of the subjects engaged in any intense exercise- or activity-inducing profuse sweat, but they accepted routine training 2 h per day during the middle 3 days. The results show that mean serum urate levels of thirteen volunteers rose significantly on day 4, when the concentrations increased by 18.2% over day 2 (P < 0.05). The mean ten-hour urinary uric acid excretion of seven volunteers on the 3 training days was significantly less at 178.5 micromol/day and 118.3 micromol/day than those on the preceding and subsequent days of the training days, respectively (P < 0.05). Furthermore, for six volunteers, the mean ratio of clearance of uric acid to creatinine was 6.6% on day 2, which significantly decreased to 5.4% on day 4 (P < 0.05). It is concluded profuse sweating exercise results in a decrease of urinary uric acid excretion amounts and leads to increased serum uric acid after the exercise. We suggest that persons who take vigorous exercise or are exposed to hot environments need drinking enough fluids to prevent dehydration and maintain adequate urinary output. People with profuse sweat after rigorous exercise are recommended taking sports drinks containing abundant sodium in order to decrease serum uric acid. 相似文献
16.
17.
Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products 总被引:4,自引:0,他引:4
Uric acid is an end-product of purine metabolism in Man, and has been suggested to act as an antioxidant in vivo. Products of attack upon uric acid by various oxidants were measured by high performance liquid chromatography. Hypochlorous acid rapidly oxidized uric acid, forming allantoin, oxonic/oxaluric and parabanic acids, as well as several unidentified products. HOCl could oxidize all these products further. Hydrogen peroxide did not oxidize uric acid at detectable rates, although it rapidly oxidized oxonic acid and slowly oxidized allantoin and parabanic acids. Hydroxyl radicals generated by hypoxanthine/xanthine oxidase or Fe2(+)-EDTA/H2O2 systems also oxidized uric acid to allantoin, oxonic/oxaluric acid and traces of parabanic acid. Addition of ascorbic acid to the Fe2(+)-EDTA/H2O2 system did not increase formation of oxidation products from uric acid, possibly because ascorbic acid can 'repair' the radicals resulting from initial attack of hydroxyl radicals upon uric acid. Mixtures of methaemoglobin or metmyoglobin and H2O2 also oxidized uric acid: allantoin was the major product, but some parabanic and oxonic/oxaluric acids were also produced. Caeruloplasmin did not oxidize uric acid under physiological conditions, although simple copper (Cu2+) ions could, but this was prevented by albumin or histidine. The possibility of using oxidation products of uric acid, such as allantoin, as an index of oxidant generation in vivo in humans is discussed. 相似文献
18.
19.
A procedure for preparing highly purified brush border membranes from rabbit kidney cortex using differential and density gradient centrifugation is described. Brush border membranes prepared by this procedure were substantially free of basal-lateral membranes, mitochondria, endoplasmic reticulum and nuclear material as evidenced by an enrichment factor of less than 0.3 for (Na+ + K+)-ATPase, succinate dehydrogenase, NADPH-cytochrome c reductase and DNA. Alkaline phosphatase was enriched ten fold indicating that the membranes were enriched at least 30 fold with respect to other cellular organelles. The yield of brush border membranes was 20%. Transport of D-glucose by the membranes was identical to that previously reported except that the Arrhenius plot for temperature dependence of transport was curvilinear (EA = 11.3--37.6 kcal/mol) rather than biphasic. Transport of p-aminohippuric acid and uric acid were increased by the presence of NaCl, either gradient or preequilibrated. However, no overshoot was obtained in the presence of a NaCl gradient, and KCl and LiCl also produced equivalent stimulation of transport suggesting a nonspecific ionic strength effect. Uptakes of p-aminohippuric acid and uric acid were not saturable, and were increased markedly by reducing the pH from 7.5 to 5.6. Probenecid (1 mM) reduced p-aminohippuric acid and uric acid (50 muM) uptake by 49% and 21%, respectively. We conclude that the uptake of uric acid and p-aminohippuric acid by renal brush border membranes of the rabbit occurs primarily by a simple solubility-diffusion mechanism. 相似文献
20.
K. Inazawa S. Yamaguchi M. Hosoyamada T. Fukuuchi N. H. Tomioka N. Yamaoka 《Nucleosides, nucleotides & nucleic acids》2016,35(10-12):559-565
ABSTRACTAlthough uricase-knockout (Uox KO) mice are reported to develop uric acid (UA) nephropathy, those that mature without severe nephropathy could be useful for research into purine metabolism in humans. In this study, we measured the urinary excretion of creatinine, UA, allantoin, and 8-hydroxy-2′-deoxyguanosine (8-OHdG) collected from Uox KO mice housed in metabolic cages. UA and allantoin were determined using liquid chromatography–mass spectrometry and creatinine and 8-OHdG were measured with a commercial kit. Uox KO mice excreted significantly higher levels of UA than wild-type mice (C57BL/6), while the excretion of allantoin was significantly lower. Urinary allantoin was detected in Uox KO mice despite a lack of uricase, which is the same as in humans. In contrast to the elevated levels of UA, the daily excretion of 8-OHdG, an oxidative stress marker, was lower in Uox KO mice. UA is thought to act as an anti-oxidizing agent in humans; thus, these results show that Uox KO mice are potential animal models for research into human purine metabolism. 相似文献