首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

2.
The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe–2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na+-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na+-NQR contains approximately 1.7 mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na+-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na+-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

3.
The Na(+)-translocating NADH-quinone reductase (NQR) from Vibrio alginolyticus is composed of six subunits (NqrA to NqrF). We previously demonstrated that both NqrB and NqrC subunits contain a flavin cofactor covalently attached to a threonine residue. Fluorescent peptide fragments derived from the NqrB and NqrC subunits were applied to a matrix-assisted laser desorption ionization time-of-flight mass spectrometer, and covalently attached flavin was identified as FMN in both subunits. From post-source decay fragmentation analysis, it was concluded that FMN is attached by a phosphate group to Thr-235 in the NqrB subunit and to Thr-223 in the NqrC subunit. The phosphoester binding of FMN to a threonine residue reported here is a new type of flavin attachment to a polypeptide.  相似文献   

4.
Enzymes of the Rnf family are believed to be bacterial redox-driven ion pumps, coupling an oxidoreduction process to the translocation of Na+ across the cell membrane. Here we show for the first time that Rnf is a flavoprotein, with FMN covalently bound to threonine-175 in RnfG and a second flavin bound to threonine-187 in RnfD. Rnf subunits D and G are homologous to subunits B and C of Na+-NQR, respectively. Each of these Na+-NQR subunits includes a conserved S(T)GAT motif, with FMN covalently bound to the final threonine. RnfD and RnfG both contain the same motif, suggesting that they bind flavins in a similar way. In order to investigate this, the genes for RnfD and RnfG from Vibrio cholerae were cloned and expressed individually in that organism. In both cases the produced protein fluoresced under UV illumination on an SDS gel, further indicating the presence of flavin. However, analysis of the mutants RnfG-T175L, RnfD-T278L, and RnfD-T187V showed that RnfG-T175 and RnfD-T187 are the likely flavin ligands. This indicates that, in the case of RnfD, the flavin is bound, not to the SGAT sequence but to the final residues of a TMAT sequence, a novel variant of the flavin binding motif. In the case of RnfG, flavin analysis, followed by MALDI-TOF-TOF mass spectrometry, showed that an FMN is covalently attached to threonine-175, the final threonine of the S(T)GAT sequence. Studies by visible, EPR, and ENDOR spectroscopy showed that, upon partial reduction, the isolated RnfG produces a neutral semiquinone intermediate. The semiquinone species disappeared upon full reduction and was not observed in the denatured protein. A topological analysis combining reporter protein fusion and computer predictions indicated that the flavins in RnfG and RnfD are localized in the periplasmic space. In contrast, in NqrC and NqrB the flavins are located in a cytoplasmic loop. This topological analysis suggests that there may be mechanistic differences between the Rnf and Na+-NQR complexes.  相似文献   

5.
The respiratory chain of Gram-negative marine and halophilic bacteria has a Na(+)-dependent NADH-quinone reductase that functions as a primary Na(+) pump. The Na(+)-translocating NADH-quinone reductase (NQR) from the marine Vibrio alginolyticus is composed of six structural genes (nqrA to nqrF). The NqrF subunit has non-covalently bound FAD. There are conflicting results on the existence of other flavin cofactors. Recent studies revealed that the NqrB and NqrC subunits have a covalently bound flavin, possibly FMN, which is attached to a specified threonine residue. A novel antibiotic, korormicin, was found to specifically inhibit the NQR complex. From the homology search of the nqr operon, it was found that the Na(+)-pumping NQR complex is widely distributed among Gram-negative pathogenic bacteria.  相似文献   

6.
The sodium ion-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na+ across the bacterial membrane. The Na+-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na+-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na+-NQR is discussed.  相似文献   

7.
Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium.  相似文献   

8.
The Na(+)-translocating NADH: ubiquinone oxidoreductase (Na(+)-NQR) generates an electrochemical Na(+) potential driven by aerobic respiration. Previous studies on the enzyme from Vibrio alginolyticus have shown that the Na(+)-NQR has six subunits, and it is known to contain FAD and an FeS center as redox cofactors. In the current work, the enzyme from the marine bacterium Vibrio harveyi has been purified and characterized. In addition to FAD, a second flavin, tentatively identified as FMN, was discovered to be covalently attached to the NqrC subunit. The purified V. harveyi Na(+)-NQR was reconstituted into proteoliposomes. The generation of a transmembrane electric potential by the enzyme upon NADH:Q(1) oxidoreduction was strictly dependent on Na(+), resistant to the protonophore CCCP, and sensitive to the sodium ionophore ETH-157, showing that the enzyme operates as a primary electrogenic sodium pump. Interior alkalinization of the inside-out proteoliposomes due to the operation of the Na(+)-NQR was accelerated by CCCP, inhibited by valinomycin, and completely arrested by ETH-157. Hence, the protons required for ubiquinol formation must be taken up from the outside of the liposomes, which corresponds to the bacterial cytoplasm. The Na(+)-NQR operon from this bacterium was sequenced, and the sequence shows strong homology to the previously reported Na(+)-NQR operons from V. alginolyticus and Haemophilus influenzae. Homology studies show that a number of other bacteria, including a number of pathogenic species, also have an Na(+)-NQR operon.  相似文献   

9.
Redox titration of all optically detectable prosthetic groups of Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) at pH 7.5 showed that the functionally active enzyme possesses only three titratable flavin cofactors, one noncovalently bound FAD and two covalently bound FMN residues. All three flavins undergo different redox transitions during the function of the enzyme. The noncovalently bound FAD works as a "classical" two-electron carrier with a midpoint potential (E(m)) of -200 mV. Each of the FMN residues is capable of only one-electron reduction: one from neutral flavosemiquinone to fully reduced flavin (E(m) = 20 mV) and the other from oxidized flavin to flavosemiquinone anion (E(m) = -150 mV). The lacking second half of the redox transitions for the FMNs cannot be reached under our experimental conditions and is most likely not employed in the catalytic cycle. Besides the flavins, a [2Fe-2S] cluster was shown to function in the enzyme as a one-electron carrier with an E(m) of -270 mV. The midpoint potentials of all the redox transitions determined in the enzyme were found to be independent of Na(+) concentration. Even the components that exhibit very strong retardation in the rate of their reduction by NADH at low sodium concentrations experienced no change in the E(m) values when the concentration of the coupling ion was changed 1000 times. On the basis of these data, plausible mechanisms for the translocation of transmembrane sodium ions by Na(+)-NQR are discussed.  相似文献   

10.
The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio harveyi was purified and studied by EPR and visible spectroscopy. Two EPR signals in the NADH-reduced enzyme were detected: one, a radical signal, and the other a line around g = 1.94, which is typical for a [2Fe-2S] cluster. An E(m) of -267 mV was found for the Fe-S cluster (n = 1), independent of sodium concentration. The spin concentration of the radical in the enzyme was approximately the same under a variety of redox conditions. The time course of Na+-NQR reduction by NADH indicated the presence of at least two different flavin species. Reduction of the first species (most likely, a FAD near the NADH dehydrogenase site) was very rapid in both the presence and absence of sodium. Reduction of the second flavin species (presumably, covalently bound FMN) was slower and strongly dependent on sodium concentration, with an apparent activation constant for Na+ of approximately 3.4 mM. This is very similar to the Km for Na+ in the steady-state quinone reductase reaction catalyzed by this enzyme. These data led us to conclude that the sodium-dependent step within the Na+-NQR is located between the noncovalently bound FAD and the covalently bound FMN.  相似文献   

11.
The nqr operon from Vibrio cholerae, encoding the entire six-subunit, membrane-associated, Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), was cloned under the regulation of the P(BAD) promoter. The enzyme was successfully expressed in V. cholerae. To facilitate molecular genetics studies of this sodium-pumping enzyme, a host strain of V. cholerae was constructed in which the genomic copy of the nqr operon was deleted. By using a vector containing a six-histidine tag on the carboxy terminus of the NqrF subunit, the last subunit in the operon, the recombinant enzyme was readily purified by affinity chromatography in a highly active form from detergent-solubilized membranes of V. cholerae. The recombinant enzyme has a high specific activity in the presence of sodium. NADH consumption was assessed at a turnover number of 720 electrons per second. When purified using dodecyl maltoside (DM), the isolated enzyme contains approximately one bound ubiquinone, whereas if the detergent LDAO is used instead, the quinone content of the isolated enzyme is negligible. Furthermore, the recombinant enzyme, purified with DM, has a relatively low rate of reaction with O(2) (10-20 s(-1)). In steady state turnover, the isolated, recombinant enzyme exhibits up to 5-fold stimulation by sodium and functions as a primary sodium pump, as reported previously for Na(+)()-NQR from other bacterial sources. When reconstituted into liposomes, the recombinant Na(+)-NQR generates a sodium gradient and a Delta Psi across the membrane. SDS-PAGE resolves all six subunits, two of which, NqrB and NqrC, contain covalently bound flavin. A redox titration of the enzyme, monitored by UV-visible spectroscopy, reveals three n = 2 redox centers and one n = 1 redox center, for which the presence of three flavins and a 2Fe-2S center can account. The V. cholerae Na(+)-NQR is well-suited for structural studies and for the use of molecular genetics techniques in addressing the mechanism by which NADH oxidation is coupled to the pumping of Na(+) across the membrane.  相似文献   

12.
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the human pathogen Vibrio cholerae is a respiratory flavo-FeS complex composed of the six subunits NqrA-F. The Na(+)-NQR was produced as His(6)-tagged protein by homologous expression in V. cholerae. The isolated complex contained near-stoichiometric amounts of non-covalently bound FAD (0.78 mol/mol Na(+)-NQR) and riboflavin (0.70 mol/mol Na(+)-NQR), catalyzed NADH-driven Na(+) transport (40 nmol Na(+)min(-1) mg(-1)), and was inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide. EPR spectroscopy showed that Na(+)-NQR as isolated contained very low amounts of a neutral flavosemiquinone (10(-3) mol/mol Na(+)-NQR). Reduction with NADH resulted in the formation of an anionic flavosemiquinone (0.10 mol/mol Na(+)-NQR). Subsequent oxidation of the Na(+)-NQR with ubiquinone-1 or O(2) led to the formation of a neutral flavosemiquinone (0.24 mol/mol Na(+)-NQR). We propose that the Na(+)-NQR is fully oxidized in its resting state, and discuss putative schemes of NADH-triggered redox transitions.  相似文献   

13.
The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is the main entrance for electrons into the respiratory chain of many marine and pathogenic bacteria. The enzyme accepts electrons from NADH and donates them to ubiquinone, and the free energy released by this redox reaction is used to create an electrochemical gradient of sodium across the cell membrane. Here we report the role of glycine 140 and glycine 141 of the NqrB subunit in the functional binding of ubiquinone. Mutations at these residues altered the affinity of the enzyme for ubiquinol. Moreover, mutations in residue NqrB-G140 almost completely abolished the electron transfer to ubiquinone. Thus, NqrB-G140 and -G141 are critical for the binding and reaction of Na(+)-NQR with its electron acceptor, ubiquinone.  相似文献   

14.
Two radical signals with different line widths are seen in the Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio harveyi by EPR spectroscopy. The first radical is observed in the oxidized enzyme, and is assigned as a neutral flavosemiquinone. The second radical is observed in the reduced enzyme and is assigned to be the anionic form of flavosemiquinone. The time course of Na+-NQR reduction by NADH, as monitored by stopped-flow optical spectroscopy, shows three distinct phases, the spectra of which suggest that they correspond to the reduction of three different flavin species. The first phase is fast both in the presence and absence of sodium, and is assigned to reduction of FAD to FADH2 at the NADH dehydrogenating site. The rates of the other two phases are strongly dependent on sodium concentration, and these phases are attributed to reduction of two covalently bound FMN's. Combination of the optical and EPR data suggests that a neutral FMN flavosemiquinone preexists in the oxidized enzyme, and that it is reduced to the fully reduced flavin by NADH. The other FMN moiety is initially oxidized, and is reduced to the anionic flavosemiquinone. One-electron transitions of two discrete flavin species are thus assigned as sodium-dependent steps in the catalytic cycle of Na+-NQR.  相似文献   

15.
The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is a fundamental enzyme of the oxidative phosphorylation metabolism and ionic homeostasis in several pathogenic and marine bacteria. To understand the mechanism that couples electron transfer with sodium translocation in Na(+)-NQR, the ion dependence of the redox potential of the individual cofactors was studied using a spectroelectrochemical approach. The redox potential of one of the FMN cofactors increased 90 mV in the presence of Na(+) or Li(+), compared to the redox potentials measured in the presence of other cations that are not transported by the enzyme, such as K(+), Rb(+), and NH(4)(+). This shift in redox potential of one FMN confirms the crucial role of the FMN anionic radicals in the Na(+) pumping mechanism and demonstrates that the control of the electron transfer rate has both kinetic (via conformational changes) and thermodynamic components.  相似文献   

16.
Many marine and pathogenic bacteria have a unique sodium-translocating NADH:ubiquinone oxidoreductase (Na(+)-NQR), which generates an electrochemical Na(+) gradient during aerobic respiration. Na(+)-NQR consists of six subunits (NqrA-F) and contains five known redox cofactors: two covalently bound FMNs, one noncovalently bound FAD, one riboflavin, and one 2Fe-2S center. A stable neutral flavin-semiquinone radical is observed in the air-oxidized enzyme, while the NADH- or dithionite-reduced enzyme exhibits a stable anionic flavin-semiquinone radical. The NqrF subunit has been implicated in binding of both the 2Fe-2S cluster and the FAD. Four conserved cysteines (C70, C76, C79, and C111) in NqrF match the canonical 2Fe-2S motif, and three conserved residues (R210, Y212, S246) have been predicted to be part of a flavin binding domain. In this work, these two motifs have been altered by site-directed mutagenesis of individual residues and are confirmed to be essential for binding, respectively, the 2Fe-2S cluster and FAD. EPR spectra of the FAD-deficient mutants in the oxidized and reduced forms exhibit neutral and anionic flavo-semiquinone radical signals, respectively, demonstrating that the FAD in NqrF is not the source of either radical signal. In both the FAD and 2Fe-2S center mutants the line widths of the neutral and anionic flavo-semiquinone EPR signals are unchanged from the wild-type enzyme, indicating that neither of these centers is nearby or coupled to the radicals. Measurements of steady-state turnover using NADH, Q-1, and the artificial electron acceptor ferricyanide strongly support an electron transport pathway model in which the noncovalently bound FAD in the NqrF subunit is the initial electron acceptor and electrons then flow to the 2Fe-2S center.  相似文献   

17.
Na(+) is the second major coupling ion at membranes after protons, and many pathogenic bacteria use the sodium-motive force to their advantage. A prominent example is Vibrio cholerae, which relies on the Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) as the first complex in its respiratory chain. The Na(+)-NQR is a multisubunit, membrane-embedded NADH dehydrogenase that oxidizes NADH and reduces quinone to quinol. Existing models describing redox-driven Na(+) translocation by the Na(+)-NQR are based on the assumption that the pump contains four flavins and one FeS cluster. Here we show that the large, peripheral NqrA subunit of the Na(+)-NQR binds one molecule of ubiquinone-8. Investigations of the dynamic interaction of NqrA with quinones by surface plasmon resonance and saturation transfer difference NMR reveal a high affinity, which is determined by the methoxy groups at the C-2 and C-3 positions of the quinone headgroup. Using photoactivatable quinone derivatives, it is demonstrated that ubiquinone-8 bound to NqrA occupies a functional site. A novel scheme of electron transfer in Na(+)-NQR is proposed that is initiated by NADH oxidation on subunit NqrF and leads to quinol formation on subunit NqrA.  相似文献   

18.
The pathogenicity of Vibrio cholerae is influenced by sodium ions which are actively extruded from the cell by the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR). To study the function of the Na(+)-NQR in the respiratory chain of V. cholerae, we examined the formation of organic radicals and superoxide in a wild-type strain and a mutant strain lacking the Na(+)-NQR. Upon reduction with NADH, an organic radical was detected in native membranes by electron paramagnetic resonance spectroscopy which was assigned to ubisemiquinones generated by the Na(+)-NQR. The radical concentration increased from 0.2 mM at 0.08 mM Na(+) to 0.4 mM at 14.7 mM Na(+), indicating that the concentration of the coupling cation influences the redox state of the quinone pool in V. cholerae membranes. During respiration, V. cholerae cells produced extracellular superoxide with a specific activity of 10.2 nmol min(-1) mg(-1) in the wild type compared to 3.1 nmol min(-1) mg(-1) in the NQR deletion strain. Raising the Na(+) concentration from 0.1 to 5 mM increased the rate of superoxide formation in the wild-type V. cholerae strain by at least 70%. Rates of respiratory H(2)O(2) formation by wild-type V. cholerae cells (30.9 nmol min(-1) mg(-1)) were threefold higher than rates observed with the mutant strain lacking the Na(+)-NQR (9.7 nmol min(-1) mg(-1)). Our study shows that environmental Na(+) could stimulate ubisemiquinone formation by the Na(+)-NQR and hereby enhance the production of reactive oxygen species formed during the autoxidation of reduced quinones.  相似文献   

19.
Na(+)-translocating NADH-quinone reductase (NQR) from the marine Vibrio alginolyticus is strongly inhibited by a new antibiotic korormicin. Korormicin specifically inhibits the Na(+)-dependent reaction of the NQR complex and acts as a purely non-competitive inhibitor for Q-1 with the inhibitor constant of 82 pM. Korormicin-resistant mutants were isolated from V. alginolyticus and the NQR complex was purified from a mutant KR2. Similar to 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), korormicin acted as a purely noncompetitive inhibitor to the NQR complex from the mutant KR2, but the inhibitor constant increased to 8 microM, which is 10(5)-fold higher than that of the wild-type NQR complex. The inhibitor constant of HQNO, however, was only slightly affected by the acquisition of korormicin resistance. The spontaneous mutation was caused by a single mutation of G-422 to T-422 in the nucleotide sequence of the nqrB gene, which resulted in the conversion of Gly-140 to Val-140. Thus, Gly-140 seems to play an important role for the binding of korormicin to the NqrB subunit. The fact that korormicin is a purely noncompetitive inhibitor for Q-1 strongly supports the presence of one of Q-1 binding sites in the NqrB subunit, which also has a covalently bound FMN at Thr-235.  相似文献   

20.
Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na+-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na+-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号