首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The effect of Leu5-enkephalin on growth hormone (GH) and prolactin (PRL) release was studied in vivo in the infant rat and compared to that of morphine. In 10 day-old pups, intracerebroventricular injection of Leu5-enkephalin (50, 75 and 100 μg) resulted in a dose-related increase in plasma GH; morphine was active as GH releaser at the dose of 5 and 10 μg, but not at 2.5 μg. Pretreatment with naloxone (2 mg/kg ip) suppressed the GH-releasing effect of either Leu5-enkephalin (100 μg) or morphine (10 μg). Leu5-enkephalin (75 and 100 μg) induced a rise in plasma PRL which was neither dose-related nor antagonized by naloxone; morphine (5 and 10 μg) was active as PRL releaser and its effect was antagonized by naloxone. These results indicate that: 1) Leu5-enkephalin stimulates both GH and PRL release; 2) the release of GH by Leu5-enkephalin but likely not that of PRL involves specific opiate receptors; 3) morphine releases GH and PRL through specific opiate receptors.  相似文献   

2.
A Ottlecz  S M McCann 《Life sciences》1988,43(25):2077-2085
Prostacyclin (PGI2) or its stable metabolite, 6-keto-PGF1 alpha (1-5 micrograms) in 2.5 microliter 0.05 M phosphate buffer (pH 7.4), was injected into the third ventricle (3 V) of ovariectomized (OVX), freely moving rats. Control animals received 2.5 microliter of buffer. In the initial experiments a control blood sample was taken and then the PGI2 was injected and frequent samples taken thereafter. With this protocol injection of 2 micrograms of PGI2 produced a significant decrease in mean plasma LH only at 60 min after its injection (p less than .05), while the higher dose (5 micrograms) decreased plasma LH concentrations at 30 and 60 min (p less than .01 and p less than .001, respectively). In subsequent experiments, blood was removed from indwelling external jugular vein cannulae every 5-6 min during 2 hours and plasma LH and PRL levels were determined by radioimmunoassay. LH pulses were monitored and several parameters of LH pulsation were calculated during the hour before and after injection of phosphate buffer, PGI2 or 6-keto-PGF1 alpha. Intraventricular injection of phosphate buffer failed to modify the characteristic pulsatile release of LH and did not alter plasma PRL levels. The amplitude of LH pulses was significantly reduced by PGI2 and the inhibitory effect was dose-related. Even a dose of 1 microgram produced a significant reduction in pulse height and the response was graded with maximal reduction occurring with the 5 microgram dose which essentially abolished the LH pulses. Following the microinjection of 6-keto-PGF1 alpha, no significant changes were observed in plasma LH values and the pulses of the hormone. Five micrograms PGI2 considerably elevated plasma PRL values during the 20-25 min following its 3V injection, whereas the same dose of 6-keto-PGF1 alpha produced only a very slight stimulatory effect. Since PGI2 had no effect to alter LH release by cultured pituitary cells in vitro, it is concluded that PGI2 can act on structures near the 3V to inhibit pulsatile release of LHRH.  相似文献   

3.
The effect on plasma prolactin (PRL) of d-amphetamine (Amph) was studied in normo- and hyperprolactinemic subjects. In normoprolactinemic women Amph failed to lower plasma PRL levels when infused intravenously over 1 h at the dose of 7.5 mg, but induced at the dose of 15.0 mg a modest inhibition of plasma PRL (maximum PRL inhibition 20 +/- 4.5% at 45 min). Likewise, in puerperal women Amph at the dose of 7.5 mg did not decrease significantly plasma PRL levels but it was active in this respect (maximum inhibition 37 +/- 10% at 120 min) at the dose of 15.0 mg. In subjects with presumptive evidence of a PRL-secreting adenoma, Amph at either the 7.5 mg or the 15.0 mg dose failed to alter baseline PRL levels. These results indicate that Amph is a poor PRL suppressor in either normo- or hyperprolactinemic subjects. It is proposed that this may be due to the drug's ability to effect release of dopamine mainly from a non-granular pool of the amine.  相似文献   

4.
Before and on the 30th day of danazol administration (200 mg/day), in six postmenopausal women the activity of endogenous opioid peptides has been indirectly evaluated by the effect on LH secretion and body temperature (measured as rectal temperature) exerted by the infusion of the opioid antagonist naloxone (1.6 mg/h x 4 h preceded by 1.6 mg iv bolus). Before and during danazol administration a GnRH test (100 mcg iv bolus) was also performed to evaluate possible variations in pituitary responsiveness to GnRH. Danazol significantly reduced mean plasma levels of LH and FSH (p less than 0.01), and their response to GnRH stimulus (p less than 0.05). Either before or during danazol administration mean plasma LH and FSH levels did not vary during the infusion of naloxone, while body temperature significantly decreased (p less than 0.01). The decrease in body temperature was significantly greater (p less than 0.05) during danazol than before treatment. The present data suggest that in postmenopausal women a low dose of danazol exerts an antigonadotropic effect mainly reducing the pituitary responsiveness to GnRH. The enhanced hypothermic response to naloxone observed during danazol administration also seems to suggest that in postmenopausal women a low dose of danazol enhances the thermoregulatory role of endogenous opioid peptides.  相似文献   

5.
C A Sagrillo  J L Voogt 《Life sciences》1992,50(20):1479-1489
Dopamine (DA) neurons participate in tonic inhibition of prolactin (PRL), whereas beta-endorphin (beta-End) and serotonin (5-HT) neurons appear to be important stimulatory links for nocturnal PRL surges that occur throughout the first half of pregnancy in the rat. The purpose of this study was to determine how these neuronal components might be organized within the pathway controlling PRL release during gestation. Maximal stimulation of DA receptors with the agonist bromocriptine mesylate (Bromo) completely blocked the PRL response to beta-End (100 ng/microliters/min for 15 min) given intracerebroventricularly (i.c.v.) on day 8 of pregnancy. DA receptor blockade, produced by implanting a 25 mg pellet of haloperidol (Hal) on day 7 of pregnancy, resulted in PRL levels of 500-600 ng/ml by the following morning. beta-End i.c.v. or 250 mg/ml/kg BW of the DA synthesis inhibitor, alpha-methyl-p-tyrosine (alpha-MPT), given during the intersurge period, were equally effective in significantly increasing PRL (p less than 0.01) above pretreatment levels. beta-End and alpha-MPT evoked similar increases in rats pretreated with Hal, suggesting the stimulatory effect of beta-End on nocturnal PRL surges may primarily be due to DA inhibition. The next objective was to determine how beta-End and 5-HT might interact to stimulate the nocturnal surge. Day 8 pregnant rats were infused continuously with the opioid receptor blocker, naloxone hydrochloride (Nal), at a rate of 2.0 mg/10 min from 1000-1300 h. The PRL response to an injection of 20 mg/kg BW 5-hydroxytryptophan (5-HTP) at 1200 h was greatly attenuated, compared to controls infused with saline instead of Nal. This suggests that 5-HT stimulates PRL, at least in part, by an action at opioid receptors. Distilled H2O or 10 mg/kg BW of the selective S2 receptor blocker, ketanserin tartrate (Ket), was given intraperitoneally (i.p.) during the intersurge period on day 8 of pregnancy. All animals demonstrated an identical response to beta-End given 2 hours later, regardless of the type of pretreatment. It appears that beta-End does not stimulate PRL by way of an S2 receptor. Although beta-End induced a significant increase in PRL on day 16 of pregnancy, the response was attenuated by more than 60% compared to the response on day 8 of pregnancy. This attenuation may involve placental lactogens, shown to be secreted during this time and to inhibit PRL secretion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The effects of microinjection of naloxone, an opiate receptor antagonist, into the medial preoptic area (MPO) and diagonal band of Broca (DBB) on luteinizing hormone (LH) and prolactin (PRL) secretion were examined in the intact male rat and female rat in diestrus 1. In both the male and female rats, the injection of 50 micrograms naloxone at 1300 h produced an acute, two- to three-fold increase in serum LH, attaining the peak at 20 min. The PRL concentration in the female 20 min-2 h after the injection was significantly lower than in the saline-injected rat. In the male rat, naloxone caused a decrease in the PRL concentration in the late afternoon when a small rise occurred in the saline-injected rat, although it caused no immediate changes. In addition to these hypophysiotropic effects, naloxone injected in the MPO and DBB unexpectedly had seizurogenic actions. More than 40% of the animals of both sexes given an injection of naloxone had behavioral seizures, which began after about 20 min and were repeated intermittently at 15-20 min intervals through the sampling period of 6 h. In the LH and PRL response to naloxone, there was no significant difference between animals with and without seizure response in both sexes. The results suggest that in the preoptic opioid system there is no difference according to sex in the control of LH, and only a small one, if any, in the control of PRL. Further, on the basis of previous reports, there is a GABAergic system in the preoptic region, that is antagonized by naloxone and causes the activation of cortical neuronal activity.  相似文献   

7.
The effects of euhydration (Eh) and light (Dh1) and moderate (Dh2) dehydrations on plasma prolactin (PRL) levels were studied in 5 young male volunteers at rest and during exercise to exhaustion (50% of VO2max) in a warm environment (Tdb = 35 degrees C, rh = 20-30%). Light and moderate dehydrations (loss of 1.1 and 1.8% body respectively) were obtained before exercise by controlled hyperthermia. Compared to Eh, time for exhaustion was reduced in Dh1 and Dh2 (p less than 0.01) and rectal temperature (Tre) rose faster in Dh2 (p less than 0.05). Both venous plasma PRL and norepinephrine (NE) increased during exercise at any hydration level (p less than 0.05). Plasma PRL reached higher values after 40 and 60 min in Dh2 and Dh1 (p less than 0.05). Plasma NE values were higher in Dh2 at rest and at the 40th min during exercise (p less than 0.05). Plasma PRL was linearly correlated to Tre and plasma NE (p less than 0.001) but unrelated to plasma volume variation and osmolality. Our results provide further evidence for the major effect of body temperature in exercise-induced PRL changes. Moreover, the plasma PRL-NE relationship suggests that these changes may result from central noradrenergic activation.  相似文献   

8.
The effect of opiate receptors blocker naloxone on ACTH and corticosterone secretion in normal, dexamethasone-treated and hypophysectomized rats was studied. A dose-related increase in plasma corticosterone level was found at 45 min after s.c. injection of naloxone in a dose range of 0.25-2.0 mg kg-1. The rise in plasma corticosterone was preceded by a slight increase in plasma ACTH. Acute morphine administration in a relatively low dose (6 mg kg-1 s.c.) induced a significant rise in both plasma ACTH and corticosterone levels. Dexamethasone treatment was followed by low basal corticosterone level, by total inhibition of the stress response and response to morphine injection, while the response to ACTH administration was normal. Under these circumstances as well as in rats 6 days after hypophysectomy, naloxone failed to increase plasma corticosterone levels. It is concluded that a direct stimulation of corticosteroid biosynthesis in adrenal cortex is not involved in the mechanism of naloxone-induced activation of pituitary-adrenocortical function.  相似文献   

9.
In order to study the hypothesized impairment of the serotoninergic system in human obesity, an insulin tolerance test (ITT) was carried out on 12 obese normoprolactinemic women and on 6 normal-weight women before (A) and after (B) the administration of a serotoninergic drug, fenfluramine (60 mg twice a day per os for 7 days). After a washout period, a new ITT (C) followed the administration of fenfluramine at the same dose, associated with a specific S2 blocker receptor agent, ritanserin (30 mg/day for the first 2 days and 20 mg/day for a further 5 days). In obese subjects, the prolactin (PRL) response to ITT A was reduced as compared to the controls: in 6 patients ('nonresponders') the PRL levels did not change, while in the other 6 ('responders') they increased (p less than 0.003) but less than in the controls (p less than 0.02). In normal-weight subjects, the administration of fenfluramine alone or with ritanserin did not modify the PRL response to ITT. In the responders, the serotoninergic drug normalized the PRL response to ITT while significantly improving it in the nonresponders; these effects were not antagonized by ritanserin. In conclusion, our data suggest that the serotoninergic system of obese patients is impaired and that the different secretory pattern observed in the two groups before and after fenfluramine may reflect differing degrees of this impairment.  相似文献   

10.
In humans there is a circadian rhythm of leptin concentrations in plasma with a minimum in the early morning and a maximum in the middle of the night. By taking blood samples from adult male rats every 3 hr for 24 hr, we determined that a circadian rhythm of plasma leptin concentrations also occurs in the rat with a peak at 0130h and a minimum at 0730h. To determine if this rhythm is controlled by nocturnally released hormones, we evaluated the effect of hormones known to be released at night in humans, some of which are also known to be released at night in rats. In humans, prolactin (PRL), growth hormone (GH), and melatonin are known to be released at night, and adrenocorticotropic hormone (ACTH) release is inhibited. In these experiments, conscious rats were injected intravenously with 0.5 ml diluent or the substance to be evaluated just after removal of the first blood sample (0.3 ml), and additional blood samples (0.3 ml) were drawn every 10 min thereafter for 2 hr. The injection of highly purified sheep PRL (500 microg) produced a rapid increase in plasma leptin that persisted for the duration of the experiment. Lower doses were ineffective. To determine the effect of blockade of PRL secretion on leptin secretion, alpha bromoergocryptine (1.5 mg), a dopamine-2-receptor agonist that rapidly inhibits PRL release, was injected. It produced a rapid decline in plasma leptin within 10 min, and the decline persisted for 120 min. The minimal effective dose of GH to lower plasma leptin was 1 mg/rat. Insulin-like growth factor (IGF-1) (10 microg), but not IGF-2 (10 microg), also significantly decreased plasma leptin. Melatonin, known to be nocturnally released in humans and rats, was injected at a dose of 1 mg/rat during daytime (1100h) or nighttime (2300h). It did not alter leptin release significantly. Dexamethasone (DEX), a potent glucocorticoid, was ineffective at a 0. 1-mg dose but produced a delayed, significant increase in leptin, manifest 100-120 min after injection of a 1 mg dose. Since glucocorticoids decrease at night in humans at the time of the maximum plasma concentrations of leptin, we hypothesize that this increase in leptin from a relatively high dose of DEX would mimic the response to the release of corticosterone following stress in the rat and that glucocorticoids are not responsible for the circadian rhythm of leptin concentration. Therefore, we conclude that an increase in PRL secretion during the night may be responsible, at least in part, for the nocturnal elevation of leptin concentrations observed in rats and humans.  相似文献   

11.
J R Sowers  F W Beck  P Eggena 《Life sciences》1984,34(24):2339-2346
This study was designed to more selectively investigate the dopaminergic regulation of 18-hydroxycorticosterone (18-OHB) and aldosterone production by the adrenal zona glomerulosa. Mature rhesus monkeys received either an infusion of dopamine (2 micrograms/kg/min) or 5% dextrose (0.2 ml/min) over a 60 min period (N=6). Dopamine had no effect on plasma levels of renin activity, cortisol, corticosterone, aldosterone or blood pressure. However, dopamine suppressed (p less than 0.05) plasma 18-OHB levels from a baseline of 31.6 +/- 3.5 ng/dl to 23.6 +/- 2.1 ng/dl at 60 min after onset of infusion. This observation is in agreement with some studies in humans but differs from others in which no depression in 18-OHB was observed following dopamine infusion. Dopamine infusion markedly (p less than 0.001) suppressed plasma PRL levels by 30 min after onset of infusion. Corticosteroid responses to metoclopramide (200 micrograms/kg) after dexamethasone 1 mg im every 6 h X 5 days or placebo treatment (vehicle im every 6 h X 5 days) was then evaluated. Dexamethasone significantly suppressed basal cortisol, corticosterone, 18-OHB and aldosterone. Although dexamethasone blunted the prolactin response, it did not inhibit the aldosterone response to metoclopramide. The 18-OHB response to metoclopramide was increased (p less than 0.01) following dexamethasone treatment. Following dexamethasone suppression, 18-OHB levels were still lowered (p less than 0.05) by dopamine infusion. These results suggest that dopamine selectively inhibits zona glomerulosa production of 18-OHB and aldosterone in rhesus monkeys.  相似文献   

12.
The effects of endogenous opiates on insulin response to oral glucose load were studied in obese subjects and in lean healthy volunteers. None of these having a family diabetes. After 3 days on an 1,800 cal./m2, 40% carbohydrate diet all subjects underwent two standard 75 g oral glucose tolerance tests (OGTT), one of which was accompanied by an i. v. administration of 10 mg of, an antagonist of opiates, the naloxone. In one group of obese impaired oral glucose tolerance test occurred. All obese, but not the lean healthy volunteers, showed: 1) increased basal plasma insulin levels, 2) higher insulin response to OGTT, 3) a decrease in insulin response to OGTT after naloxone administration, with significant differences at 60 min (p less than 0.01) and 90 min (p less than 0.025). In none of the subjects significant differences were observed in blood glucose levels after OGTT plus naloxone administration. These data suggest that increased endogenous opiates may affect insulin response to glucose in obese with impaired or normal oral glucose tolerance test. At present there seems to be no satisfactory explanation for unchanged blood glucose levels during OGTT with and without naloxone despite a decrease in insulin secretion in the obese patients.  相似文献   

13.
Stimulation of prolactin release by prolactin-releasing peptide in rats.   总被引:14,自引:0,他引:14  
We have previously reported a hypothalamic peptide that shows specific prolactin (PRL)-releasing activity in vitro, named prolactin-releasing peptide (PrRP). However, its activity in vivo has not yet been shown. In this study, we examined whether PrRP could induce specific PRL release in vivo using normal cycling female and male rats. Intravenous injection of PrRP31 increased plasma PRL levels in rats in a dose-dependent manner. PrRP31 (50 nmol/kg i.v.) significantly (P < 0.05) stimulated plasma PRL levels within 25 min after injection in rats in proestrus, estrus, and metestrus. A higher dose of PrRP31 (500 nmol/kg i.v.) was necessary for a significant increase in plasma PRL levels in male rats. These results clearly indicate that female rats, especially at proestrus, are more sensitive to PrRP-induced PRL secretion than male rats. The effect of PrRP on PRL release is affected considerably by the estrous cycle and sex, which suggests that PrRP sensitivity is controlled by the endogenous hormonal milieu, such as estrogen levels. PrRP31 did not affect other pituitary hormone secretions. The results indicate that PrRP shows specific PRL-releasing activity in vivo as well as in vitro and suggest that it plays an important role in the regulation of PRL release under certain physiological conditions.  相似文献   

14.
An intravenous administration of (D-ala2, met5)-enkephalinamide (DALA) caused a significant elevation of plasma ACTH and corticosterone at 10 to 20 min after injection in unanesthetized freely moving rats. An intraperitoneal administration of cyproheptadine tended to reduce plasma ACTH and corticosterone levels at 60 min after injection, but it did not attenuate the DALA-induced ACTH and corticosterone elevation. A large dose of naloxone (1-10 mg/kg body weight) caused a significant elevation in plasma corticosterone, but naloxone at 10 mg/kg body weight reduced the basal ACTH level and DALA-induced ACTH elevation. When both DALA and naloxone were injected, the steroidogenic effect was attenuated. Neither DALA nor naloxone affected the basal ACTH release and CRF-induced ACTH stimulation in rat anterior pituitary cell cultures. These results suggest that DALA acts at the extra-hypophyseal level to stimulate ACTH and corticosterone and that the naloxone stimulatory effect on steroidogenesis acts on the adrenal gland or is mediated by stimulating corticosterone stimulating factors other than ACTH.  相似文献   

15.
The effect of naloxone (opioid receptor blocker) on the impairment of growth hormone (GH) release after clonidine (alfa 2-adrenergic agonist) was investigated in 10 volunteer obese subjects. The patients (4 males and 6 females, 16-22 year old) with fat excess (15 +/- 2 kg) estimated by bioelectrical impedance analysis (BIA) were studied repeatedly. The patients, were perfused by a slow saline infusion. 30 min later they received a bolus dose of clonidine (150 micrograms p.o.), followed 30 min later by a bolus dose of naloxone (10 mg i.v.) or a corresponding volume of isotonic sodium cloride (I.S.) for control. No significant changes occurred in blood GH concentration after clonidine administration and naloxone did not induce GH response at clonidine. These results suggest that in obese subjects the impairment of GH release after clonidine is not mediated via receptors sensitivity to naloxone.  相似文献   

16.
Proestrus surges of serum LH, FSH and prolactin (PRL) were significantly reduced when morphine HCl (50 and 10 mg/kg) was administered to 4-day cycling rats just prior to the proestrous critical period. The inhibitory effect of morphine was reversed by naloxone, a morphine antagonist, at the dose which had no effect on the proestrus surges of serum LH, FSH or PRL. The hypothalamic LH-RF content of proestrous rats at 1800 hr (during the proestrus surge) was not significantly different from that at 1400 hr (before the surge) and was not affected by pretreatment with morphine or naloxone. Our results suggest that naloxone reverses the anti-ovulatory effect of morphine by antagonizing the inhibitory effect of morphine on preovulatory surges of gonadotropins or PRL.  相似文献   

17.
The response of plasma LH, Prolactin, GH and TSH levels to systematic administration of a specific central dopaminergic stimulant, amfonelic acid (AFA), by intravenous pulse injection in ovariectomized (OVX) and OVX estrogen-progesterone primed conscious rats has been evaluated. Intravenous injection of 0.2 mg/kg of AFA had no influence on plasma LH concentration until 60 min after injection when it was significantly elevated. Increasing the dose to 1 mg/kg reduced LH titers at 15 and 30 min with a return to preinjection levels by 60 min. AFA produced a dose-dependent decrease in plasma prolactin levels; the decrease occurred as early as 5 min after injection. AFA, both at 0.2 and 1 mg/kg doses, was effective in producing a sharp, dose-related rise in plasma GH levels. By contrast, TSH levels were significantly suppressed by both doses of AFA. Injection of the 1 mg/kg dose of AFA did not modify plasma LH levels in OVX-steroid-primed animals, white producing a comparable effect on plasma prolactin, GH and TSH levels to that observed in OVX animals. The present results indicate that endogenously released DA can have profound effects on pituitary hormone release, inhibiting PRL and TSH discharge, stimulating GH release and either inhibiting or stimulating LH release.  相似文献   

18.
In adult male Wistar rats submitted to a standardized noise stress, intravenous TRH induced a prolactin (PRL) secretory response. Prior IV naloxone administration not only lowered plasma PRL levels in those stressed rats but abolished also the stimulatory action of TRH. This effect was further studied by superfusion experiments on enriched PRL cell suspensions (70% lactotrophs) from female adult Wistar rats. Naloxone kept unaffected the basal PRL secretion but lowered significantly that induced by TRH. These experiments suggest a dual effect of naloxone on rat PRL secretion, one exerted on central opioid receptors lowering stress-related increased basal PRL levels, the other inhibiting the TRH-dependent PRL secretion exerted at the lactotroph level itself.  相似文献   

19.
M Arslan  S S Rizvi  S Jahan  P Zaidi  M Shahab 《Life sciences》1991,49(15):1073-1077
N-methyl-D,L-aspartic acid (NMA), an agonist of the neurotransmitter glutamate has been shown to acutely stimulate the release of prolactin (PRL) in intact rats and monkeys. To further investigate the role of neuroexcitatory amino acids in PRL secretion, the effects of NMA administration were examined on PRL release in long term orchidectomized adult rhesus monkeys, in both the absence and presence of testosterone. Intact and long term castrated adult male monkeys weighing between 8-13 kg, were implanted with a catheter via the saphenous vein for blood withdrawal and drug infusion. Blood samples were collected at 10 min intervals for 50 min before and 70 min after administration of the drug or vehicle. Plasma PRL concentrations were estimated using radioimmunoassay. Whereas a single iv injection of NMA (15 mg/kg BW) induced a prompt discharge of PRL in intact monkeys, an identical dose had surprisingly no effect on PRL secretion in orchidectomized animals. On the other hand, plasma PRL increases in response to a challenge dose of thyrotropin releasing hormone (TRH; 6 micrograms/kg BW, iv) were similar in magnitude in the two groups of monkeys. Testosterone replacement in orchidectomized animals by parenteral administration of testosterone enanthate (200 mg/wk) reinitiated the PRL responsiveness to acute NMA stimulation. These results indicate that N-methyl-D-aspartic acid (NMDA) dependent drive to PRL release in the adult male rhesus monkey may be overtly influenced by the sex steroid milieu.  相似文献   

20.
Dopamine infusion 4 micrograms/kg/min over 4 h, administered to six subjects with diagnosis of polycystic ovarian disease laparoscopically confirmed, produced a significant decrease in serum LH, FSH and PRL, suggesting a reduced dopamine activity in these subjects. The addition of naloxone 4 mg iv bolus plus 4 mg/h over 2 h, a specific opiate antagonist, does not interfere with the well-established dopaminergic inhibitory influence on LH, FSH and PRL secretion. This suggests that opiatergic pathways are not directly involved in the dopamine-induced suppressive effect on LH secretion in subjects with LH-dependent polycystic ovarian disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号