首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human olfactory system can recognize and discriminate a large number of different odorant molecules. The detection of chemically distinct odorants starts with the binding of an odorant ligand to a specific receptor protein on the olfactory neuron cell surface. To address the problem of olfactory perception at a molecular level, we have expressed and characterized different olfactory receptors with several expression systems. Here we provide the first documentation of functional expression of odorant receptors using the Semliki Forest virus system. The human odorant OR 17-40 receptor and the rat 17 receptor were functionally expressed in vertebrate kidney cells (HEK293) using recombinant Semliki Forest viruses. Receptors were expressed as a fusion protein with the N-terminal membrane import sequence of the guinea pig serotonin receptor. Experiments employing the Ca2+-sensitive dye fura-2 revealed a fast, transient increase in the [Ca2+]i after application of the specific agonists helional and octanal to HEK293 cells infected with viruses containing RNA for the human odorant OR 17-40 receptor and the rat 17 receptor, respectively.  相似文献   

2.
The human olfactory system can recognize and discriminate a large number of different odorant molecules. The detection of chemically distinct odorants begins with the binding of an odorant ligand to a specific receptor protein on the olfactory neuron cell surface. To address the problem of olfactory perception at a molecular level, we have cloned, functionally expressed and characterized the first human olfactory receptor (OR 17-40). Application of a mixture of hundred different odorants elicited a transient increase in intracellular calcium at HEK 293-cells which were transfected with a plasmid containing the receptor encoding DNA and a membrane import sequence. By subdividing the odorant mixture in smaller groups we could identify a single component which represented the only effective substance: helional. Testing some structurally closely related molecules we found only one other compound which also could activate the receptor: heliotropyl acetone. All other compounds tested were completely ineffective. These findings represent the beginning of molecular understanding of odorant recognition in humans.  相似文献   

3.
Surface plasmon resonance (SPR) is a powerful technique for measuring molecular interaction in real-time. SPR can be used to detect molecule to cell interactions as well as molecule to molecule interactions. In this study, the SPR-based biosensing technique was applied to real-time monitoring of odorant-induced cellular reactions. An olfactory receptor, OR I7, was fused with a rho-tag import sequence at the N-terminus of OR I7, and expressed on the surface of human embryonic kidney (HEK)-293 cells. These cells were then immobilized on a SPR sensor chip. The intensity of the SPR response was linearly dependent on the amount of injected odorant. Among all the aldehyde containing odorants tested, the SPR response was specifically high for octanal, which is the known cognate odorant for the OR I7. This SPR response is believed to have resulted from intracellular signaling triggered by the binding of odorant molecules to the olfactory receptors expressed on the cell surface. This SPR system combined with olfactory receptor-expressed cells provides a new olfactory biosensor system for selective and quantitative detection of volatile compounds.  相似文献   

4.
The genetic basis of odorant-specific variations in human olfactory thresholds, and in particular of enhanced odorant sensitivity (hyperosmia), remains largely unknown. Olfactory receptor (OR) segregating pseudogenes, displaying both functional and nonfunctional alleles in humans, are excellent candidates to underlie these differences in olfactory sensitivity. To explore this hypothesis, we examined the association between olfactory detection threshold phenotypes of four odorants and segregating pseudogene genotypes of 43 ORs genome-wide. A strong association signal was observed between the single nucleotide polymorphism variants in OR11H7P and sensitivity to the odorant isovaleric acid. This association was largely due to the low frequency of homozygous pseudogenized genotype in individuals with specific hyperosmia to this odorant, implying a possible functional role of OR11H7P in isovaleric acid detection. This predicted receptor–ligand functional relationship was further verified using the Xenopus oocyte expression system, whereby the intact allele of OR11H7P exhibited a response to isovaleric acid. Notably, we also uncovered another mechanism affecting general olfactory acuity that manifested as a significant inter-odorant threshold concordance, resulting in an overrepresentation of individuals who were hyperosmic to several odorants. An involvement of polymorphisms in other downstream transduction genes is one possible explanation for this observation. Thus, human hyperosmia to isovaleric acid is a complex trait, contributed to by both receptor and other mechanisms in the olfactory signaling pathway.  相似文献   

5.
6.
An olfactory sensory neuron (OSN) expresses selectively one member from a repertoire of approximately 1000 odorant receptor (OR) genes and projects its axon to a specific glomerulus in the olfactory bulb. Both processes are here recapitulated by MOR23 and M71 OR minigenes, introduced into mice. Minigenes of 9 kb and as short as 2.2 kb are selectively expressed by neurons that do not coexpress the endogenous gene but coproject their axons to the same glomeruli. Deletion of a 395 bp upstream region in the MOR23 minigene abolishes expression. In this region we recognize sequence motifs conserved in many OR genes. Transgenic lines expressing the OR in ectopic epithelial zones form ectopic glomeruli, which also receive input from OSNs expressing the cognate endogenous receptor. This suggests a recruitment through homotypic interactions between OSNs expressing the same OR.  相似文献   

7.
Prominent roles for odorant receptor coding sequences in allelic exclusion   总被引:4,自引:0,他引:4  
Nguyen MQ  Zhou Z  Marks CA  Ryba NJ  Belluscio L 《Cell》2007,131(5):1009-1017
Mammalian odorant receptors (ORs) are crucial for establishing the functional organization of the olfactory system, but the mechanisms controlling their expression remain largely unexplained. Here, we utilized a transgenic approach to explore OR gene regulation. We determined that although olfactory sensory neurons (OSNs) are capable of supporting expression of multiple functional ORs, several levels of control ensure that each neuron normally expresses only a single odorant receptor. Surprisingly, this regulation extends beyond endogenous ORs even preventing expression of transgenes consisting of OR-coding sequences driven by synthetic promoters. Thus, part of the intrinsic feedback system must rely on elements present in the OR-coding sequence. Notably, by expressing the same transgenic ORs precociously in immature neurons, we have overcome this suppression and established a generic method to express any OR in approximately 90% of OSNs. These results provide important insights into the hierarchy of OR gene expression and the vital role of the OR-coding sequence in this regulation.  相似文献   

8.
An interaction of odorants with olfactory receptors is thought to be the initial step in odorant detection. However, ligands have been reported for only 6 out of 380 human olfactory receptors, with their structural determinants of odorant recognition just beginning to emerge. Guided by the notion that amino acid positions that interact with specific odorants would be conserved in orthologs, but variable in paralogs, and based on the prediction of a set of 22 of such amino acid positions, we have combined site-directed mutagenesis, rhodopsin-based homology modelling, and functional expression in HeLa/Olf cells of receptors OR1A1 and OR1A2. We found that (i) their odorant profiles are centred around citronellic terpenoid structures, (ii) two evolutionary conserved amino acid residues in transmembrane domain 3 are necessary for the responsiveness of OR1A1 and the mouse ortholog Olfr43 to (S)-(-)-citronellol, (iii) changes at these two positions are sufficient to account for the differential (S)-(-)-citronellol responsiveness of the paralogs OR1A1 and OR1A2, and (iv) the interaction sites for (S)-(-)-citronellal and (S)-(-)-citronellol differ in both human receptors. Our results show that the orientation of odorants within a homology modelling-derived binding pocket of olfactory receptor orthologs is defined by evolutionary conserved amino acid positions.  相似文献   

9.
Odorant-binding proteins (OBPs) represent a highly abundant class of proteins secreted in the nasal mucus by the olfactory neuroepithelium. These proteins display binding affinity for a variety of odorant molecules, thereby assuming the role of carrier during olfactory perception. However, no specific interaction between OBP and olfactory receptors (ORs) has yet been shown and early events in olfaction remain so far poorly understood at a molecular level. Two human ORs, OR 17-209 and OR 17-210, were fused to a Green Fluorescent Protein and stably expressed in COS-7 cell lines. Interaction with OBP was investigated using a highly purified radioiodinated porcine OBP (pOBP) preparation, devoid of any ligand in its binding cavity. No specific binding of the pOBP tracer could be detected with OR 17-209. In contrast, OR 17-210 exhibited specific saturable binding (K(d) = 9.48 nM) corresponding to the presence of a single class of high-affinity binding sites (B(max) = 65.8 fmol/mg prot). Association and dissociation kinetics further confirmed high-affinity interaction between pOBP and OR 17-210. Autoradiographic studies of labeled pOBP to newborn mouse slices revealed the presence of multiple specific binding sites located mainly in olfactory tissue but also in several other peripheral tissues. Our data thus demonstrate a high-affinity interaction between OBP and OR, indicating that under physiological conditions, ORs may be specifically associated with an OBP partner in the absence of odorant. This provides further evidence of a novel role for OBP in the mechanism of olfactory perception.  相似文献   

10.
This work shows the feasibility of an olfactory biosensor based on the immobilization of Saccharomyces cerevisiae yeast cells genetically modified to express the human olfactory receptor OR17-40 onto interdigitated microconductometric electrodes. This olfactory biosensor has been applied to the detection of its specific odorant (helional) with a high sensitivity (threshold 10−14 M). In contrast, no significant response was observed using a non-specific odorant (heptanal), which suggests a good selectivity. Thus, this work may represent a first step towards a new kind of bioelectronic noses based on whole yeast cells and allowing a real time monitoring of olfactory receptor activation. Presented at the joint biannual meeting of the SFB-GEIMM-GRIP, Anglet, France, 14–19 October, 2006.  相似文献   

11.
The human olfactory system recognizes a broad spectrum of odorants using approximately 400 different olfactory receptors (hORs). Although significant improvements of heterologous expression systems used to study interactions between ORs and odorant molecules have been made, screening the olfactory repertoire of hORs remains a tremendous challenge. We therefore developed a chemical systems level approach based on protein-protein association network to investigate novel hOR-odorant relationships. Using this new approach, we proposed and validated new bioactivities for odorant molecules and OR2W1, OR51E1 and OR5P3. As it remains largely unknown how human perception of odorants influence or prevent diseases, we also developed an odorant-protein matrix to explore global relationships between chemicals, biological targets and disease susceptibilities. We successfully experimentally demonstrated interactions between odorants and the cannabinoid receptor 1 (CB1) and the peroxisome proliferator-activated receptor gamma (PPARγ). Overall, these results illustrate the potential of integrative systems chemical biology to explore the impact of odorant molecules on human health, i.e. human odorome.  相似文献   

12.
The human olfactory systems recognize and discriminate a large number of different odorant molecules. The detection of chemically distinct odorants begins with the binding of an odorant ligand to a specific receptor protein in the ciliary membrane of olfactory neurons. To address the problem of olfactory perception at a molecular level, we have cloned, functionally expressed, and characterized some of the human olfactory receptors from chromosome 17. Our results show that a receptor protein is capable of recognizing the particular chemical substructure of an odor molecule and, therefore, is able to respond only to odorants that have a defined molecular structure. These findings represent the beginning of the molecular understanding of odorant recognition in humans. In the future, this knowledge could be used for the design of synthetic ideal receptors for specific odors (biosensors), or the perfect odor molecule for a given receptor.  相似文献   

13.
Primary olfactory neuronal cultures exposed to odorant stimulation have previously exhibited concentration-related effects in terms of intracellular cAMP levels and adenylate cyclase activity [Ronnett, G.V., Parfitt, D.J., Hester, L.D. & Snyder, S.H. (1991) PNAS88, 2366-2369]. Maximal stimulation occurred for intermediate concentrations, whereas AC activity declined for both low and high odorant concentrations. We suspected that this behavior might be ascribed to the intrinsic response of the first molecular species concerned by odorant detection, i.e. the olfactory receptor itself. In order to check this hypothesis, we developed an heterologous expression system in mammalian cells to characterize the functional response of receptors to odorants. Two mammalian olfactory receptors were used to initiate the study, the rat I7 olfactory receptor and the human OR17-40 olfactory receptor. The cellular response of transfected cells to an odorant stimulation was tested by a spectrofluorimetric intracellular calcium assay, and proved in all cases to be dose-dependent for the known ligands of these receptors, with an optimal response for intermediate concentrations. Further experiments were carried out with the rat I7 olfactory receptor, for which the sensitivity to an odorant, indicated by the concentration yielding the optimal calcium response, depended on the carbon chain length of the aldehydic odorant. The response is thus both ligand-specific and dose-dependent. We thus demonstrate that a differential dose-response originates from the olfactory receptor itself, which is thus capable of efficient discrimination between closely related agonists.  相似文献   

14.
We report here the results of human olfactory receptor (OR) 17-40 stimulation with some odorants probed by means of the double-channel surface plasmon resonance platform NanoSPR-6. OR 17-40 tagged with N-terminal cmyc sequence was heterologously co-expressed with Galpha(olf) protein in yeast, and receptor-carrying nanosomes were prepared from yeast membrane fraction. Then, receptors were specifically captured via anti-cmyc antibody attached to the gold-coated substrate in orientated or random way. Measurement of odorants effects were carried out in the presence of GTP-gamma-S in differential mode in order to compensate bulk changes of refractive index. For the first time, biosensing efficiency of olfactory films was discussed in terms of their thickness and Galpha(olf) accessibility to GTP-gamma-S. Bell-shaped response profile with two maxima (near 1 nM and near 1 muM) was established for helional, which is documented as highly specific agonist of OR 17-40. Unrelated odorant heptanal used as control, did not evoke significant variations of differential signal.  相似文献   

15.
An olfactory receptor protein of rats, I7, was expressed on the surface of human embryonic kidney (HEK)-293 cells. For targeting and detecting the protein, rho-tag import sequence was fused with the I7 protein. The olfactory receptor was expressed on the plasma membrane of HEK-293 cells, and stable cell lines regulated by an inducer were obtained. The expression on the cell surface was confirmed by immunocytochemical and Western blotting methods, and the binding of specific odorant molecules to the olfactory receptor was measured using quartz crystal microbalance (QCM). The results for QCM coated with cells containing the olfactory receptor showed that the expressed protein I7 strongly interacted with octyl aldehyde (octanal), which is an odorant specific to the I7 protein. Several other odorants were tested, and the results showed that I7 interacted differently with them. The QCM response to the serial concentrations of octyl aldehyde showed that the response is dose dependent. All these results indicate that the I7 receptor protein expressed on the surface of the heterologous cell system is sensitive to the specific odorant and can be used for the quantitative measurement of the odorant.  相似文献   

16.
Olfactory receptors are the largest group of orphan G protein-coupled receptors with an infinitely small number of agonists identified out of thousands of odorants. The de-orphaning of olfactory receptor (OR) is complicated by its combinatorial odorant coding and thus requires large scale odorant and receptor screening and establishing receptor-specific odorant profiles. Here, we report on the stable reconstitution of OR-specific signaling in HeLa/Olf cells via G protein alphaolf and adenylyl cyclase type-III to the Ca2+ influx-mediating olfactory cyclic nucleotide-gated CNGA2 channel. We demonstrate the central role of Galphaolf in odorant-specific signaling out of OR. The employment of the non-typical G protein alpha15 dramatically altered the odorant specificities of 3 of 7 receptors that had been characterized previously by different groups. We further show for two OR that an odorant may be an agonist or antagonist, depending on the G protein used. HeLa/Olf cells proved suitable for high-throughput screening in fluorescence-imaging plate reader experiments, resulting in the de-orphaning of two new OR for the odorant (-)citronellal from an expression library of 93 receptors. To demonstrate the G protein dependence of its odorant response pattern, we screened the most sensitive (-)citronellal receptor Olfr43 versus 94 odorants simultaneously in the presence of Galpha15 or Galphaolf. We finally established an EC50-ranking odorant profile for Olfr43 in HeLa/Olf cells. In summary, we conclude that, in heterologous systems, odorants may function as agonists or antagonists, depending on the G protein used. HeLa/Olf cells provide an olfactory model system for functional expression and de-orphaning of OR.  相似文献   

17.
Amano T  Gascuel J 《PloS one》2012,7(4):e33922
Recent genome wide in silico analyses discovered a new family (type 2 or family H) of odorant receptors (ORs) in teleost fish and frogs. However, since there is no evidence of the expression of these novel OR genes in olfactory sensory neurons (OSN), it remains unknown if type 2 ORs (OR2) function as odorant receptors. In this study, we examined expression of OR2 genes in the frog Xenopus tropicalis. The overall gene expression pattern is highly complex and differs depending on the gene and developmental stage. RT-PCR analysis in larvae showed that all of the OR2η genes we identified were expressed in the peripheral olfactory system and some were detected in the brain and skin. Whole mount in situ hybridization of the larval olfactory cavity confirmed that at least two OR2η genes so far tested are expressed in the OSN. Because tadpoles are aquatic animals, OR2η genes are probably involved in aquatic olfaction. In adults, OR2η genes are expressed in the nose, brain, and testes to different degrees depending on the genes. OR2η expression in the olfactory system is restricted to the medium cavity, which participates in the detection of water-soluble odorants, suggesting that OR2ηs function as receptors for water-soluble odorants. Moreover, the fact that several OR2ηs are significantly expressed in non-olfactory organs suggests unknown roles in a range of biological processes other than putative odorant receptor functions.  相似文献   

18.
The detection of thousands of volatile odorants is mediated by several hundreds of different G protein-coupled olfactory receptors (ORs). The main strategy in encoding odorant identities is a combinatorial receptor code scheme in that different odorants are recognized by different sets of ORs. Despite increasing information on agonist-OR combinations, little is known about the antagonism of ORs in the mammalian olfactory system. Here we show that odorants inhibit odorant responses of OR(s), evidence of antagonism between odorants at the receptor level. The antagonism was demonstrated in a heterologous OR-expression system and in single olfactory neurons that expressed a given OR, and was also visualized at the level of the olfactory epithelium. Dual functions of odorants as an agonist and an antagonist to ORs indicate a new aspect in the receptor code determination for odorant mixtures that often give rise to novel perceptual qualities that are not present in each component. The current study also provides insight into strategies to modulate perceived odorant quality.  相似文献   

19.
Olfaction depends on the selectivity and sensitivity of olfactory receptors. Previous attempts at constructing a mammalian olfactory receptor-based artificial odorant sensing system in the budding yeast Saccharomyces cerevisiae suffered from low sensitivity and activity. This result may be at least in part due to poor functional expression of olfactory receptors and/or limited solubility of some odorants in the medium. In this study, we examined the effects of two types of accessory proteins, receptor transporting protein 1 short and odorant binding proteins, in improving odor-mediated activation of olfactory receptors expressed in yeast. We found that receptor transporting protein 1 short enhanced the membrane expression and ligand-induced responses of some olfactory receptors. Coexpression of odorant binding proteins of the silkworm moth Bombyx mori enhanced the sensitivity of a mouse olfactory receptor. Our results suggest that different classes of accessory proteins can confer sensitive and robust responses of olfactory receptors expressed in yeast. Inclusion of accessory proteins may be essential in the future development of practical olfactory receptor-based odorant sensors.  相似文献   

20.
Interchromosomal interactions and olfactory receptor choice   总被引:25,自引:0,他引:25  
The expression of a single odorant receptor (OR) gene from a large gene family in individual sensory neurons is an essential feature of the organization and function of the olfactory system. We have used chromosome conformation capture to demonstrate the specific association of an enhancer element, H, on chromosome 14 with multiple OR gene promoters on different chromosomes. DNA and RNA fluorescence in situ hybridization (FISH) experiments allow us to visualize the colocalization of the H enhancer with the single OR allele that is transcribed in a sensory neuron. In transgenic mice bearing additional H elements, sensory neurons that express OR pseudogenes also express a second functional receptor. These data suggest a model of receptor choice in which a single trans-acting enhancer element may allow the stochastic activation of only one OR allele in an olfactory sensory neuron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号