首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New methods to automatically build models of macromolecular complexes from high-resolution structures or homology models of their subunits or domains against x-ray or neutron small-angle scattering data are presented. Depending on the complexity of the object, different approaches are employed for the global search of the optimum configuration of subunits fitting the experimental data. An exhaustive grid search is used for hetero- and homodimeric particles and for symmetric oligomers formed by identical subunits. For the assemblies or multidomain proteins containing more then one subunit/domain per asymmetric unit, heuristic algorithms based on simulated annealing are used. Fast computational algorithms based on spherical harmonics representation of scattering amplitudes are employed. The methods allow one to construct interconnected models without steric clashes, to account for the particle symmetry and to incorporate information from other methods, on distances between specific residues or nucleotides. For multidomain proteins, addition of missing linkers between the domains is possible. Simultaneous fitting of multiple scattering patterns from subcomplexes or deletion mutants is incorporated. The efficiency of the methods is illustrated by their application to complexes of different types in several simulated and practical examples. Limitations and possible ambiguity of rigid body modeling are discussed and simplified docking criteria are provided to rank multiple models. The methods described are implemented in publicly available computer programs running on major hardware platforms.  相似文献   

2.
Comparative modeling methods are commonly used to construct models of homologous proteins or oligomers. However, comparative modeling may be inapplicable when the number of subunits in a modeled oligomer is different than in the modeling template. Thus, a dimer cannot be a template for a tetramer because a new monomer-monomer interface must be predicted. We present in this study a new prediction approach, which combines protein-protein docking with either of two tetramer-forming algorithms designed to predict the structures of tetramers with D2 symmetry. Both algorithms impose symmetry constraints. However, one of them requires identification of two of the C2 dimers within the tetramer in the docking step, whereas the other, less demanding algorithm, requires identification of only one such dimer. Starting from the structure of one subunit, the procedures successfully reconstructed 16 known D2 tetramers, which crystallize with either a monomer, a dimer or a tetramer in the asymmetric unit. In some cases we obtained clusters of native-like tetramers that differ in the relative rotation of the two identical dimers within the tetramer. The predicted structural pliability for concanavalin-A, phosphofructokinase, and fructose-1,6-bisphosphatase agrees semiquantitatively with the observed differences between the several experimental structures of these tetramers. Hence, our procedure identifies a structural soft-mode that allows regulation via relative rigid-body movements of the dimers within these tetramers. The algorithm also predicted three nearly correct tetramers from model structures of single subunits, which were constructed by comparative modeling from subunits of homologous tetrameric, dimeric, or hexameric systems.  相似文献   

3.
In this work, we employ single-particle electron cryo-microscopy (cryo-EM) to reconstruct GroEL to approximately 4 A resolution with both D7 and C7 symmetry. Using a newly developed skeletonization algorithm and secondary structure element identification in combination with sequence-based secondary structure prediction, we demonstrate that it is possible to achieve a de novo Calpha trace directly from a cryo-EM reconstruction. The topology of our backbone trace is completely accurate, though subtle alterations illustrate significant differences from existing crystal structures. In the map with C7 symmetry, the seven monomers in each ring are identical; however, the subunits have a subtly different structure in each ring, particularly in the equatorial domain. These differences include an asymmetric salt bridge, density in the nucleotide-binding pocket of only one ring, and small shifts in alpha helix positions. This asymmetric conformation is different from previous asymmetric structures, including GroES-bound GroEL, and may represent a "primed state" in the chaperonin pathway.  相似文献   

4.
Baker ML  Baker MR  Hryc CF  Ju T  Chiu W 《Biopolymers》2012,97(9):655-668
The complex interplay of proteins and other molecules, often in the form of large transitory assemblies, are critical to cellular function. Today, X-ray crystallography and electron cryo-microscopy (cryo-EM) are routinely used to image these macromolecular complexes, though often at limited resolutions. Despite the rapidly growing number of macromolecular structures, few tools exist for modeling and annotating structures in the range of 3-10 ? resolution. To address this need, we have developed a number of utilities specifically targeting subnanometer resolution density maps. As part of the 2010 Cryo-EM Modeling Challenge, we demonstrated two of our latest de novo modeling tools, Pathwalking and Gorgon, as well as a tool for secondary structure identification (SSEHunter) and a new rigid-body/flexible fitting tool in Gorgon. In total, we submitted 30 structural models from ten different subnanometer resolution data sets in four of the six challenge categories. Each of our utlities produced accurate structural models and annotations across the various density maps. In the end, the utilities that we present here offer users a robust toolkit for analyzing and modeling protein structure in macromolecular assemblies at non-atomic resolutions.  相似文献   

5.
6.
《Nucleic acids research》2020,48(22):12415
The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5′ end, the ribosomal frameshift segment and the 3′-untranslated region (3′-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.  相似文献   

7.
The structure of the lipid-enveloped Sindbis virus has been determined by fitting atomic resolution crystallographic structures of component proteins into an 11-A resolution cryoelectron microscopy map. The virus has T=4 quasisymmetry elements that are accurately maintained between the external glycoproteins, the transmembrane helical region, and the internal nucleocapsid core. The crystal structure of the E1 glycoprotein was fitted into the cryoelectron microscopy density, in part by using the known carbohydrate positions as restraints. A difference map showed that the E2 glycoprotein was shaped similarly to E1, suggesting a possible common evolutionary origin for these two glycoproteins. The structure shows that the E2 glycoprotein would have to move away from the center of the trimeric spike in order to expose enough viral membrane surface to permit fusion with the cellular membrane during the initial stages of host infection. The well-resolved E1-E2 transmembrane regions form alpha-helical coiled coils that were consistent with T=4 symmetry. The known structure of the capsid protein was fitted into the density corresponding to the nucleocapsid, revising the structure published earlier.  相似文献   

8.
Exponential growth in the number of available protein sequences is unmatched by the slower growth in the number of structures. As a result, the development of efficient and fast protein secondary structure prediction methods is essential for the broad comprehension of protein structures. Computational methods that can efficiently determine secondary structure can in turn facilitate protein tertiary structure prediction, since most methods rely initially on secondary structure predictions. Recently, we have developed a fast learning optimized prediction methodology (FLOPRED) for predicting protein secondary structure (Saraswathi et al. in JMM 18:4275, 2012). Data are generated by using knowledge-based potentials combined with structure information from the CATH database. A neural network-based extreme learning machine (ELM) and advanced particle swarm optimization (PSO) are used with this data to obtain better and faster convergence to more accurate secondary structure predicted results. A five-fold cross-validated testing accuracy of 83.8 % and a segment overlap (SOV) score of 78.3 % are obtained in this study. Secondary structure predictions and their accuracy are usually presented for three secondary structure elements: α-helix, β-strand and coil but rarely have the results been analyzed with respect to their constituent amino acids. In this paper, we use the results obtained with FLOPRED to provide detailed behaviors for different amino acid types in the secondary structure prediction. We investigate the influence of the composition, physico-chemical properties and position specific occurrence preferences of amino acids within secondary structure elements. In addition, we identify the correlation between these properties and prediction accuracy. The present detailed results suggest several important ways that secondary structure predictions can be improved in the future that might lead to improved protein design and engineering.  相似文献   

9.
The treatment of helical objects as a string of single particles has become an established technique to resolve their three-dimensional (3D) structure using electron cryo-microscopy. It can be applied to a wide range of helical particles such as viruses, microtubules and helical filaments. We have made improvements to this approach using Tobacco Mosaic Virus (TMV) as a test specimen and obtained a map from 210,000 asymmetric units at a resolution better than 5 A. This was made possible by performing a full correction of the contrast transfer function of the microscope. Alignment of helical segments was helped by constraints derived from the helical symmetry of the virus. Furthermore, symmetrization was implemented by multiple inclusions of symmetry-related views in the 3D reconstruction. We used the density map to build an atomic model of TMV. The model was refined using a real-space refinement strategy that accommodates multiple conformers. The atomic model shows significant deviations from the deposited model for the helical form of TMV at the lower-radius region (residues 88 to 109). This region appears more ordered with well-defined secondary structure, compared with the earlier helical structure. The RNA phosphate backbone is sandwiched between two arginine side-chains, stabilizing the interaction between RNA and coat protein. A cluster of two or three carboxylates is buried in a hydrophobic environment isolating it from neighboring subunits. These carboxylates may represent the so-called Caspar carboxylates that form a metastable switch for viral disassembly. Overall, the observed differences suggest that the new model represents a different, more stable state of the virus, compared with the earlier published model.  相似文献   

10.
Shpakov AO 《Tsitologiia》2002,44(6):561-569
Internal symmetry of the mirror type has been first found in molecules of RNA referred to as ribozymes. For identification and investigation of the internal symmetry in RNA primary structure, two methods were developed, dot matrix and scanning, respectively. The methods are based on a comparison of normal and reversible nucleotide sequences. The objects of our study was ribozymes from introns of Tetrahymena thermophila and hepatitis delta virus, and also a group of related ribozymes, possessing both cleavage and ligation activities. The centers of internal symmetry are mainly localized in the catalytic sites and other important regions of ribozyme molecules. A positive correlation was found between the conservativity and symmetry of the primary structure of ribozymes. However, this correlation was not so clear in comparison with the correlation in the case of proteins. As reported earlier (Shpakov, 1995, 2001), the internal symmetry was discovered in protein and DNA molecules. The obtained data enable us to consider the internal symmetry as a common characteristics of nucleotide and amino acid sequences of the biopolymers.  相似文献   

11.
The ligand binding domain of glutamate receptors (GluRs) has 2-fold rotational symmetry. The structure including the symmetry of the GluR ion channel remains undefined. Here we used substituted cysteines in the pore-lining M3 segment of the AMPAR GluR-A subunit and various cysteine-reactive agents to study the structure of the channel during gating. We find that cysteines substituted at A+6, located in the highly conserved SYTANLAAF motif, are grouped in pairs consistent with a 2-fold symmetry in the extracellular part of the pore. To account for this symmetry and crosslinking, we propose that the M3 segments in two neighboring GluR subunits are kinked within SYTANLAAF in opposite directions relative to the central axis of the pore. Our results extend the 2-fold rotational symmetry from the ligand binding domain to at minimum the extracellular part of the channel and suggest a model of gating movements in GluR pore-forming domains.  相似文献   

12.
A M Borman  F G Deliat    K M Kean 《The EMBO journal》1994,13(13):3149-3157
The 5' untranslated region of poliovirus RNA has been reported to possess two functional elements: (i) the 5' proximal 88 nucleotides form a cloverleaf structure implicated in positive-strand RNA synthesis during viral replication, and (ii) nucleotides 134 to at least 556 function as a highly structured internal ribosome entry segment (IRES) during cap-independent, internal initiation of translation. We show here that the IRES itself is bifunctional and contains sequences necessary for viral RNA synthesis per se. For this purpose, we used a dicistronic poliovirus RNA in which the translation of the viral non-structural (replication) proteins is uncoupled from the poliovirus IRES. In this system, RNA synthesis is readily detectable in transfected cells, even when the poliovirus IRES is inactivated by point mutation. However, deletion of the major part of the poliovirus IRES renders viral-specific RNA synthesis undetectable. Using the same system, we show that a three nucleotide deletion at position 500 in the 5' untranslated region drastically affects both translation efficiency and RNA synthesis. Furthermore, disruption of the secondary structure of the IRES around nucleotide 343 has minimal effects on IRES function, but dramatically reduces viral RNA replication. Taken together, these results provide direct evidence that sequences essential for viral RNA synthesis are located in the 3' region of the poliovirus IRES.  相似文献   

13.
Complete sequence-specific assignments of the 1H NMR spectrum of HPr protein from Staphylococcus aureus were obtained by two-dimensional NMR methods. Important secondary structure elements that can be derived from the observed nuclear Overhauser effects are a large antiparallel beta-pleated sheet consisting of four strands, A, B, C, D, a segment SAB consisting of an extended region around the active-center histidine (His-15) and an alpha-helix, a half-turn between strands B and C, a segment SCD which shows no typical secondary structure, and the alpha-helical, C-terminal segment S(term). These general structural features are similar to those found earlier in HPr proteins from different microorganisms such as Escherichia coli, Bacillus subtilis, and Streptococcus faecalis.  相似文献   

14.
Similarity search for protein 3D structures become complex and computationally expensive due to the fact that the size of protein structure databases continues to grow tremendously. Recently, fast structural similarity search systems have been required to put them into practical use in protein structure classification whilst existing comparison systems do not provide comparison results on time. Our approach uses multi-step processing that composes of a preprocessing step to represent geometry of protein structures with spatial objects, a filter step to generate a small candidate set using approximate topological string matching, and a refinement step to compute a structural alignment. This paper describes the preprocessing and filtering for fast similarity search using the discovery of topological patterns of secondary structure elements based on spatial relations. Our system is fully implemented by using Oracle 8i spatial. We have previously shown that our approach has the advantage of speed of performance compared with other approach such as DALI. This work shows that the discovery of topological relations of secondary structure elements in protein structures by using spatial relations of spatial databases is practical for fast structural similarity search for proteins.  相似文献   

15.
Retroviral integration has been implicated in several biomedical applications, including identification of cancer-associated genes and malignant transformation in gene therapy clinical trials. We introduce an efficient and scalable method for fast identification of viral vector integration sites from long read high-throughput sequencing. Individual sequence reads are masked to remove non-genomic sequence, aligned to the host genome and assembled into contiguous fragments used to pinpoint the position of integration. AVAILABILITY AND IMPLEMENTATION: The method is implemented in a publicly accessible web server platform, SeqMap 2.0, containing analysis tools and both private and shared lab workspaces that facilitate collaboration among researchers. Available at http://seqmap.compbio.iupui.edu/.  相似文献   

16.
Hemocyanins are giant extracellular oxygen carriers in the hemolymph of many molluscs. Nautilus pompilius (Cephalopoda) hemocyanin is a cylindrical decamer of a 350 kDa polypeptide subunit that in turn is a “pearl-chain” of seven different functional units (FU-a to FU-g). Each globular FU has a binuclear copper centre that reversibly binds one O2 molecule, and the 70-FU decamer is a highly allosteric protein. Its primary structure and an 11 Å cryo-electron microscopy (cryo-EM) structure have recently been determined, and the crystal structures of two related FU types are available in the databanks. However, in molluscan hemocyanin, the precise subunit pathway within the decamer, the inter-FU interfaces, and the allosteric unit are still obscure, but this knowledge is crucial to understand assembly and allosterism of these proteins. Here we present the cryo-EM structure of Nautilus hemocyanin at 9.1 Å resolution (FSC1/2-bit criterion), and its molecular model obtained by rigid-body fitting of the individual FUs. In this model we identified the subunit dimer, the subunit pathway, and 15 types of inter-FU interface. Four interface types correspond to the association mode of the two protomers in the published Octopus FU-g crystal. Other interfaces explain previously described morphological structures such as the fenestrated wall (which shows D5 symmetry), the three horizontal wall tiers, the major and minor grooves, the anchor structure and the internal collar (which unexpectedly has C5 symmetry). Moreover, the potential calcium/magnesium and N-glycan binding sites have emerged. Many interfaces have amino acid constellations that might transfer allosteric interaction between FUs. From their topologies we propose that the prime allosteric unit is the oblique segment between major and minor groove, consisting of seven FUs from two different subunits. Thus, the 9 Å structure of Nautilus hemocyanin provides fundamentally new insight into the architecture and function of molluscan hemocyanins.  相似文献   

17.
Kawabata T 《Biophysical journal》2008,95(10):4643-4658
Recently, electron microscopy measurement of single particles has enabled us to reconstruct a low-resolution 3D density map of large biomolecular complexes. If structures of the complex subunits can be solved by x-ray crystallography at atomic resolution, fitting these models into the 3D density map can generate an atomic resolution model of the entire large complex. The fitting of multiple subunits, however, generally requires large computational costs; therefore, development of an efficient algorithm is required. We developed a fast fitting program, “gmfit”, which employs a Gaussian mixture model (GMM) to represent approximated shapes of the 3D density map and the atomic models. A GMM is a distribution function composed by adding together several 3D Gaussian density functions. Because our model analytically provides an integral of a product of two distribution functions, it enables us to quickly calculate the fitness of the density map and the atomic models. Using the integral, two types of potential energy function are introduced: the attraction potential energy between a 3D density map and each subunit, and the repulsion potential energy between subunits. The restraint energy for symmetry is also employed to build symmetrical origomeric complexes. To find the optimal configuration of subunits, we randomly generated initial configurations of subunit models, and performed a steepest-descent method using forces and torques of the three potential energies. Comparison between an original density map and its GMM showed that the required number of Gaussian distribution functions for a given accuracy depended on both resolution and molecular size. We then performed test fitting calculations for simulated low-resolution density maps of atomic models of homodimer, trimer, and hexamer, using different search parameters. The results indicated that our method was able to rebuild atomic models of a complex even for maps of 30 Å resolution if sufficient numbers (eight or more) of Gaussian distribution functions were employed for each subunit, and the symmetric restraints were assigned for complexes with more than three subunits. As a more realistic test, we tried to build an atomic model of the GroEL/ES complex by fitting 21-subunit atomic models into the 3D density map obtained by cryoelectron microscopy using the C7 symmetric restraints. A model with low root mean-square deviations (14.7 Å) was obtained as the lowest-energy model, showing that our fitting method was reasonably accurate. Inclusion of other restraints from biological and biochemical experiments could further enhance the accuracy.  相似文献   

18.
Glyceraldehyde 3-phosphate dehydrogenase is a tetramer of four chemically identical subunits which requires the cofactor nicotinamide adenine dinucleotide (NAD) for activity. The structure of the holo-enzyme from Bacillus stearothermophilus has recently been refined using X-ray data to 2.4 A resolution. This has facilitated the structure determination of both the apo-enzyme and the enzyme with one molecule of NAD bound to the tetramer. These structures have been refined at 4 A resolution using the constrained-restrained parameter structure factor least-squares refinement program CORELS. When combined with individual atomic temperature factors from the holo-enzyme, these refined models give crystallographic R factors of 30.2% and 30.4%, respectively, for data to 3 A resolution. The apo-enzyme has 222 molecular symmetry, and the subunit structure is related to that of the holo-enzyme by an approximate rigid-body rotation of the coenzyme binding domain by 4.3 degrees with respect to the catalytic domains, which form the core of the tetramer. The effect of this rotation is to shield the coenzyme and active site from solvent in the holo-enzyme. In addition to the rigid-body rotation, there is a rearrangement of several residues involved in NAD binding. The structure of the 1 NAD enzyme is asymmetric. The subunit which contains the bound NAD adopts a conformation very similar to that of a holo-enzyme subunit, while the other three unliganded subunits are very similar to the apo-enzyme conformation. This result provides unambiguous evidence for ligand-induced sequential conformational changes in B. stearothermophilus glyceraldehyde 3-phosphate dehydrogenase.  相似文献   

19.
The existence of similar folds among major structural subunits of viral capsids has shown unexpected evolutionary relationships suggesting common origins irrespective of the capsids' host life domain. Tailed bacteriophages are emerging as one such family, and we have studied the possible existence of the HK97-like fold in bacteriophage T7. The procapsid structure at approximately 10 A resolution was used to obtain a quasi-atomic model by fitting a homology model of the T7 capsid protein gp10 that was based on the atomic structure of the HK97 capsid protein. A number of fold similarities, such as the fitting of domains A and P into the L-shaped procapsid subunit, are evident between both viral systems. A different feature is related to the presence of the amino-terminal domain of gp10 found at the inner surface of the capsid that might play an important role in the interaction of capsid and scaffolding proteins.  相似文献   

20.
Anterior head segmentation is governed by different regulatory mechanisms than those that control trunk segmentation in Drosophila. For segment polarity genes, both initial mode of activation as well as cross-regulatory interactions among them differ from the typical genetic circuitry in the trunk and are unique for each of the procephalic segments. In order to better understand the segment-specific gene network responsible for the procephalic expression of the earliest active segment polarity genes wingless and hedgehog, we started to identify and analyze cis-regulatory DNA elements of these genes. For hedgehog, we could identify a cis-regulatory element, ic-CRE, that mediates expression specifically in the posterior part of the intercalary segment and requires promoter-specific interaction for its function. The intercalary stripe is the last part of the metameric hedgehog expression pattern that appears during embryonic development, which probably reflects the late and distinct establishment of this segment. The identification of a cis-regulatory element that is specific for one head segment supports the mutant-based observation that the expression of segment polarity genes is governed by a unique gene network in each of the procephalic segments. This provides further indication that the anterior-most head segments represent primary segments, which are set up independently, in contrast to the secondary segments of the trunk, which resemble true repetitive units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号